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Abstract

Software packages like TensorFlow and Pytorch are designed to support linear1

algebra operations, and their speed and usability determine their success. However,2

by prioritising speed, they often neglect memory requirements. As a consequence,3

the implementations of memory-intensive algorithms that are convenient in terms4

of software design can often not be run for large problems due to memory overflows.5

Memory-efficient solutions require complex programming approaches with signif-6

icant logic outside the computational framework. This impairs the adoption and7

use of such algorithms. To address this, we developed an XLA compiler extension8

that adjusts the computational data-flow representation of an algorithm according9

to a user-specified memory limit. We show that k-nearest neighbour and sparse10

Gaussian process regression methods can be run at a much larger scale on a single11

device, where standard implementations would have failed. Our approach leads12

to better use of hardware resources. We believe that further focus on removing13

memory constraints at a compiler level will widen the range of machine learning14

methods that can be developed in the future.15

1 Introduction16

Progress in science is inextricably linked with advances in scientific computing, in terms of both17

software and hardware. This is particularly noticeable in machine learning through the huge impact18

of numerical software packages supporting automatic differentiation (Baydin et al., 2018). Packages19

such as TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2019), or JAX (Bradbury et al.,20

2018) greatly accelerated 1) the implementation of gradient-based optimisation procedures by elimi-21

nating error-prone manual differentiation, and 2) the execution of code by leveraging modern and22

heterogeneous hardware (e.g. GPU, TPU or IPU). A large portion of this impact is attributable to23

the accessible and user-friendly form that these features were delivered in. This contributed to the24

growth in the machine learning community, in terms of methodological researchers, as well as the25

wider scientific audience and practitioners.26

The aforementioned software frameworks work by chaining together efficient implementations of27

mathematical operations (known as kernels). By providing implementations that are tailored to various28

types of hardware, a speed-optimised implementation can be obtained. While speed is certainly29

important to pursue, many algorithms face a different challenge: hardware memory constraints. Often,30

these have a larger impact, as memory constraint violations can lead to the execution terminating31

before an answer is obtained. This make-or-break property is particularly noticeable on GPUs, where32

allocating more memory than is physically available leads to an immediate termination of execution,33

and larger amounts of physical memory comes at a significant cost.34

Now that numerical computation frameworks are widely used, they strongly influence what machine35

learning algorithms are adopted. This happens through hard limitations, as well as usability consider-36

ations through what is easily implementable. Currently, the emphasis on optimising runtime causes37

many algorithms to be severely memory limited, or too cumbersome implement. This is particularly38
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noticeable in methods that rely heavily on matrix and linear algebra computations, e.g. kernel methods39

(e.g. Titsias, 2009) or nearest neighbour methods for geometric deep learning (Bronstein et al., 2017).40

In this work, we aim to remove these limitations, by developing a tool that optimises code to be more41

memory efficient, with a particular focus on linear algebra operations. This optimisation is transparent42

to the user, and therefore allows many algorithms to be run at scales that were previously impossible,43

while leaving implementations as simple as before. This allows a wider range of algorithms to take44

advantage of “the bitter lesson”—“General methods that leverage computation are ultimately the45

most effective” (Sutton, 2019)—while making them more accessible to the wider community, as46

computational frameworks have sought to do all along.47

Our method is implemented as an extension to the XLA compiler (Leary and Wang, 2017), which we48

chose due to its wide use and support for optimising computations specified in TensorFlow and JAX.49

We demonstrate the benefits of our method by scaling algorithms where simple implementations do50

not scale due to memory bottlenecks, such as k-nearest-neighbours, and Sparse Gaussian process51

regression (Titsias, 2009). With our extensions, these methods scale to far larger problems, without52

changing a single line of their implementation in Python. Our Gaussian process experiment shows53

that simply scaling up a 13 year old method can outperform much more recent methods, indicating54

that older methods may be undervalued in recent literature.55

2 Motivation: Memory-Constrained Machine Learning56

Since memory overflows cause the execution of code to be immediately halted without producing57

any result, memory constraints form the key obstacle for scaling many machine learning algorithms.58

In addition, memory is a scare resource that comes at a considerable cost, particularly in GPUs. This59

causes memory to be a key limiting factor in researchers and practitioners using machine learning60

tools at scale. This is particularly noticeable in algorithms where minibatching is undesirable and that61

rely on pairwise distances, like k-Nearest Neighbours (kNN) or Gaussian processes (Rasmussen and62

Williams, 2006) (which we particularly focus on in this work). Even in modern deep learning memory63

constraints cause problems, by limiting batch sizes, layer widths, or sizes of attention mechanisms64

(Vaswani et al., 2017). In all of these examples, matrix and linear algebra operations cause the65

bottleneck. For kNN, kernel/GP methods, and transformers the root of the problem is a pairwise66

matrix needs to be computed between inputs, giving a quadratic memory cost.67

Often, more memory efficient implementations can be programmed, although at the cost of increased68

software complexity. This ranges from minor annoyances, for example accumulating minibatch69

gradients in an outer loop for large-batch training, to complex engineering efforts that have been70

published as scientific contributions, for example in scaling Gaussian processes to > 105 datapoints71

(Gal et al., 2014; Wang et al., 2019; Meanti et al., 2020).72

Our goal is to provide a tool that finds memory-efficient ways to execute algorithms, without the73

need for increasing software complexity. This will allow scientists and practitioners to access the74

benefits of scale in existing methods more easily, and without incurring the cost of expensive large-75

memory hardware. For the main demonstration of our approach, we will automatically obtain a76

memory-efficient implementation of Sparse Variational Gaussian processes (Titsias, 2009), which77

was previously implemented with considerable difficulty (Gal et al., 2014). The increase in scale78

makes the method competitive in comparisons where it was previously dismissed as not scalable79

enough (Wang et al., 2019), showing the value of reducing the barriers to scaling.80

3 Related Work81

A popular approach to address memory issues is distributing computation across multiple resources82

like a group of GPUs or a computer cluster with network protocol connectivity between machines83

(Buyya, 1999; Dean and Ghemawat, 2008). More specifically, sharding allows large tensors to84

be split up and distributed across multiple devices, which increases the total amount of memory85

available for an algorithm, but comes at the cost of requiring more hardware resources. Most86

computational frameworks1 (Abadi et al., 2016; Shazeer et al., 2018; Bradbury et al., 2018; Paszke87

et al., 2019) support this, with semi-automatic tools being available for specific settings, while manual88

1Published under permissive open-source licenses, like Apache or BSD.
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distribution across devices is needed in general. This complicates an implementation and requires89

the user to have wide engineering skillset. Nevertheless, while this approach does allow scaling90

of certain implementations, it remains wasteful for algorithms that can be implemented in a more91

memory-efficient way, but where it is simply cumbersome to do so.92

Compilers have been introduced to allow humans to express programs in an elegant way, while93

generating programs that actually run well on specific hardware Aho et al. (2006). Our goal of94

obtaining memory-efficient implementations, while keeping code convenient for humans, is therefore95

suited to be addressed by adding memory optimisations to a compiler. Compilers are already being96

used to optimise computational graphs, notably in JAX, TensorFlow and PyTorch by XLA (Leary97

and Wang, 2017), TVM (Chen et al., 2018) and Glow (Rotem et al., 2018) for PyTorch only. TVM98

performs similar optimisations to XLA, but unlike XLA, it is not seamlessly integrated into popular99

frameworks and requires additional user effort.100

The optimisations in XLA mainly focus increasing code speed, for example through common sub-101

expression elimination (CSE), dead code elimination (DCE), operations fusion, and other more102

specific modifications. The main advantage of XLA is that it optimises computations in a way that is103

completely transparent to the user who specifies the computational graph. Although XLA and TVM104

implement low-level memory optimisations, they do not adapt code handling large tensors to satisfy105

memory constraints. For the matrix and linear algebra tasks that we consider, KeOps (Feydy et al.,106

2020) currently provides the most efficient memory management. To achieve any benefits, a user107

must specify a series of computations using KeOps classes, which form a layer above frameworks108

like TensorFlow or PyTorch. KeOps works similarly to a compiler, by first building a symbolic109

representation of the computation, which allows the computation to be broken into memory-efficient110

sections, that are then run with custom CUDA kernels.111

In terms of prior work, KeOps is closest in aim and achievement to ours. We aim to address112

three of its limitations. Firstly, KeOps requires users to reimplement their algorithms using KeOps113

classes. While the programming interface is elegant, needing to mix KeOps and other computational114

frameworks does add complexity. Secondly, for KeOps to be able to optimise an operation, it has to115

be reimplemented within KeOps, which significantly duplicates effort. Finally, because of the former116

drawback, KeOps does not inherit the support for a wide range of hardware from e.g. JAX/TensorFlow.117

4 Memory Efficient Matrix and Linear Algebra Operations in XLA118

Compilers are a highly promising way for improving runtime properties of code, without requiring119

user intervention, and while leaving code elegant. The specific matrix and linear algebra optimisations120

that we consider have not yet been implemented in any of the frameworks discussed above. However,121

they could be implemented in any of TVM, KeOps, or XLA. We choose to extend XLA over TVM,122

because of XLA’s better integration with common computational frameworks. In addition, we123

choose to extend XLA over KeOps, because it 1) does not require algorithms to be rewritten in a124

separate framework, 2) can optimise computational graphs in their entirety, rather than just what is125

implemented in the separate framework, and 3) can take advantage of the full capabilities that already126

exist in JAX/TensorFlow.127

We introduce several optimisation strategies (known as optimisation passes in the XLA codebase) into128

the XLA optimisation pipeline. We aim to constrain the program’s memory footprint with minimal129

sacrifices in the execution speed. The optimisation passes examine the entire computational data-flow130

graph (High Level Optimiser Internal Representation, or HLO IR), search for weak spots, and try131

to eliminate them. Abstractions at a similar level to HLO IR have been shown to be convenient for132

optimising linear algebra operations (Barthels et al., 2021). We add match-and-replace operations,133

e.g. to introduce a more efficient distance computation, reshuffling operations for expressions that are134

invariant to evaluation order, and splitting with large tensors to reduce memory usage.135

4.1 Match and replace136

The match and replace optimisation pass searches for expressions in a data-flow graph for which we137

know in advance that an equivalent and more efficient version exists. For example, we search for138

expressions that compute euclidean distance in naive form between vectors of length n and m with a139

dimension d. The naive euclidean distance computation uses broadcasting over the dimension d and140
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Listing 1 Chain multiplication example C = ABv for A,B ∈ Rn×n, and v ∈ Rn.
@jax.jit
def matrix_matrix_vector_mul(A, B, v):

C = A @ B @ v
return C

creates a temporary tensor with entries (xnd − ymd)
2 of size n×m× d. This can be replaced with141 ∑

d x
2
nd + y2md − 2xndymd, where the largest tensor has size n×m.142

Replacing sub-parts of the graph is a standard procedure in compilers like XLA, although many143

linear algebra tricks have been missing. While the euclidean distance is the only match-and-replace144

optimisation we implement, other operations can easily be added, for example, efficiently adding145

diagonals to matrices without allocating a dense square tensor where only the diagonal is non-zero.146

4.2 Reordering147

A computational data-flow graph is an ordered sequence of operations, with the order of operations148

influencing the memory usage. In some cases, reordering sub-parts of the data-flow graph can lead149

to reductions in the memory footprint. The classical example of reordering is the optimisation of150

matrix chain multiplications. For example, consider the matrix expression C = ABv for matrices151

A,B ∈ Rn×n, and v ∈ Rn. In the listing 1, the order of operations determines that the matrix152

multiplications are performed from left to right, i.e. C = (AB)v, which gives the most inefficient153

execution order with the runtime complexity O(n3) and memory complexity O(n2). Changing154

the order to C = A(Bv) improves time and memory complexities to O(n2) and O(n) respectively155

because the intermediate multiplication result of Bv is a vector not a matrix as in the case of AB156

multiplication.157

The optimisation of matrix chain multiplication is possible due to the associativity of matrix multipli-158

cation, such that the result of the matrix multiplication chain does not depend on where parentheses159

are placed. There are many efficient and sophisticated algorithms for addressing this task (Chin, 1978;160

Czumaj, 1996; Barthels et al., 2018; Schwartz and Weiss, 2019). We implement a simplified proce-161

dure for reordering matrix vector chain multiplications, that detects inefficient matrix multiplication162

chains, which are guaranteed to reduce in size at the end of the chain.163

4.3 Data-flow graph splitting164

Often, a part of a computational data-flow graph can be divided into multiple independent copies,165

such that each copy of the data-flow graph or its part act on a slice of the input tensor, and the results166

are combined afterwards in some fashion. This splitting approach is also known as a MapReduce167

technique Dean and Ghemawat (2008), where a computation is divided into smaller and less expensive168

parts (map) and then combined into the final result (reduce). The splitting technique is common169

for distributing the computational load. The focus of existing solutions is on exploiting hardware170

parallelism or utilising multiple devices. Instead, we use the same techniques for reducing total171

memory consumption, which is possible because the memory for individual map operations can be172

freed before the whole result is computed.173

An optimisation pass starts by running a depth-first search from the final result of the computation.174

The operations dot or reduce_* are special, as they often indicate that a computation involving a175

large tensor can give a smaller result. Once a dot or reduce_* operation is marked as fully traversed,176

we recursively search the traversed paths for operands that are impractically large tensors, until we177

reach operands that are deemed small enough. Along the way, we keep track of which operations are178

applied, and along which axes they trivially paralellisable. The result is a collection of sub-graphs,179

that start at operations that produce large tensors, and end at operations that reduce them again,180

together with candidate axes that they can be split across. According to some heuristics which ensure181

appropriate sizes for intermediate results, we then turn this entire computation into a while loop,182

where each iteration computes a manageable part of the final result (fig. 1).183

Checking the axis if it is splittable is necessary as not all operations act independently on each184

dimension. For example, element-wise operations can be split on any axis, whereas the triangular185
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Algorithm 1 A description for depth-first search visitor-handler that splits the dot operation
input dot instruction

1: if output_size(dot) ≥ tensor_size_threshold, i.e. dot is splittable then
2: Continue traversing succeeding operations in the data-flow graph and search for size-reducing

operation for the output tensor of dot.
3: if dot.rhs and dot.lhs operands are not splittable then
4: Continue traversing the data-flow graph.
5: if dot.rhs 6= dot.lhs operands are splittable then
6: Continue traversing the data-flow graph.
7: Define operand_to_split = either dot.rhs or dot.lhs
8: Recursively search which dimensions of operand_to_split are splittable, i.e. walk back

through all operands in the graph which produce operand_to_split
9: Define split_dims i.e. all operand_to_split dimensions along which operand_to_split

can be splitted by recursively traversing back visited operations and checking their dimensions.
10: Define split_producers, i.e.

• operations in the graph which produce split_dims
• satisfy output_size(split_producer) ≤ tensor_size_threshold
• all operations between split_dims and operand_to_split are splittable.

11: if split_dims or split_producers are empty then
12: Continue traversing the data-flow graph.
13: Define best_split_dim
14: Build a while loop instructions module which iterates over best_split_dim,

• split_producers are inputs to the loop module, which are sliced
• the body of the loop is the copy of sub-graph split_producers↔ dot

15: Add instructions to combine results of the while loop.
16: Replace inefficient sub-graph of producers and dot with new while loop module.
17: Continue traversing the data-flow graph.

G

A[..., a, ...]

I[a]

R

O[...]

G’

A’[..., i:j, ...]

I’[i:j]

R’

O’[...]

I[a]

S
loop

Figure 1: The scheme demonstrates transformation of the sub-graph on the left to the graph on the
right. Sub-graph on the left consists of G and R which a generator and reducer operations respectively,
I is the input of G, A is output of G and O is output of R. The following notation A[..., a, ...]
means that the tensor A has a dimension of size a and A can have other dimensions. The i:j is
a slicing operation. Splitting procedure converts the left sub-graph into the loop of independent
iterations performing the same chain of operations on a small slice i:j.

solve operation can be split on “batching” dimensions only. Next, the data-flow graph splitting186

procedure selects the dimension of the largest size which contributes the most to memory.187
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As we discussed earlier, the decision about where to split the graph depends on the tensor size. We188

offer two XLA options to user for out-of-memory mitigation: tensor size threshold and tensor split189

size upper bound. Tensor size threshold is a criterion designed for detecting which operations should190

be marked as candidates for splitting. Tensor split size upper bound serves as a threshold on the largest191

allowed chunk size for splitting. These options are set equal by default. The following command-line192

snippet shows how a user would use these options by passing them via an environment variable, and193

the snippet is indifferent to the machine learning framework used by the script at listing 2. Minimal194

user effort is required for using our XLA compiler extension. The user is involved only in defining195

what the suitable threshold and splitting sizes are.196

Listing 2 An example of how a user can set options for the extended XLA using the environment
variable.
XLA_FLAGS="--xla_tensor_size_threshold=1GB --xla_tensor_split_size=500MB" \
python train.py

One strong benefit of our compiler-based solution, is that the computational graph represents the197

whole pipeline of computations, including forward and backward propagation. Our splitting procedure198

will be applied automatically, regardless of how many derivatives need to be computed. In addition,199

our procedure encompasses two splitting schemes that the machine laerning literature distinguishes:200

model-based and data-based splitting schemes of the data-flow graph. The model-based splitting201

scheme involves partitioning the model over its parameters, whereas the data-based splitting scheme202

batches over inputs and, therefore, an algorithm. The proposed splitting approach is suited for203

supporting both schemes out of the box.204

4.4 XLA limitations205

While we still believe that XLA is the right framework for our extensions, several limitations came to206

light during implementation.207

One limitation that is shared with all current frameworks, is that they only have a weak linear algebra208

type system, where matrices are represented as arrays without additional properties. Solutions that209

support stronger type systems (Bezanson et al., 2017; Barthels et al., 2021) may be able to implement210

a wider variety of match-and-replace optimisations.211

Another limitation comes from the default memory allocation manager not being aware of memory212

limits. Its current behaviour is to execute nodes in the computational graph, and therefore allocate any213

required memory, as soon as the required inputs have been computed. This means that even if tensors214

are split to manageable sizes, memory overflows can still occur if several are executed simultaneously.215

To prevent this from happening, we had to use memory limits that were smaller than our total GPU216

memory.217

5 Experiments218

This section shows how existing software packages take advantage of our extension to XLA (eXLA).219

We demonstrate our optimisations on non-parametric k-nearest neighbours and sparse Gaussian220

process regression (SGPR) models.221

5.1 Matrix-Vector Multiplication222

We start by demonstrating the improved efficiency that eXLA offers to large-scale matrix-vector223

multiplications of the form y = Kv, where K is an n × n kernel matrix, and y, v ∈ Rn. Such224

computations are common in Conjugate-Gradients-based Gaussian process approximations (Gibbs225

and Mackay, 1997; Wang et al., 2019; Artemev et al., 2021), where Kij = k(xi, yj) and k is some226

kernel function. We choose the common Squared Exponential.227

We implement this equation using GPflow (Matthews et al., 2017), a TensorFlow-based package228

that provides a convenient software interface for Gaussian processes and kernel functions. Without229

eXLA, the entire K would be stored in memory, leading to a n2 memory cost. This makes running on230

large datasets infeasible, where e.g. n = 106 would lead to a memory requirement of 8TB, which231
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Figure 2: GPU memory consumption and elapsed time of n× n kernel matrix-vector multiplication.

is impractical even for the largest of modern GPUs with 40GB of memory. A memory efficient232

split/implicit implementation is necessary to scale to large datasets, as was impressively done by233

Wang et al. (2019), but is cumbersome.234

We ran our implementation with eXLA enabled, which allows a user to control the memory an235

algorithm. We evaluated the expression in double precision on a Tesla V100 GPU with 32 GB of236

memory, and applied a range of memory limits. In fig. 2 we report the peak memory consumption237

and execution time of evaluating the kernel matrix-vector product for different sizes, with different238

memory limits applied. We see that the memory constraints are not violated, and that dataset sizes239

are used that are far beyond the 32 GB memory capacity.240

5.2 K-Nearest Neighbours241

K-nearest neighbours is a fundamental machine learning algorithm, with a similar large memory242

cost. A kNN query selects k closest data points in the dataset to each query point. Brute-force243

implementations computate pairwise distances between m query points and n data points, resulting244

in the distance matrix of size m× n. This is followed by a topk operation, which is often naively245

implemented using column-wise sort operation on the distance matrix. Our benchmarks show that246

eXLA scales the brute-force approach and does not fail for large problems, i.e. large n and m.247

We compare TensorFlow and JAX implementations with and without eXLA optimisations, and248

a KeOps implementation. We use randomly generated data, common benchmarks like MNIST249

and Fashion-MNIST, and Glove-50, Glove-100 and Glove-200 from the ANN-benchmark toolkit250

Aumüller et al. (2020). We use m = 1e4 query points in all benchmarks.251

Our results are listed in table 1 (see the appendix for a full table that reproduces Feydy et al. (2020,252

table 3)). In all benchmarks, we set the tensor size threshold for eXLA to 100MB for simplicity, even253

though this may not be optimal for performance. We observe that eXLA prevents memory overflows254

in JAX and TensorFlow. In addition, performance is comparable or higher. We acknowledge that255

KeOps performs significantly better than any JAX or TensorFlow implementation. This is explained256

by 1) JAX/TF not having efficient implementations for certain functions (e.g. topk runs a full sorting257

algorithm), and 2) KeOps having implemented additional optimisations, which could also be added258

to XLA. However, we note that we also achieved our goal of improving the memory and time259

performance of a JAX/TensorFlow implementation without changing the code.260

5.3 Sparse Gaussian Process Regression261

Gaussian processes (Rasmussen and Williams, 2006) are considered the gold standard method for262

performing regression with uncertainty estimates. A straightforward implementation requires taking263

a matrix decomposition of an n× n kernel matrix (like those considered in section 5.1), which leads264

to an O(n3) time cost, and an O(n2) memory cost. Scaling Gaussian process is challenging, which265

is often attributed to the time cost. In reality however, large datasets cause memory overflows far266

before long runtimes become an obstacle.267

Approximate methods have been introduced to deal with both the time and space issues. While268

there are many, we consider the sparse variational approximation (Titsias, 2009) for which a naive269

implementation has O(nm2 +m3) time cost, and O(nm+m2) memory cost. Here, m controls the270
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Dataset Distance n d KeOps eJAX eTF JAX TF

Random L2 1e4 100 983263 277364 284777 281695 280826
Random L2 1e4 3 3662188 292804 294971 288098 294776
Random L2 1e6 100 24367 2433 2530 ∅ ∅
Random L2 1e6 3 123765 2512 2605 ∅ ∅
MNIST L2 6e4 784 41084 32290 33455 25544 26138
MNIST L1 6e4 784 40697 2356 2985 2498 2988

Fashion L2 6e4 784 40399 32382 33428 25558 26128
Fashion L1 6e4 784 40982 2357 2984 2498 2989

Glove-50 Cosine 1.18e6 50 3464257 2103 1929 ∅ ∅
Glove-100 Cosine 1.18e6 100 631420 2053 1871 ∅ ∅
Glove-200 Cosine 1.18e6 200 398293 1967 1724 ∅ ∅

Table 1: Query processing rates (queries per second) for kNN. n and d are the number of data points
and the data dimension respectively. Runs which failed due to memory overflow are denoted by ∅.
Runs with eXLA are denoted eJAX and eTF respectively.
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Figure 3: Root mean squared error (RMSE) and negative log predictive density (NLPD) performance
test metrics of SGPR for 3droad dataset as the number of inducing points is increased. The red
shaded region emphasizes the capacity of the SGPR model which user can run using standard GPflow
and TensorFlow release packages.

quality of the approximation, in terms of the number of inducing variables. While (under certain271

conditions) m� n can give very accurate approximations (Burt et al., 2019, 2020), the memory cost272

can limit the size of m that can be used, which limits performance. A more compact implementation273

with a memory cost of O(m2) exists (Gal et al., 2014), but is so cumbersome to implement that it is274

not widely used or compared against.275

Fortunately, the splitting optimisation we implemented in eXLA can discover the same procedure that276

was engineered by Gal et al. (2014), without the help of automatic differentiation. Moreover, since277

eXLA operates on the entire computation graph, it optimises gradients as well as the optimisation278

objective function with no additional effort. We demonstrate the utility of eXLA by scaling the279

GPflow (Matthews et al., 2017, 2.3.1 release version) implementation of Sparse Gaussian process280

regression (SGPR, Titsias, 2009), without any modifications of the code.281

With our eXLA optimisations, SGPR was able to scale to much larger datasets, with more inducing282

points. We conduct experiments on a Tesla V100 GPU with 32 GB of memory, and run on two283

of the largest UCI datasets that are commonly considered in Gaussian process research: 3droad284

and houseelectric. We primarily compare to Wang et al. (2019), who use a Conjugate Gradients285

approximation (Gibbs and Mackay, 1997) to achieve the most impressive scaling of a Gaussian286

process approximation to date, using an impressively engineered implementation that manually splits287

and distributes parts of the computation.288

In fig. 3 we compare GPflow’s SGPR implementation with and without eXLA as we increase the289

number of inducing points. We see that until about 800 inducing points, the normal and eXLA runs290
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Dataset Model RMSE NLPD Time (hours) GPUs

SGPR-1000 0.048± 2e−4 −1.602± 3e−3 5.01± 0.06 1
SGPR-2000 0.046± 1e−4 −1.651± 3e−3 18.03± 0.09 1

houseelectric SGPR-3000 0.044± 1e−4 −1.696± 5e−3 38.68± 0.14 1
SGPR-4000 0.043± 1e−4 −1.717± 5e−3 50.00± 0.10 1
Iterative GP* 0.054± 0.000 −0.207± 0.001 1.55± 0.02 8
Iterative GP** 0.050 ∅ 79.96 8

SGPR-1000 0.285± 0.002 −0.173± 0.004 1.11± 0.01 1
SGPR-5000 0.190± 0.002 −0.228± 0.002 11.33± 0.03 1

3droad SGPR-8000 0.176± 0.001 −0.302± 0.004 28.21± 0.05 1
SGPR-10000 0.170± 0.001 −0.322± 0.002 41.83± 0.03 1
Iterative GP* 0.110± 0.017 1.239± 0.025 1.00± 2e−3 8
Iterative GP** 0.106 ∅ 7.06 8

Table 2: SGPR performance on houseelectric and 3droad dataset. Iterative GP* and Itera-
tive GP** are trained with lengthscale per dimension and shared lengthscale across dimensions
respectively. Iterative GP values are from Wang et al. (2019), with unreported metrics denoted as ∅.

result in the same predictive metrics, as desired. After 800 inducing points, runs without XLA fail291

with an “out of memory” error, while with eXLA we scaled to 104 inducing points. Simply scaling292

the method in this way, leads to significant performance improvements.293

We now compare predictive accuracies directly with the scalable Conjugate Gradients implementation294

of Wang et al. (2019). In that paper, SGPR was discussed as a method that would not scale, probably295

due to the difficulty of implementing it in a memory-efficient way as in Gal et al. (2014). Table 2296

shows that using eXLA to scale SGPR can improve predictive performance to such a degree that297

it can outperform the Conjugate Gradients implementation of Wang et al. (2019), without needing298

additional hardware.299

6 Discussion300

We showed that our additional XLA compiler optimisation passes (eXLA) could manage memory301

overflows algorithms with large tensor or linear algebra operations. The developed compiler extension302

automatically adjusts computational data-flow graphs to control memory utilisation. As demonstrated303

in the experiments section, we successfully ran machine learning models compiled with eXLA on304

a greater scale, whereas their out-of-the-box implementations failed with Out of Memory errors.305

Crucially, we used existing software packages without modifying any code.306

In addition to showing that our compiler extensions work as intended, our experiments also provide307

directly useful empirical results in Gaussian processes. We managed to run an “old” method (SGPR,308

Titsias, 2009), with unchanged code, to obtain empirical results that outperformed a state-of-the art309

method (Wang et al., 2019). This corrects earlier observations in the literature that these methods are310

inaccurate, and shows that—if the methods can be scaled—they may behave according to theory that311

shows that they should provide very accurate solutions (Burt et al., 2020).312

The exciting possiblity of eXLA, is that it opens up the possibility to probe behaviour of machine313

learning models in regimes that were previously infeasible, and on cheap hardware. For example,314

one could train very wide neural networks, to empirically compare to behaviour predicted by NTK315

theory (Lee et al., 2018; Matthews et al., 2018; Jacot et al., 2018; Novak et al., 2020). In addition,316

transformers (Vaswani et al., 2017) are notoriously memory hungry, and eXLA could help with317

running them on cheaper hardware, or distributing them across GPUs, without increasing software318

complexity.319

The current implementation of eXLA is still only a demonstration of what compiler optimisations320

could achieve, and many more optimisations can be added. We believe that increasing the capability321

of compilers like XLA will greatly increase the efficiency of researchers and practitioners. We hope322

that community-driven compiler projects will contribute to the community in a similar way to how323

existing numerical frameworks already do.324
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