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Abstract

The clinical effectiveness aspect within the Health Technology Assessment process
often faces causal questions where the treatment variable can take multiple values.
Nevertheless, most developments in causal inference algorithms that employ ma-
chine learning happen in binary treatment settings. In addition, there is a big gap
between the algorithmic state of the art and the applied state of the art in this field.
In this paper, we select a state-of-the-art, neural network-based algorithm for binary
treatment effect estimation and generalize it to a multi-valued treatment setting,
testing it with semi-synthetic data that could mimic an HTA process. We obtain an
estimator with desirable asymptotic properties and good results in experiments. To
the best of our knowledge, this work is opening ground for the benchmarking of
neural network-based algorithms for multi-valued treatment effect estimation.

1 Introduction

Health Technology Assessment (HTA) is a multidisciplinary process that uses systematic and explicit
methods to evaluate the properties and effects of a health technology [9]. This task is of crucial
importance for the technical and financial sustainability of healthcare systems. Within the process
of HTA, clinical effectiveness is defined as the comparison between several health strategies or
technologies regarding an outcome of interest [5]. Usually (but not always), one of those strategies
or technologies is an existing standard, and the other (or others) are new. As it can be sensed, this
comparison is a causal question. In front of such type of questions, HTA agencies usually employ
the classical hierarchic pyramid of evidence, which puts the evidence generated by Randomized
Controlled Trials (RCT) at the cuspid. Nevertheless, those agencies are facing nowadays more and
more questions in which results from RCT may not be sufficient or arrive in time [11]. This, together
with the exponential growth of Real-World Data (RWD) [7], constitutes a great opportunity for causal
inference methods.

In the literature, state of the art, machine learning-based algorithms for causal inference are mostly
developed [14][6] and benchmarked [8][13] in binary treatment settings. The HTA process, on the
contrary, happens more often than not in scenarios with multiple strategies or technologies (treatments)
[2]. This is a limitation for the potential application of those algorithms for the task of HTA. In the
present work, we select a state of the art, neural network-based, binary treatment effect estimation
algorithm named Dragonnet[12], and we develop and test a generalized version for n-valued treatment
settings. We present the theoretical and mathematical formulation, we develop a framework for
experiments, and we provide results obtained in different scenarios employing semi-synthetic, HTA-
related data. To the best of our knowledge, this is the first attempt to establish a benchmark for
this type of algorithm in multivalued-treatment settings. The code and the data can be found in the
following anonymized repository: https://anonymous.4open.science/r/Hydranet-95F8/

NeurIPS 2022Workshop on Causal Machine Learning for Real-World Impact (CML4Impact 2022).

https://anonymous.4open.science/r/Hydranet-95F8/


2 Problem statement

Let the health technology or health strategy (from now on, for simplicity, the treatment) of interest
be a discrete random variable T ∈ [0..k] that can take k + 1 different values. Let the outcome
be a continuous random variable Y ∈ R, and let the covariates (i.e. the variables affecting both
the treatment and the outcome) be a random vector X ∈ Rj . Thus, our set of data points is
(Yi, Ti, Xi), i ∈ [1..N ], generated independently and identically. This set of data points constitutes
our body of observational data. We define the causal effect of the treatment t over the outcome Y as,
µt = E[Y |do(T = t)], using Pearl’s do-calculus notation [10], which denotes intervention. It can be
shown that, if our data meets certain conditions, we can estimate causal (interventional) quantities
based on observational data. Those conditions are known as the identifiability conditions: positivity,
consistency and "no hidden confounder" conditions. For a more detailed explanation, see [10]. Under
such conditions, µt = E[Y |X = x, T = t], which is a quantity that is inferrable from our body of
observational data. Along the rest of sections 2 and 3 we will assume that the identifiability conditions
are fulfilled.

We define the conditional outcome as the expectation of the outcome given the treatment and the
covariates, Q(t, x) = E[Y |t, x]. Based on Q, we can construct a simple estimator µ̂t of µt as
µ̂t = 1

N

∑
iQ(t, xi). In the following, we will be interested in approximating Q. Let Q̂ be an

approximation of Q. We define µQ̂
t = 1

N

∑
i Q̂(t, xi) as the estimator of µt obtained replacing Q by

its estimation Q̂. Furthermore, we define the Generalized Propensity Score (GPS[1]), expressed as
G(x) = [g0(x), g1(x), . . . , gk(x)] ∈ Rk+1, with gt(x) = P (T = t|x).
In a binary treatment setting, under the identifiability conditions, the Average Treatment Effect (ATE)
is one of the most common causal quantities of interest, and it is defined as ψ = µ1 − µ0. Given an
approximation Q̂ of Q, we could easily estimate ψ as ψQ̂ = µQ̂

1 − µQ̂
0 . In a multi-valued treatment

setting, a wider class of causal quantities of interest can be defined, and all the conditional outcomes
must be computed in order to obtain valid estimates of those quantities[1]. In this work, we define
such quantities of interest as the pair-wise average differences between the several treatments and a
treatment considered the control (note that, in practice, the control treatment does not necessarily
mean absence of treatment). Thus, we define a vector of ATEs ψ ∈ Rk, ψ = [ψ1, ψ2, . . . , ψk],
with ψt = µt − µ0. We can approximate these quantities in a similar fashion as shown before, the
t-th element of the vector being ψQ̂

t = µQ̂
t − µQ̂

0 . Note that if the causal quantity of interest was
ψi,j = µi − µj , we could easily compute it based on the previous definition, as ψi,j = ψi − ψj , due
to the linearity of the expectation operator.

The subject of interest in this the paper is the estimation of the vector of ATEs ψ. In the next section
we generalize the estimation method provided in [12], which has the objective of estimating the ATE
in the binary case, to the estimation of ψ in the multivalued treatment case presented above.

3 From Dragonnet to Hydranet

Dragonnet is a high-capacity, end-to-end neural network architecture for estimating binary treatment
effects[12]. We present here the variation of the architecture, mathematical formulations and proofs
for adapting Dragonnet to a multivalued treatment setting. We call this adaptation Hydranet.

3.1 Architecture

The architecture of Hydranet can be seen in Figure 1. It consists of two parts: the representation
part, formed by the input layer and two hidden layers, and the heads, formed by k + 2 ends. Out of
those, k + 1 correspond to the conditional outcomes, and are formed by two more hidden layers plus
the output layer. The remaining head corresponds to the GPS, G(x) = [g0(x), g1(x), . . . , gk(x)] ∈
Rk+1, with gt(x) = P (T = t|x), consisting on just the output layer. Recall that we approximate the
t-th element of the vector of ATEs as ψQ̂

t = 1
N

∑
i Q̂(t, xi)− Q̂(0, xi).

The baseline objective function has the shape

R̂(θ) =
1

N

∑
i

[(Qnn(ti, xi; θ)− yi)
2 + αCrossEntropy(gnnt (xi; θ), ti)] (1)
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Figure 1: Hydranet architecture

and the model parameters are

θ̂ = argmin
θ

[R̂(θ)] (2)

3.2 Targeted regularization

Now, following the reasoning in [12], we present targeted regularization. Targeted regularization is a
modification of the objective function that introduces an extra parameter, epsilon. In our setting, ϵ is
a vector in Rk, ϵ = (ϵ1, ϵ2, ...ϵk), and the new objective function is

F̄ (θ, ϵ) = R̂(θ) + β
1

N

∑
i

γi(yi, ti, xi; θ, ϵ), where (3)

γi(yi, ti, xi; θ, ϵ) = (yi − Q̄i(θ, ϵ))
2, and (4)

Q̄i(θ, ϵ) = Qnn(ti, xi) + ϵ1

(
I(T = 1)

gnn1 (xi)
− I(T = 0)

gnn0 (xi)

)
+ . . .+ ϵk

(
I(T = k)

gnnk (xi)
− I(T = 0)

gnn0 (xi)

)
(5)

with I(T = t) the indicator function, and thus the sought model parameters are defined by

θ̂, ϵ̂ = argmin
θ,ϵ

[R̂(θ) + β
1

N

∑
i

γi(yi, ti, xi; θ, ϵ)] (6)

But why this modification in the first place? The answer lies in semiparametric estimation theory
(SET) and targeted maximum likelihood estimation (TMLE). Very generally, SET provides us with
conditions that ensure desirable properties of our estimator psi when they are fulfilled, and TMLE
is an efficient method to impose the fulfillment of those conditions. The conditions are the set of
non-parametric estimating equations, defined as

0 =

[
1

N

∑
i

φi,1,
1

N

∑
i

φi,2, ...
1

N

∑
i

φi,k

]
(7)
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and they employ the elements of the vector of efficient influence curves, defined as φ ∈ Rk,φ =
[φ1, φ2, ...φk], with

φi,t = Qnn(t, xi)−Qnn(0, xi) +

(
I(T = t)

gnnt (xi)
− I(T = 0)

gnn0 (xi)

)
(yi −Qnn(t, xi))− ψt (8)

Finally, recall that what we want is that the minimization of the modified objective function ensures
the fulfillment of the non-parametric estimation equations. This can be expressed mathematically as

0 = ∇F̄
∣∣
ϵ̂
=

[
∂F̄

∂ϵ1
,
∂F̄

∂ϵ2
, ...

∂F̄

∂ϵk

]∣∣∣∣
ϵ̂

=

[
β

N

∑
i

φi,1,
β

N

∑
i

φi,2, ...
β

N

∑
i

φi,k

]
(9)

and the proof can be found in the supplementary material. This warrants the aforementioned desirable
properties of the estimator psi, i.e. double robustness, fast convergence, and efficiency.

4 The data and the metrics

We have designed and implemented algorithms mimicking different Data Generating Processes (DGP)
to produce semi-synthetic datasets to test Hydranet. In this context, semi-synthetic means that the
covariates are constituted by variables from a study with real participants, while the treatments and
the outcomes have been artificially generated. The covariates are a subset of the variables of the IHDP
dataset [4] [3]. This data was collected for a real RCT carried out in 1985, and it is routinely used
for benchmarking causal inference algorithms. Despite it may contain some variables that could be
considered sensitive, we have added noise and discarded some of them, so we consider that potential
privacy-related issues have a low risk. Based on those covariates, we have generated the multi-valued
treatments and the continuous outcomes, in a similar fashion to [3], but adapting the DGP to our
needs. Below we explain the basics of these DGP, and a more detailed explanation can be found in
the supplementary material.

For computing the treatment, we have created a function m : X → [0..k] that maps a given subset of
the covariates to a specific treatment in a deterministic way. Then, in order to fulfill the positivity
condition, we have drawn the treatment from a categorical distribution such that

p(t|X) =

{
0.8, if t = m(X)
0.2
k−1 , otherwise

We have implemented and tested different shapes ofm functions. For computing the outcome, we have
defined as many outcome functions as treatment values. These functions map some combination of the
covariates and the treatment to the output space, Y = L(T,X) = [l0(T,X), l1(T,X), . . . , lk(T,X)].
We have added random noise to each outcome. Thus, we can compute all the potential outcomes
Y 0, Y 1, . . . , Y k for each data point, i.e., we have the observable and the unobservable (counterfactual)
data. This way, we can compute the ground truth, true causal effects, for testing the performance
of the algorithms. Of course, the algorithms have been trained only with the observable data, as it
would be the case in an observational study. In addition, we have implemented and tested different
shapes of the lt functions: shapes that are partially linear (linear in the treatment and nonlienar in
the covariates), and shapes that are fully nonlinear. The advantage of the partially linear ones is
that it allows us to easily control the difference between the biased, observable distribution, and the
unbiased, unobservable distribution. We have called this difference the bias. We provide more details
of this in the supplementary material.

We have generated datasets for the particular cases of 3, 5 and 8-valued treatments. In addition, we
have tested the influence over the performance of other parameters such as the dataset size, the bias
size and the number of covariates. The details of the DGP can be found in the supplementary material.
We have also generated datasets that quasiviolate or fully violate the positivity condition. This is
explained in a later subsection.

4.1 Metrics

For performance benchmarking purposes, we have employed the sum of errors of the vector of ATEs.
This is computed as the sum of the absolute values of the differences of all the estimated ATEs with
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respect to their true values, E =
∑k

t=1 |ψt − ψ̂t|. This choice allows to have a single real number
as a final result, making comparisons simpler. We have also computed the error relative to the total
effect size or total ATE, tATE =

∑k
t=1 |ψt|, as a percentage: EP = E

tATE , as it gives a better
intuition of the goodness of the ATE estimation. All values have been computed as averages across
several dataset realizations (50 or 100) to increase the robustness of the results, with 95% confidence
intervals computed with Bootstrapping.

5 Experiments and results

In the case of binary treatment settings, there are de facto benchmarking datasets and metrics, i.e.,
datasets and metrics that are widely used in the literature and thus serve for algorithmic comparison
purposes. The IHDP dataset and the metrics presented in[3] are an example of this. This is not the
case in multi-valued treatment settings; we did not find any suitable comparator, and thus we have not
been able to directly compare the performance of Hydranet with the performance of other algorithms.
Despite this, we affirm that Hydranet performs well in all the tested scenarios, reaching low or very
low error values in all the 3, 5 and 8-valued treatment settings, for different dataset sizes, bias sizes,
and number of covariates respectively. These results can be found in the supplementary material.

In each setting we have computed the error and the relative error in the train and test sets, for two
algorithms: baseline and targeted regularization (or t-reg). For comparison purposes, we have also
computed the results of a naive estimator, i.e., the one obtained with the biased, observable outcomes,
not controlled for covariates. This value has been calculated only for the purpose of showing the bias
of the observational data without any controlling, and should not be taken as an alternative estimator.
We have included the results both in graphics and tables, avoiding the confidence intervals in the
tables for simplicity. Note that we have not tested all the possible combinations of treatment values (3,
5, 8) and variables of analysis (dataset size, bias size, number of covariates), but just one combination.
Nevertheless, based on the results, we expect the behavior to be similar across scenarios.

The optimizer selection, optimization strategy and other hyperparameters have suffered minor modifi-
cations with respect to those in [12]

5.1 Quasiviolation and violation of the positivity condition

Identifiability conditions are one of the main limitations in causal inference with observational data.
For this reason, there is a big interest in the causal inference community to build algorithms that
are as robust as possible in the presence of quasiviolations of these conditions. We have checked
the performance of Hydranet in one of these situations (quasiviolation of the positivity condition),
obtaining good results. For this purpose, we have adjusted the probability of getting a particular
treatment given the covariates, as

p(t|X) =

{
P, if t = m(X)
1−P
k , otherwise

setting P to 0.95 and 1 and thus getting scenarios of quasiviolation and total violation respectively.
Table 1 shows the results of the algorithms, where it can be observed that in the total violation
scenario all algorithms perform equally bad, while in the quasiviolation scenario Hydranet (both
Baseline and T-reg) is able to correctly learn the conditional outcomes and propensity scores, despite
having very few examples of some of the treatment-covariate combinations.

Table 1: True effect, absolute error and relative error of the algorithms in scenarios of total violation
and quasiviolation of the positivity condition. Both the baseline and the t-reg algorithms perform
well.

Setting True effect Naive err. % naive err. Baseline err. % baseline err. T-reg err. % t-reg err.

Total viol. 37.77 30.26 80.14 25.68 68.01 26.00 68.85
Quasiv. 37.77 12.41 32.87 2.50 6.62 3.47 9.20
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Table 2: True effect, absolute error and relative error of the algorithms in realizations where the
baseline algorithm has a poor performance on ATE estimation. T-reg. improves the estimation in this
scenario.

Bias s. True effect Naive err. % naive err. Baseline err. % baseline err. T-reg err. % t-reg err.

1 12.49 1.00 7.99 1.34 10.75 1.27 10.14
5 15.70 3.72 23.69 1.60 10.20 1.46 9.29
10 19.70 7.34 37.25 2.29 11.60 1.81 9.20
15 25.22 10.97 43.50 3.66 14.53 2.40 9.52
30 48.51 21.83 45.00 6.42 13.24 5.44 11.20
50 79.60 36.61 45.99 11.94 15.00 8.91 11.19
70 110.58 50.82 45.96 18.59 16.81 12.46 11.27

(a) Absolute error (b) Error relative to effect size

Figure 2: Errors w.r.t. bias size in realizations where the baseline algorithm has a poor performance
on ATE estimation. T-reg improves the estimation in this scenario.

5.2 Why targeted regularization?

In general, the results of Baseline and T-reg are similar. This changes in one particular scenario:
when the baseline’s estimate of the ATE is poor. In that case, targeted regularization improves
the estimation. Figure 2 and table 2 show the absolute and relative errors of baseline and targeted
regularization algorithms for varying bias size, for realizations of the dataset where the baseline’s
estimation of the ATE was poor. We have defined poor estimates as those with an error above the
mean error computed across all realizations. We have set both baseline and t-reg algorithms to the
same initialization, to ensure that the observed improvement is due to targeted regularization. We
do not have a theoretical explanation for this phenomenon, but the targeted regularization algorithm
yields an estimator that is doubly robust and asymptotically efficient, and this could point towards
such explanation.

6 Discussion

In this work, we have generalized a state of the art, neural network-based algorithm for ATE estimation
from a binary treatment setting to a n-valued treatment setting. We have derived a doubly-robust
and data-efficient estimator, i.e., Hydranet with targeted regularization, obtaining very good results
with semi-synthetic datasets generated ad-hoc, even in a scenario of quasi-violation of the positivity
condition. We show that, despite the generalizability to n-valued treatment settings being possible, it
has its own challenges, and the behavior of the algorithms in each particular case requires its own
interpretation. As far as we know this paper is opening ground on the proposal and evaluation of
methods for benchmarking and estimation of ATEs in multivalued treatment scenarios.

The main limitations of this work are twofold: first, we have not been able to directly compare the
performance of our algorithm to others, due to the lack of benchmarking data in the literature. Also,
we have not compared our algorithm against k binary-treatment algorithms. Despite we expect our
algorithm to perform better based on theoretical results, it would have been interesting to compare
the experimental results directly, and thus this is both a limitation and a line of future work. Second,
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we have only employed one dataset, the IHDP dataset. It is also a line of future work to test the
performance over other available adapted semi-synthetic datasets.

With real-world impact in mind, we set another line of future work not in the direction of further
algorithmic development but in the direction of usage of the current algorithm for real problems.
There exists a big gap between the algorithmic state of the art and the applied state of the art in
causal inference: some of the best pieces of applied work (causal inference studies for HTA and/or
healthcare) make use of very simple methods such as regressions for modelling the data, and implicitly
or explicitly claim that more advanced methods such as neural networks still have to prove their
benefits. Despite we believe that this gap is, to some extent, natural, we also believe that the work of
bringing the algorithmic state of the art to application is crucial for the potentially positive real-world
impact of these methods.

We believe that the main potential negative societal aspect of our work could be the generation of
low-quality or wrong evidence in the clinical field, due to inherent limitations of inferring causality
with observational data. This is an ongoing debate in the scientific community. Nevertheless, we
believe that good evidence can be obtained with causal inference methods by ensuring the highest
possible methodological quality of these studies. We will remain attentive to the accumulating
evidence about this matter.
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A Supplementary material

A.1 Hydranet

We want to prove that

∂F̄

∂ϵt

∣∣∣∣
ϵ̂t

=
1

N

∑
i

φi,t, ∀ t in[0, k] (10)

Proof. On one hand, using equations (3), (4) and (5) we get

∂F̄

∂ϵt

∣∣∣∣
θ̂,ϵ̂t

=
∂

∂ϵt

(
R̂(θ) + β

1

N

∑
i

γi(yi, ti, xi; θ, ϵ)

)∣∣∣∣∣
θ̂,ϵ̂t

=
β

N

∑
i

∂

∂ϵt
γi(θ, ϵ)

∣∣∣∣∣
θ̂,ϵ̂t

=
2β

N

∑
i

(yi − Q̄i(θ, ϵ))
∂Q̄i(θ, ϵ)

∂ϵt

∣∣∣∣∣
θ̂,ϵ̂t

=
2β

N

∑
i

[
(yi − Q̄i(θ, ϵ))

(
I(T = t)

gnnt (θ)
− I(T = 0)

gnn0 (θ)

)]∣∣∣∣∣
θ̂,ϵ̂t

=
2β

N

∑
i

[
(yi − Q̂(t, xi)

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)]
(evaluate at θ̂, ϵ̂)

=
2β

N

∑
i

(
Q̂(t, xi)− Q̂(0, xi)

)
− β

N

∑
i

(
Q̂(t, xi)− Q̂(0, xi)

)
+

β

N

∑
i

[
(yi − Q̂(t, xi))

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)]
(add and subtract term)

=
2β

N

∑
i

[
Q̂(t, xi)− Q̂(0, xi) + (yi − Q̂(t, xi))

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)
− ψ̂t

]
(group sums)

On the other hand, by substituting the definition of the efficient influence curves (8) in the set of non-
parametric estimation equations (9), multiplying by β and particularizing at Q̂, ĝ, ψ̂ (the functions
modelled by the neural network at the optimal point of the parameter space), we obtain an expression
equal to the one in the last line of the proof. Thus, the non-parametric estimation equations (9) are
satisfied, and the proof is complete.
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A.2 Details about the DGP

The DGP consists mainly on two collections of functions, the function for the treatment and the
functions for the conditional outcome.

The function for the treatment is

p(t|X) =

{
0.8, if t = m(X)
0.2
k−1 , otherwise

with m : X → [0..k] a function mapping a given subset of the potential covariates to an integer (the
treatment). We have implemented different shapes of m, from simple indicator functions based on
one or two covariates, to a more complex function accepting a varying number of covariates in order
to test the impact of this variation (as explained in A.2.3).

The conditional outcome functions are a collection of nonlinear functions of the shape Y =
L(T,X) = [l0(T,X), l1(T,X), . . . , lk(T,X)] that map some of the potential covariates, the ac-
tual covariates (both included in X) and the treatment to the output space. After this mapping, we
have added random noise to the output. These functions are linear and nonlinear combinations
and compositions of functions such as the log function, the absolute value function, etc. We have
implemented partially linear shapes such as lt(T,X) = f(X) + a ∗ 1{T = t} and fully nonlinear
shapes such as lt(T,X) = g(B ·X + cT 2).

We have generated datasets for the particular cases of 3, 5 and 8-valued treatments. In addition, we
have tested the influence over the performance of other parameters such as the dataset size, the bias
size and the number of covariates. Each dimension is explained below.

A.2.1 Dataset size

We have followed a data augmentation strategy and varied the size of the dataset, repeating each data
point a given number of times and then adding noise to the whole dataset. To prevent an undesired,
potentially subtle form of leakage between the train and the test sets, we have avoided shuffling
the dataset until the splitting in sets was done. Leakage could appear if two augmented data points
originated from the same initial data point end up in different splits of the dataset. We speak about a
subtle form of leakage because the duplicated individuals are not exactly the same due to the addition
of noise.

A.2.2 Bias

We have varied the bias size by means of the treatment effect size. The bias size is the magnitude of
the difference between the observable, biased distribution, and the unobservable, unbiased distribution.
An easy way to vary this magnitude is by implementing lt functions that are partially linear, i.e.,
linear in the treatment: lt(T,X) = f(X) + a ∗ 1{T = t}, where f is some nonlinear function, a
is the effect of the treatment and 1{T = t} is an indicator function that takes value 1 if T = t and
0 otherwise. This way, we can control the difference between the observable and the unobservable
distributions of Y : the bigger a, the bigger the difference (the bias).

A.2.3 Number of covariates

We have tested the algorithms employing different numbers of covariates. Recall that a covariate is a
variable that affects both the treatment and the outcome. In the IHDP dataset there are twenty seven
variables that are potential covariates. In the classical binary treatment example from [3], only one of
those twenty seven variables is actually a covariate. We have designed a data generating process that
accepts a varying number of them, testing the cases of 4, 8, 12, 16 and 20 covariates.
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A.3 Results in the test set

A.3.1 3-valued treatment setting

In the 3-valued treatment setting we have studied the performance of the algorithm under different
dataset sizes. Table 3 shows the aforementioned performance metrics for each dataset size. Figure
3 shows the trends of the errors and relative errors. We can see the errors from both the Baseline
and the T-reg algorithms decrease as the dataset size increases. This is to be expected: up to some
limit, more data means a better training and a better fit of the neural net in the test set. There are no
appreciable differences between baseline and T-reg algorithms.

A.3.2 5-valued treatment setting

For the 5-valued treatment setting, we have studied the algorithm in the presence of different bias
sizes. The results can be seen in Figure 4 and Table 4. As expected, the errors of the naive estimator
increase as the bias increases. Both the Baseline and the T-reg algorithms perform well, with a
maximum relative error around 10% in the case of the biggest bias. There is no significant difference
between T-reg and Baseline algorithms for small bias sizes, although T-reg performs slightly better
for bigger bias sizes. Note that the bias size variable is just a multiplying term in the DGP, and the
number should not be taken at face value.

A.3.3 8-valued treatment setting

In the 8-valued treatment setting, we have tested the impact of different numbers of covariates. The
results can be seen in Figure 5 and Table 5. The error of the naive estimator diminishes, then remains
stable, then diminishes again when the number of covariates increases. We hypothesize that this is due
to some sort of "randomization effect": due to the shape of the functions employed for constructing
the outcomes in the DGPs, the more covariates we include, the more the observable and unobservable
outcome distributions resemble to a normal distribution, and thus the smaller the bias. This would not
necessarily be the case with a real-world (not synthetic) DGP. Both Baseline and T-reg algorithms
perform well, with low relative errors, below 4% in most cases. The error of the T-reg algorithm
is bigger than the Baseline algorithm for smaller number of confounders, but it becomes similar or
smaller with increasing number of confounders.
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Table 3: 3-valued treatment, test set

Data s. True effect Naive err. % naive err. Baseline err. % baseline err. T-reg err. % t-reg err.

985 37.60 10.42 27.72 3.44 9.14 3.60 9.57
4925 37.71 10.50 27.83 2.38 6.32 3.71 9.85
9850 37.69 10.46 27.76 1.73 4.59 2.92 7.74
14775 37.90 10.57 27.89 1.38 3.63 1.91 5.03
29550 37.50 10.66 28.43 1.75 4.68 1.71 4.56
49250 37.80 10.66 28.21 1.33 3.52 1.26 3.32
68950 37.84 10.61 28.04 0.93 2.46 0.85 2.25
98500 37.65 10.62 28.20 0.93 2.46 0.78 2.06
221625 37.59 10.62 28.25 1.11 2.95 1.14 3.03

(a) Absolute error (b) Error relative to effect size

Figure 3: 3-valued treatment, test set

Table 4: 5-valued treatment, test set

Bias s. True effect Naive err. % naive err. Baseline err. % baseline err. T-reg err. % t-reg err.

1 12.35 0.98 7.96 0.80 6.50 0.81 6.52
5 15.56 3.65 23.47 1.04 6.67 1.16 7.45
10 19.56 7.18 36.71 1.76 8.99 1.58 8.08
15 25.10 10.73 42.74 2.64 10.53 2.38 9.48

(a) Absolute error (b) Error relative to effect size

Figure 4: 5-valued treatment, test set
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Table 5: 8-valued treatment, test set

N. covars. True effect naive err. % naive err. Baseline err. % baseline err. T-reg err. % t-reg err.

4 547.16 60.19 11.00 22.72 4.15 37.47 6.85
8 593.74 34.09 5.74 17.59 2.96 28.18 4.75
12 654.15 37.44 5.72 8.19 1.25 16.20 2.48
16 680.73 39.77 5.84 9.20 1.35 6.75 0.99
20 692.10 20.51 2.96 3.35 0.48 4.63 0.67

(a) Absolute error (b) Error relative to effect size

Figure 5: 8-valued treatment case, test set
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