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Abstract

We present SegNeXt, a simple convolutional network architecture for semantic1

segmentation. Recent transformer-based models have dominated the field of se-2

mantic segmentation due to the efficiency of self-attention in encoding spatial3

information. In this paper, we show that convolutional attention is a more efficient4

and effective way to encode contextual information than the self-attention mech-5

anism in transformers. By re-examining the characteristics owned by successful6

segmentation models, we discover several key components leading to the perfor-7

mance improvement of segmentation models. This motivates us to design a novel8

convolutional attention network that uses cheap convolutional operations. Without9

bells and whistles, our SegNeXt significantly improves the performance of previous10

state-of-the-art methods on popular benchmarks, including ADE20K, Cityscapes,11

COCO-Stuff, Pascal VOC, Pascal Context, and iSAID. Notably, SegNeXt out-12

performs EfficientNet-L2 w/ NAS-FPN and achieves 90.6% mIoU on the Pascal13

VOC 2012 test leaderboard using only 1/10 parameters of it. On average, SegNeXt14

achieves about 2.0% mIoU improvements compared to the state-of-the-art methods15

on the ADE20K datasets with the same or fewer computations. Code will be made16

publicly available.17

1 Introduction18

As one of the most fundamental research topics in computer vision, semantic segmentation, which19

aims at assigning each pixel a semantic category, has attracted great attention over the past decade.20

From early CNN-based models, typified by FCN [48] and DeepLab series [4, 6, 8], to recent21

transformer-based methods, represented by SETR [90] and SegFormer [74], semantic segmentation22

models have experienced significant revolution in terms of network architectures.23

Table 1: Properties we observe from the successful semantic segmentation methods that are beneficial
to the boost of model performance. Here, n refers to the number of pixels or tokens. Strong encoder
denotes strong backbones, like ViT [17], and adopts the advanced training strategy.

Properties DeepLabV3+ HRNet SETR SegFormer SegNeXt
Strong encoder ✗ ✗ ✓ ✓ ✓
Multi-scale interaction ✓ ✓ ✗ ✗ ✓
Spatial attention ✗ ✗ ✓ ✓ ✓

Computational complexity O(n) O(n) O(n2) O(n2) O(n)

By revisiting previous successful semantic segmentation works, we summarize several key properties24

different models possess as shown in Tab. 1. Based on the above observation, we argue a successful25
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Figure 1: Performance-Computing curves on the Cityscapes (left) and ADE20K (right) validation sets.
FLOPs are calculated using an input size of 2, 048×1, 024 for Cityscapes and 512×512 for ADE20K.
The size of the circle indicates the number of parameters. Larger circles mean more parameters.
We can see that our SegNeXt achieves the best trade-off between segmentation performance and
computational complexity.

semantic segmentation model should have the following characteristics: (i) A strong backbone26

network as encoder. Compared to previous CNN-based models, the performance improvement of27

transformer-based models is mostly from a stronger backbone network. (ii) Multi-scale information28

interaction. Different from the image classification task that mostly identifies a single object, semantic29

segmentation is a dense prediction task and hence needs to process objects of varying sizes in a30

single image. (iii) Spatial attention. Spatial attention allows models to perform segmentation through31

prioritization of areas within the semantic regions. (iv) Low computational complexity. This is32

especially crucial when dealing with high-resolution images from remote sensing and urban scenes.33

Taking the aforementioned analysis into account, in this paper, we rethink the design of convolu-34

tional attention and propose an efficient yet effective encoder-decoder architecture for semantic35

segmentation. Unlike previous transformer-based models that use convolutions in decoders as feature36

refiners, our method inverts the transformer-convolution encoder-decoder architecture. Specifically,37

for each block in our encoder, we renovate the design of conventional convolutional blocks and utilize38

multi-scale convolutional features to evoke spatial attention via a simple element-wise multiplication39

following [24]. We found such a simple way to build spatial attention is more efficient than both the40

standard convolutions and self-attention in spatial information encoding. For decoder, we collect41

multi-level features from different stages and use Hamburger [21] to further extract global context.42

Under this setting, our method can obtain multi-scale context from local to global, achieve adaptability43

in spatial and channel dimensions, and aggregate information from low to high levels.44

Our network, termed SegNeXt, is mostly composed of convolutional operations except the decoder45

part, which contains a decomposition-based Hamburger module [21] (Ham) for global information46

extraction. This makes our SegNeXt much more efficient than previous segmentation methods that47

heavily rely on transformers. As shown in Fig. 1, SegNeXt outperforms recent transformer-based48

methods significantly. In particular, our SegNeXt-S outperforms SegFormer-B2 (81.3% vs. 81.0%)49

using only about 1/6 (124.6G vs. 717.1G) computational cost and 1/2 parameters (13.9M vs. 27.6M)50

when dealing with high-resolution urban scenes from the Cityscapes dataset.51

Our contributions can be summarized as follows:52

• We identify the characteristics that a good semantic segmentation model should own and53

present a novel tailored network architecture, termed SegNeXt, that evokes spatial attention54

via multi-scale convolutional features.55

• We show that an encoder with simple and cheap convolutions can still perform better than56

vision transformers, especially when processing object details, while it requires much less57

computational cost.58

• Our method improves the performance of state-of-the-art semantic segmentation methods59

by a large margin on various segmentation benchmarks, including ADE20K, Cityscapes,60

COCO-Stuff, Pascal VOC, Pascal Context, and iSAID.61
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2 Related Work62

2.1 Semantic Segmentation63

Semantic segmentation is a fundamental computer vision task. Since FCN [48] was proposed,64

convolutional neural networks (CNNs) [1, 58, 80, 88, 19, 81, 65, 20] have achieved great success and65

become a popular architecture for semantic segmentation. Recently, transformer-based methods [90,66

74, 82, 59, 57, 11, 10] have shown great potentials and outperform CNN-based methods.67

In the era of deep learning, the architecture of segmentation models can be roughly divided into two68

parts: encoder and decoder. For the encoder, researchers usually adopt popular classification networks69

(e.g., ResNet [27], ResNeXt [75] and DenseNet [31]) instead of tailored architecture. However,70

semantic segmentation is a kind of dense prediction task, which is different from image classification.71

The improvement in classification may not appear in the challenging segmentation task [28]. Thus,72

some tailored encoders appear, including Res2Net [20], HRNet [65], SETR [90], SegFormer [74],73

HRFormer [82], MPViT [37], DPT [57], etc. For the decoder, it is often used in cooperating74

with encoders to achieve better results. There are different types of decoders for different goals,75

including achieving multi-scale receptive fields [88, 7, 72], collecting multi-scale semantics [58, 74, 8],76

enlarging receptive field [5, 4, 56], strengthening edge features [89, 2, 16, 41, 84], and capturing77

global context [19, 33, 83, 39, 23, 26, 85].78

In this paper, we summarize the characteristics of those successful models designed for semantic79

segmentation and present a CNN-based model, named SegNeXt. The most related work to our paper,80

is [56], which decomposes a k × k convolution into a pair of k × 1 and 1× k convolutions. Though81

this work has shown large convolutional kernels matter in semantic segmentation, it ignores the82

importance of multi-scale receptive field and does not consider how to leverage these multi-scale83

features extracted by large kernels for segmentation in the form of attention.84

2.2 Multi-Scale Networks85

Designing multi-scale network is one of the popular directions in computer vision. For segmentation86

models, multi-scale blocks appear in both the encoder [65, 20, 61] and the decoder [88, 80, 6] parts.87

GoogleNet [61] is one of the most related multi-scale architectures to our method, which uses a88

multi-branch structure to achieve multi-scale feature extraction. Another work that is related to our89

method is HRNet [65]. In the deeper stages, HRNet also keeps high-resolution features, which are90

aggregated with low-resolution features, to enable multi-scale feature extraction.91

Different from previous methods, SegNeXt, besides capturing multi-scale features in encoder, intro-92

duces an efficient attention mechanism and employs cheaper and larger kernel convolutions. These93

enable our model to achieve higher performance than the aforementioned segmentation methods.94

2.3 Attention Mechanisms95

Attention mechanism is a kind of adaptive selection process, which aims to make the network96

focus on the important part. Generally speaking, it can be divided into two categories in semantic97

segmentation [25], including channel attention and spatial attention. Different types of attentions play98

different roles. For instance, spatial attentions mainly care about the important spatial regions [17, 14,99

52, 46, 22]. Differently, the goal of using channel attention is to make the network selectively attend100

to those important objects, which has been demonstrated important in previous works [30, 9, 66].101

Speaking of the recent popular vision transformers [17, 46, 76, 68, 67, 74, 32, 82], they usually102

ignore adaptability in channel dimension.103

Visual attention network (VAN) [24] is the most related work to SegNeXt, which also proposes to104

leverage the large-kernel attention (LKA) mechanism to build both channel and spatial attention.105

Though VAN has achieved great performance in image classification, it neglects the role of multi-scale106

feature aggregation during the network design, which is crucial for segmentation-like tasks.107

3 Method108

In this section, we describe the architecture of the proposed SegNeXt in detail. Basically, we adopt109

an encoder-decoder architecture following most previous works, which is simple and easy to follow.110
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Figure 2: Illustration of the proposed MSCA and MSCAN. Here, d, k1 × k2 means a depth-wise
convolution (d) using a kernel size of k1 × k2. We extract multi-scale features using convolutions
and then utilize them as attention weights to reweigh the input of MSCA.

3.1 Convolutional Encoder111

We adopt the pyramid structure for our encoder following most previous work [74, 5, 19]. For the112

building block in our encoder, we adopt a similar structure to that of ViT [17, 74] but what is different113

is that we do not use the self-attention mechanism but design a novel multi-scale convolutional114

attention (MSCA) module. As depicted in Fig. 2 (a), MSCA contains three parts: a depth-wise115

convolution to aggregate local information, multi-branch depth-wise strip convolutions to capture116

multi-scale context, and an 1× 1 convolution to model relationship between different channels. The117

output of the 1× 1 convolution is used as attention weights directly to reweigh the input of MSCA.118

Mathematically, our MSCA can be written as:119

Att = Conv1×1(

3∑
i=0

Scalei(DW-Conv(F ))), (1)

Out = Att ⊗ F. (2)

where F represents the input feature. Att and Out are the attention map and output, respectively.120

⊗ is the element-wise matrix multiplication operation. DW-Conv denotes depth-wise convolution121

and Scalei, i ∈ {0, 1, 2, 3}, denotes the ith branch in Fig. 2(b). Scale0 is the identity connection.122

Following [56], in each branch, we use two depth-wise strip convolutions to approximate standard123

depth-wise convolutions with large kernels. Here, the kernel size for each branch is set to 7, 11, and124

21, respectively. The reasons why we choose depth-wise strip convolutions are two-fold. On one125

hand, strip convolution is lightweight. To mimic a standard 2D convolution with kernel size 7× 7,126

we only need a pair of 7 × 1 and 1 × 7 convolutions. On the other hand, there are some strip-like127

objects, such as human and telephone pole in the segmentation scenes. Thus, strip convolution can be128

a complement of grid convolutions and helps extract strip-like features [56, 29].129

Stacking a sequence of building blocks yields the proposed convolutional encoder, named MSCAN.130

For MSCAN, we adopt a common hierarchical structure, which contains four stages with decreasing131

spatial resolutions H
4 × W

4 , H
8 × W

8 , H
16 × W

16 and H
32 × W

32 . Here, H and W are height and width of132

the input image, respectively. Each stage contains a down-sampling block and a stack of building133

blocks as described above. The down-sampling block has a convolution with stride 2 and kernel size134

3× 3, followed by a batch normalization layer [34]. Note that, in each building block of MSCAN,135

we use batch normalization instead of layer normalization as we found batch normalization gains136

more for the segmentation performance.137

We desgin four encoder models with different sizes, named MSCAN-T, MSCAN-S, MSCAN-B, and138

MSCAN-L, respectively. The corresponding overall segmentation models are termed SegNeXt-T,139

SegNeXt-S, SegNeXt-B, SegNeXt-L, respectively. Detailed network settings are displayed in Tab. 2.140
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Table 2: Detailed settings of different sizes of the proposed SegNeXt. In this table, ‘e.r.’ represents the
expansion ratio in the feed-forward network. ‘C’ and ‘L’ are the numbers of channels and building
blocks, respectively. ‘Decoder dimension’ denotes the MLP dimension in the decoder. ‘Parameters’
are calculated on the ADE20K dataset [92]. Due to the different numbers of the categories in different
datasets, the number of parameters may change slightly.

stage output size e.r. SegNeXt-T SegNeXt-S SegNeXt-B SegNeXt-L

1 H
4 × W

4 × C 8 C = 32, L = 3 C = 64, L = 2 C = 64, L = 3 C = 64, L = 3

2 H
8 × W

8 × C 8 C = 64, L = 3 C = 128, L = 2 C = 128, L = 3 C = 128 , L = 5

3 H
16 × W

16 × C 4 C = 160, L = 5 C = 320,L = 4 C = 320,L = 12 C = 320,L = 27

4 H
32 × W

32 × C 4 C = 256,L = 2 C = 512,L = 2 C = 512,L = 3 C = 512,L = 3

Decoder dimension 256 256 512 1,024

Parameters (M) 4.3 13.9 27.6 48.9

3.2 Decoder141

In segmentation models [74, 90, 5], the encoders are mostly pretrained on the ImageNet dataset. To142

capture high-level semantics, a decoder is usually necessary, which is applied upon the encoder. In143

this work, we investigate three simple decoder structures, which have been shown in Fig. 3. The first144

one, adopted in SegFormer [74], is a purely MLP-based structure. The second one is mostly adopted145

CNN-based models. In this kind of structure, the output of the encoder is directly used as the input146

to a heavy decoder head, like ASPP [5], PSP [88], and DANet [19]. The last one is the structure147

adopted in our SegNeXt. We aggregate features from the last three stages and use a lightweight148

Hamburger [21] to further model the global context. Combined with our powerful convolutional149

encoder, we found that using a lightweight decoder improves performance-computation efficiency.150
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Figure 3: Three different decoder designs.

It is worth nothing that unlike SegFormer whose decoder aggregates the features from Stage 1 to151

Stage 4, our decoder only receives features from the last three stages. This is because our SegNeXt152

is based on convolutions. The features from Stage 1 contain too much low-level information and153

hurts the performance. Besides, operations on Stage 1 bring heavy computational overhead. In our154

experiment section, we will show that our convolutional SegNeXt performs much better than the155

recent state-of-the-art transformer-based SegFormer [74] and HRFormer [82].156

4 Experiments157

Dataset. We evaluate our methods on seven popular datasets, including ImageNet-1K [15],158

ADE20K [92], Cityscapes [13], Pascal VOC [18], Pascal Context [53], COCO-Stuff [3], and159

iSAID [70]. ImageNet [15] is the best-known dataset for image classification, which contains160

1,000 categories. Similar to most segmentation methods, we use it to pretrain our MSCAN en-161

coder. ADE20K [92] is a challenging dataset which contains 150 semantic classes. It consists162

of 20,210/2,000/3,352 images in the training, validation and test sets. Cityscapes [13] mainly fo-163

cuses on urban scenes and contains 5.000 high-resolution images with 19 categories. There are164

2,975/500/1,525 images for training, validation and testing, respectively. Pascal VOC [18] involves165
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Table 3: Comparison with state-of-the-art
methods on ImageNet validation set. ‘Acc.’
denotes Top-1 accuracy.

Method Params. (M) Acc. (%)

MiT-B0 [74] 3.7 70.5
VAN-Tiny [24] 4.1 75.4
MSCAN-T 4.2 75.9

MiT-B1 [74] 14.0 78.7
VAN-Small [24] 13.9 81.1
MSCAN-S 14.0 81.2

MiT-B2 [74] 25.4 81.6
Swin-T [46] 28.3 81.3
ConvNeXt-T [47] 28.6 82.1
VAN-Base [24] 26.6 82.8
MSCAN-B 26.8 83.0

MiT-B3 [27] 45.2 83.1
Swin-S [46] 49.6 83.0
ConvNeXt-S [46] 50.1 83.1
VAN-Large [24] 44.8 83.9
MSCAN-L 45.2 83.9

Table 4: Comparison with state-of-the-art methods
on the remote sensing dataset iSAID. Single-scale
(SS) test is applied by default. Our SegNeXt-T has
achieved state-of-the-art performance.

Method Backbone mIoU (%)

DenseASPP [77] ResNet50 57.3
PSPNet [88] ResNet50 60.3
SemanticFPN [35] ResNet50 62.1
RefineNet [44] ResNet50 60.2
HRNet [65] HRNetW-18 61.5
GSCNN [62] ResNet50 63.4
SFNet [42] ResNet50 64.3
RANet [54] ResNet50 62.1
PointRend [36] ResNet50 62.8
FarSeg [91] ResNet50 63.7
UperNet [73] Swin-T 64.6
PointFlow [40] ResNet50 66.9

SegNeXt-T MSCAN-T 68.3
SegNeXt-S MSCAN-S 68.8
SegNeXt-B MSCAN-B 69.9
SegNeXt-L MSCAN-L 70.3

20 foreground classes and a background class. After augmentation, it has 10, 582/1, 449/1, 456166

images for training, validation and testing, respectively. Pascal Context [53] contains 59 foreground167

classes and a background class. The training set and validation set contain 4,996 and 5,104 images,168

respectively. COCO-Stuff [3] is also a challenging benchmark, which contains 172 semantic cate-169

gories and 164k images in total. iSAID [70] is a large-scale aerial image segmentation benchmark,170

which includes 15 foreground classes and a background class. Its training, validation and test sets171

separately involve 1,411/458/937 images.172

Implementation details. Our implementation is based on the timm (Apache-2.0) [71] and mmseg-173

mentation (Apache-2.0) [12] libraries for classification and segmentation, respectively. All encoders174

of our segmentation models are pretrained on the ImageNet-1K dataset [15]. We adopt Top-1 ac-175

curacy and mean Intersection over Union (mIoU) as our evaluation metrics for classification and176

segmentation, respectively. All models are trained on a node with 8 RTX 3090 GPUs.177

For ImageNet pretraining, our data augmentation method and training settings are the same as178

DeiT [64]. For segmentation experiments, we adopt some common data augmentation including179

random horizontal flipping, random scaling (from 0.5 to 2) and random cropping. The batch size180

is set to 8 for the Cityscapes dataset and 16 for all the other datasets. AdamW [49] is applied to181

train our models. We set the initial learning rate as 0.00006 and employ the poly-learning rate decay182

policy. We train our model 160K iterations for ADE20K, Cityscapes and iSAID datasets and 80K183

iterations for COCO-Stuff, Pascal VOC and Pascal Context datasets. During testing, we use both the184

single-scale (SS) and multi-scale (MS) flip test strategies for a fair comparison. More details can be185

found in our supplementary materials.186

4.1 Encoder Performance on ImageNet187

ImageNet pretraining is a common strategy for training segmentation models [88, 6, 74, 82, 5]. Here,188

we compare the performance of our MSCAN with several recent popular CNN-based and transformer-189

based classification models. As shown in Tab. 3, our MSCAN achieves better results than the recent190

state-of-the-art CNN-based method, ConvNeXt [47] and outperforms popular transformer-based191

methods, like Swin Transformer [46] and MiT, the encoder of SegFormer [74].192

4.2 Ablation study193

Global Context for Decoder. Decoder plays an important role in integrating global context from194

multi-scale features for segmentation models. Here, we investigate the influence of different global195

context modules on decoder. As shown in most previous works [69, 19], attention-based decoders196

achieves better performance for CNNs than pyramid structures [88, 5], we thus only show the results197
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Table 5: Performance of different attention mechanisms in decoder. SegNeXt-B w/ Ham means the
MSCAN-B encoder plus the Ham decoder. FLOPs are calculated using the input size of 512×512.

Architecture Params. (M) GFLOPs mIoU (SS) mIoU (MS)

SegNeXt-B w/ CC [33] 27.8 35.7 47.3 48.6
SegNeXt-B w/ EMA [39] 27.4 32.3 48.0 49.1
SegNeXt-B w/ NL [69] 27.6 40.9 48.6 50.0
SegNeXt-B w/ Ham [21] 27.6 34.9 48.5 49.9

using attention-based decoders. Specifically, we show results with 4 different types of attention-198

based decoders, including non-local (NL) attention [69] with O(n2) complexity and CCNet [33],199

EMANet [39], and HamNet [21] with O(n) complexity. As shown in Tab. 5, Ham achieves the best200

trade-off between complexity and performance. Therefore, we use Hamburger [21] in our decoder.201

Table 6: Performance of different decoder structures. SegNeXt-T (a) means Fig. 3 (a) is used in
decoder. FLOPs are calculated using the input size of 512×512. SegNeXt-T (c) w/ stage 1 means the
output of stage 1 is also sent into the decoder.

Architecture Params. (M) GFLOPs mIoU (SS) mIoU (MS)

SegNeXt-T (a) 4.4 10.0 40.3 41.1
SegNeXt-T (b) 4.2 4.9 30.9 40.6
SegNeXt-T (c) 4.3 6.6 41.1 42.2
SegNeXt-T (c) w/ stage 1 4.3 12.1 40.7 42.2

Decoder Structure. Unlike image classification, segmentation models need high-resolution outputs.202

We ablate three different decoder designs for segmentation, all of which have been shown in Fig. 3.203

The corresponding results are listed in Tab. 6. We can see that SegNeXt (c) achieves the best204

performance and the computational cost is also low.205

Table 7: Importance of our multi-scale convolutional attention (MSCA). SegNeXt-T w/o MSCA
means we use only a branch with a large kernel convolution as done in [24] to replace the multiple
branches in our MSCA. FLOPs are calculated using the input size of 512×512.

Architecture Params. (M) GFLOPs mIoU (SS) mIoU (MS)

SegNeXt-T w/o MSCA 4.2 6.5 39.5 40.9
SegNeXt-T w/ MSCA 4.3 6.6 41.0 42.5

SegNeXt-S w/o MSCA 13.8 15.8 43.5 45.2
SegNeXt-S w/ MSCA 13.9 15.9 44.3 45.8

Importance of Our MSCA. Here, we conduct experiments to demonstrate the importance of206

MSCA for segmentation. As a comparison, we follow VAN [24] and replace the multiple branches in207

our MSCA with a single convolution with a large kernel. As shown in Tab. 7 and Tab. 3, we can208

observe that though the performance of the two encoders is close in ImageNet classification, SegNeXt209

w/ MSCA yields much better results than the setting w/o MSCA. This indicates that aggregating210

multi-scale features is crucial in encoder for semantic segmentation.211

4.3 Comparison with state-of-the-art methods212

In this subsection, we compare our method with state-of-the-art CNN-based methods, such as213

HRNet [65], ResNeSt [86], and EfficientNet [63], and transformer-based methods, like Swin Trans-214

former [46], SegFormer [74], HRFormer [82], MaskFormer [11], and Mask2Former [10].215

Performance-computation trade-off. ADE20K and Cityscapes are two widely used benchmarks216

in semantic segmentation. As shown in Fig. 1, we plot the performance-computation curves of217

different methods on the Cityscape and ADE20K validation set. Clearly, our method achieves the218

best trade-off between performance and computations compared to other state-of-the-art methods,219

like SegFormer [74], HRFormer [82], and MaskFormer [11].220
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Figure 4: Qualitative Comparison of SegNeXt-B and SegFormer-B2 on the Cityscapes dataset. More
visual results can be found in our supplementary materials.

Table 8: Comparison with state-of-the-art methods on the ADE20K, Cityscapes and COCO-Stuff
benchmarks. The number of FLOPs (G) is calculated on the input size of 512×512 for ADE20K and
COCO-Stuff, and 2,048×1,024 for Cityscapes. † means models pretrained on ImageNet-22K.

Model Params ADE20K Cityscapes COCO-Stuff
(M) GFLOPs mIoU (SS/MS) GFLOPs mIoU (SS/MS) GFLOPs mIoU (SS/MS)

Segformer-B0 [74] 3.8 8.4 37.4 38.0 125.5 76.2 78.1 8.4 35.6 -
SegNeXt-T 4.3 6.6 41.1 42.2 50.5 79.8 81.4 6.6 38.7 39.1
Segformer-B1 [74] 13.7 15.9 42.2 43.1 243.7 78.5 80.0 15.9 40.2 -
HRFormer-S [82] 13.5 109.5 44.0 45.1 835.7 80.0 81.0 109.5 37.9 38.9
SegNeXt-S 13.9 15.9 44.3 45.8 124.6 81.3 82.7 15.9 42.2 42.8
Segformer-B2 [74] 27.5 62.4 46.5 47.5 717.1 81.0 82.2 62.4 44.6 -
MaskFormer [11] 42 55 46.7 48.8 - - - - - -
SegNeXt-B 27.6 34.9 48.5 49.9 275.7 82.6 83.8 34.9 45.8 46.3

SETR-MLA†[90] 310.6 - 48.6 50.1 - 79.3 82.2 - - -
DPT-Hybrid [57] 124.0 307.9 - 49.0 - - - - - -
Segformer-B3 [74] 47.3 79.0 49.4 50.0 962.9 81.7 83.3 79.0 45.5 -
Mask2Former [10] 47 74 47.7 49.6 - - - - - -
HRFormer-B [82] 56.2 280.0 48.7 50.0 2223.8 81.9 82.6 280.0 42.4 43.3
MaskFormer [11] 63 79 49.8 51.0 - - - - - -
SegNeXt-L 48.9 70.0 51.0 52.1 577.5 83.2 83.9 70.0 46.5 47.2

Comparison with state-of-the-art transformers. We compare SegNeXt with state-of-the-art trans-221

former models on the ADE20K, Cityscapes, COCO-Stuff and Pascal Context benchmarks. As shown222

in Tab. 8, SegNeXt-L surpasses Mask2Former with Swin-T backbone by 3.3 mIoU (51.0 v.s. 47.7)223

with similar parameters and computational cost on he ADE20K dataset. Moreover, SegNeXt-B yields224

2.0 mIoU improvement (48.5 v.s. 46.5) compared to SegFormer-B2 using only 56% computations225

on the ADE20K dataset. In particular, since the self-attention in SegFormer [74] is of quadratic226

complexity w.r.t., the input size while our method uses convolutions, this makes our method perform227

greatly well when dealing with high-resolution images from the Cityscapes dataset. For instance,228

SegNeXt-B gains 1.6 mIoU (81.0 v.s. 82.6) over SegFormer-B2 but uses 40% less computations.229

In Fig. 4, we also show a qualitative comparison with SegFormer. We can see that thanks to the230

proposed MSCA, our method recognizes well when processing object details.231

Comparison with state-of-the-art CNNs. As shown in Tab. 4, Tab. 9, and Tab. 11, we compare our232

SegNeXt with state-of-the-art CNNs such as ResNeSt-269 [86], EfficientNet-L2 [93], and HRNet-233

W48 [65] on the Pascal VOC 2012, Pascal Context, and iSAID datasets. SegNeXt-L outperforms the234

popular HRNet (OCR) [65, 81] model (60.3 v.s. 56.3) using even less parameters and computations,235

which is elaborately designed for the segmentation task. Moreover, SegNeXt-L performs even better236

than EfficientNet-L2 (NAS-FPN), which is pretrained on additional 300 million unavailable images,237

on the Pascal VOC 2012 test leaderboard. It is worth noting that EfficientNet-L2 (NAS-FPN) has238

485M parameters, while SegNeXt-L has only 48.7M parameters.239

Comparison with real-time methods. In addition to the state-of-the-art performance, our method is240

also suitable for real-time deployments. Even without any specific software or hardware acceleration,241

SegNeXt-T realizes 25 frames per second (FPS) using a single 3090 RTX GPU when dealing with242
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Table 9: Comparison with state-of-the-art meth-
ods on Pascal VOC dataset. ∗ means COCO [45]
pretraining. † denotes JFT-300M [60] pretrain-
ing. $ utilizes additional 300M unlabeled images
for pretraining.

Method Backbone mIoU

DANet [19] ResNet101 82.6
OCRNet [81] HRNetV2-W48 84.5
HamNet [21] ResNet101 85.9
EncNet∗ [85] ResNet101 85.9
EMANet∗ [39] ResNet101 87.7
DeepLabV3+∗ [8] Xception-71 87.8
DeepLabV3+† [8] Xception-JFT 89.0
NAS-FPN$ [93] EfficientNet-L2 90.5

SegNeXt-T MSCAN-T 82.7
SegNeXt-S MSCAN-S 85.3
SegNeXt-B MSCAN-B 87.5
SegNeXt-L∗ MSCAN-L 90.6

Table 10: Comparison with state-of-the-art real-
time methods on Cityscapes test dataset. We
test our method with a single RTX-3090 GPU
and AMD EPYC 7543 32-core processor CPU
. Without using any optimizations, SegNeXt-T
can achieve 25 frames per second (FPS), which
meets the requirements of real-time applications.

Method Input size mIoU

ESPNet [50] 512×1,024 60.3
ESPNetv2 [51] 512×1,024 66.2
ICNet [87] 1,024 × 2,048 69.5
DFANet [38] 1,024 × 1,024 71.3
BiSeNet [79] 768 × 1,536 74.6
BiSeNetv2 [78] 512 × 1,024 75.3
DF2-Seg [43] 1,024 × 2,048 74.8
SwiftNet [55] 1,024 × 2,048 75.5
SFNet [42] 1,024 × 2,048 77.8

SegNeXt-T 768 × 1,536 78.0

Table 11: Comparison on Pascal Context benchmark. The number of FLOPs is calculated with the
input size of 512×512. ∗ means ImageNet-22K pretraining. † denotes ADE20K pretraining.

Method Backbone Params.(M) GFLOPs mIoU (SS/MS)

PSPNet [88] ResNet101 - - - 47.8
DANet [19] ResNet101 69.1 277.7 - 52.6
EMANet [39] ResNet101 61.1 246.1 - 53.1
HamNet [21] ResNet101 69.1 277.9 - 55.2
HRNet(OCR) [65] HRNetW48 74.5 - - 56.2
DeepLabV3+ [8] ResNeSt-269 - - - 58.9
SETR-PUP∗ [90] ViT-Large 317.8 - 54.4 55.3
SETR-MLA∗ [90] ViT-Large 309.5 - 54.9 55.8
HRFormer-B [82] HRFormer-B 56.2 280.0 57.6 58.5
DPT-Hybrid† [57] ViT-Hybrid 124.0 - - 60.5

SegNeXt-T MSCAN-T 4.2 6.6 51.2 53.3
SegNeXt-S MSCAN-S 13.9 15.9 54.2 56.1
SegNeXt-B MSCAN-B 27.6 34.9 57.0 59.0
SegNeXt-L MSCAN-L 48.8 70.0 58.7 60.3
SegNeXt-L† MSCAN-L 48.8 70.0 59.2 60.9

an image of size 768×1,536. As shown in Tab. 10, our method sets new state-of-the-art results for243

real-time segmentation on the Cityscapes test set.244

5 Conclusions and Discussion245

In this paper, we analyze previous successful segmentation models and find the good characteristics246

owned by them. Based on the findings, we present a tailored convolutional attention module MSCA247

and a CNN-style network SegNeXt. Experimental results demonstrate that SegNeXt surpasses current248

state-of-the-art transformer-based methods by a considerable margin.249

Recently, transformer-based models have dominated various segmentation leaderboards. Instead, this250

paper shows that CNN-based methods can still perform better than transformer-based methods using251

a proper design. We hope this paper could encourage researchers to further investigate the potential252

of CNNs.253

Our model also has its limitations, for example, extending this method to large-scale models with254

100M+ parameters and the performance on other vision or NLP tasks. These will be addressed in our255

future works.256
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