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Abstract

In many real world problems, features do not act alone but in combination with1

each other. For example, in genomics, diseases might not be caused by any single2

mutation but require the presence of multiple mutations. Prior work on feature3

selection either seeks to identify individual features or can only determine relevant4

groups from a predefined set. We investigate the problem of discovering groups5

of predictive features without predefined grouping. To do so, we define predictive6

groups in terms of linear and non-linear interactions between features. We introduce7

a novel deep learning architecture that uses an ensemble of feature selection models8

to find predictive groups, without requiring candidate groups to be provided. The9

selected groups are sparse and exhibit minimum overlap. Furthermore, we propose10

a new metric to measure similarity between discovered groups and the ground truth.11

We test our model on multiple synthetic tasks, semi-synthetic chemistry datasets12

and image datasets to demonstrate its utility.13

1 Introduction14

Feature selection is a key problem permeating statistics, machine learning and broader science.15

Typically in high-dimensional datasets, the majority of features will not be responsible for the target16

response and thus an important goal is to identify which variables are truly predictive. For example,17

in healthcare there may be many features (such as age, sex, medical history, etc.) that could be18

considered, while only a small subset might in fact be relevant for predicting the likelihood of19

developing a specific disease. By eliminating irrelevant variables, feature selection algorithms can be20

used to drive discovery, improve model generalisation/robustness, and improve interpretability [16].21

However, features often do not act alone but instead in combination. In genetics, for instance, it has22

been noted that understanding the origins of many diseases may require methods able to identify more23

complex genetic models than single variants [57]. While feature selection might be able to identify a24

set of features associated with a particular response, the underlying structure of how features interact25

is not captured. Further, the resulting predictive models can be complex, hard to interpret, and not26

amenable to the generation of hypotheses that can be experimentally tested [41]. This limits the27

impact such models can have in furthering scientific understanding across many domains where28

variables are known to interact, such as genetics [57, 61, 54], medicine [79, 11], and economics [7].29

Group feature selection is a generalisation of standard feature selection, where instead of selecting30

individual features, groups of features are either entirely chosen or entirely excluded. A primary31

application of group feature selection is when features are jointly measured, for example by different32

instruments. In such scenarios, groups are readily defined as features measured by the same instrument.33

A natural question is which instruments give the most meaningful measurements. Group feature34

selection has also been applied in situations where there is extensive domain knowledge regarding the35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



group structure [64] or where groups are defined by the correlation structure between features (e.g.36

neighbouring pixels in images are highly correlated). The pervasive issue with current group feature37

selection methods is that a predetermined grouping must be provided, and the groups are selected38

from the given candidates. In reality, we may not know how to group the variables.39

In this paper we seek to solve a related but ultimately different and more challenging problem, which40

we call Composite Feature Selection. We wish to find groups of variables without prior knowledge,41

where each group acts as a separate predictive subset of the features and the overall predictive power42

is greatest when all groups are used in unison. We call each group of features a composite feature.143

By imposing this structure on the discovered features, we attempt to isolate pathways from features to44

the response variable. Discovering groups of features offers deeper insights into why specific features45

are important than standard feature selection.46

Contributions. (1) We formalise composite feature selection as an extension of standard feature47

selection, defining composite features in terms of linear and non-linear interactions between variables48

(Sec. 3). (2) We propose a new deep learning architecture for composite feature selection using an49

ensemble-based approach (Sec. 4). (3) To assess our solution, we introduce a metric for assessing50

composite feature similarity based on Jaccard similarity. (4) We demonstrate the utility of our model51

on a range of synthetic and semi-synthetic tasks where the ground truth group features are known52

(Sec. 5). We see that our model not only frequently recovers the relevant features, but also often53

discovers the underlying group structure.54

2 Related Work55

Significant attention has been placed on feature selection (see Appendix B for further discussion of56

standard feature selection), and several approaches have been extended to select predefined groups57

instead of individual features. For example, LASSO [67, 73] is a linear method that uses an L1 penalty58

to impose sparsity among coefficients. Group LASSO [82] generalises this to allow predefined groups59

to be selected or excluded jointly, rather than single features, by replacing the L1 penalty with L260

penalties on each group. Other feature selection methods, such as SLOPE [10], have been similarly61

extended to group feature selection to give Group-SLOPE [12]. Further examples of group feature62

selection using adapted loss functions are SCAD-L2 [84] and hierarchical LASSO [89]. Similarly,63

Bayesian approaches to feature selection [25] have also been generalised to the group setting [31].64

Finally, the Knockoff procedure [8, 15, 35, 51, 65, 70] is a generative procedure that creates fake65

covariates (knockoffs), obeying certain symmetries under permutations of real and knockoff features.66

By subsequently carrying out Feature Selection on the combined real and knockoff data, there are67

guarantees on the False Discovery Rate. Generalisations of the Knockoff procedure to the group68

setting also exist [21, 90], where symmetries under permutations of entire groups must exist.69

The key commonality is that none of these methods discover groups, but instead can only select70

groups from a set of predefined candidates. Therefore, while they may be applicable when we can71

split inputs into groups, they are not able to find groups of predictors on their own. Our work differs72

from these methods by considering the challenge of finding such groups in the absence of prior73

knowledge. Additionally, unlike prior work, we do not make assumptions about correlations between74

features or restrictions on groups, such as requiring that the candidate groups partition the features.75

3 Problem Description76

Let X ∈ X p be a p-dimensional signal (such as gene expressions or patient covariates) and Y ∈ Y be77

a response (such as disease traits). Informally, we wish to group features into the maximum number78

of subsets, Gi ⊂ [p], where the predictive power of any single group significantly decreases when any79

feature is removed, allowing us to separate the groups into different pathways from the signal to the80

response. Note that we do not enforce assumptions on the groups such as non-overlapping groups or81

1We will often refer to composite features as groups for brevity; in this paper, they refer to the same thing.
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every feature being in at least one group. In this section, we begin with a description of traditional82

feature selection before formalizing composite feature selection.83

3.1 Feature Selection84

The goal of traditional feature selection is to select a subset, S ⊂ [p], of features that are relevant for85

predicting the response variable. In particular, in the case of embedded feature selection [28], this is86

conducted jointly with the model selection process.87

Let ∗ denote any point not in X and define XS = (X ∪ {∗})p. Then, given X ∈ X p, the selected88

subset of features can be denoted as XS ∈ XS where xS,k = xk if k ∈ S and xS,k = ∗ if k /∈ S.89

Let f : XS → Y be a function in some space F (such as the space of neural networks) taking subset90

XS as input to yield Y . Then, selecting relevant features for predicting a response can be achieved91

by solving the following optimization problem:92

minimize
f∈F, S⊂[p]

Ex,y∼pXY

[
ℓY

(
y, f(xS)

)]
subject to |S| ≤ δ, (1)

where δ constrains the number of selected features and ℓY (y, y
′) is a task-specific loss function.93

This can be solved by introducing a selection vector M = (M1, · · · ,Mp) ∈ {0, 1}p, consisting of94

binary random variables governed by distribution pM , with realization m indicating selection of the95

corresponding features. Then, the selected features given vector m can be written as96

x̃ ≜ m⊙ x+ (1−m)⊙ x̂, (2)

where ⊙ indicates element-wise multiplication and x̂ are the values assigned to features that are not97

selected (typically x̂ ≡ 0 or x̄). (1) can be (approximately) solved by jointly learning the model f98

and the selection vector distribution pM based on the following optimization problem:99

minimize
f, pM

Ex,y∼pXY
Em∼pM

[
ℓY

(
y, f(x̃)

)
+ β∥m∥0

]
, (3)

where β is a balancing coefficient that controls the number of features to be selected.100

3.2 Composite Feature Selection101

The goal of composite feature selection is to not only find the predictive features, but also to group102

them based on how they are predictive. For example, assume features x1 and x2 are only predictive103

when both are known by the model, but make the same prediction independent of x3. Then we104

wish to group x1, x2 from x3. In this section, we define the embedded composite feature selection105

problem; that is, we want to find a valid model f and groups {G1, . . . ,GN} in parallel. A model is106

only valid when the group representations are combined in a way where we can view each group as107

contributing an independent piece of information for the final prediction. A valid model acts on a108

set of groups [83], thus when combining groups, we require order not to matter. Therefore, we must109

combine the representations using a permutation invariant aggregator.110

Let A : (
∏

i Rn) −→ RN be a general permutation invariant aggregation function. It is well established111

that for a specific choice of ϕ : Rn −→ Rm and ρ : Rm −→ RN , A can be decomposed as ρ[
∑

i ϕ(·)]112

(see [83] for examples). This gives f(x) = g
(
ρ
[∑

i ϕ(fi(xGi
))
])

, where fi encodes group i, ρ113

and ϕ give the permutation invariant aggregation and g is any final non-linear function, softmax for114

instance. The function composition of ϕ and fi can be relabelled as f̃i = ϕ ◦ fi, and the composition115

of g and ρ can be relabelled as ρ̃ = g ◦ρ. This leads to f(x) = ρ̃
[∑

i f̃i(xGi)
]
, this gives a definition116

for what a valid model structure can be in composite feature selection.117

Definition 3.1. The most general valid model for acting on N composite features is given by:118

f(x) = ρ

[ N∑
i=1

fi(xGi
)

]
. (4)

That is, the groups must interact only once, all groups must be included and the interaction is a119

summation; all other interactions can (and often should) be non-linear.120
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Depending on the task, a specific permutation invariant aggregation may be chosen (e.g. Max()).121

However, any permutation invariant aggregator can be (approximately) expressed in the form of Def.122

3.1; thus, when learning from data, the general structure of Def. 3.1 means that this is not necessary.123

The embedded composite feature selection problem can now be phrased in an analogous way to124

traditional feature selection. Let ∗ denote some point not in X and define XGi = (X ∪ {∗})p. Then,125

given X ∈ X p, the selected group of features is denoted as XGi
∈ XGi

where xGi,k = xk if k ∈ Gi126

and xk = ∗ if k /∈ Gi. Let fi : XGi
→ Z be a function in F that takes as input the subset XGi

and127

outputs a latent representation zi. Then, finding the groups of features can be achieved by solving the128

optimization problem:129

minimize
ρ,fi∈F, Gi⊂[p]

Ex,y∼pXY

[
ℓY

(
y, ρ

[ N∑
i=1

fi(xGi)
])]

subject to
|Gi| ≤ δi ∀i,
N ≥ ∆,

(5)

where δ constrains the number of selected features in each group and ∆ gives the minimum number130

of groups. This objective leads to multiple smaller groups, rather than one group containing all131

features, which is consistent with our motivation of the problem.132

Continuing to expand from traditional feature selection, we can also extend the solution to the133

composite setting. For N groups we can introduce a selection matrix M ∈ {0, 1}N×p, governed by134

distribution pM . For a realization m, the selected features from group i are given by135

x̃i ≜ mi ⊙ x+ (1−mi)⊙ x̂, (6)

where mi is the ith row of M . We can approximately solve (5) by solving the optimization problem:136

minimize
f, pM

Ex,y∼pXY
Em∼pM

[
ℓY

(
y, f(x)

)
+Re(m)

]
, (7)

where f(x) obeys Def. (4) and Re is a regularisation term which controls how features are selected137

in each group. Re should capture both group size (i.e. encourage as few features as possible to be138

selected) but also the relationships between groups (i.e. groups should be distinct and not redundant).139

3.3 Challenges140

There are various challenges in solving the composite feature selection problem. While the ultimate141

task is to find predictive groups of features, there remains the necessity simply to identify predictive142

features, which is already an NP-hard problem [2]. Composite feature selection not only inherits143

this property but introduces additional complexity since we can think of each group as solving a144

separate feature selection problem. Consider the number of potential solutions: in traditional feature145

selection (assuming not all features are selected), there are 2n − 2 ways of selecting a subset from n146

features; even restricting to at most m << n quickly becomes unfeasible for even modest values147

of m. In composite feature selection, every group has the same number of solutions as traditional148

feature selection, drastically increasing the total number of possible solutions. A challenge specific149

to composite feature selection arises when the ground truth group structure contains groups with150

overlapping features (e.g. feature x1 interacts independently with both x2 and x3). In this scenario, it151

is difficult to separate these two effects while penalizing the inclusion of additional features.152

4 Method: CompFS153

In this section, we propose a novel architecture for finding predictive groups of features, which we154

refer to as Composite Feature Selection (CompFS). In order to discover groups of features, our model155

is composed of a set of group selection models and an aggregate predictor. Our approach resembles156

an ensemble of “weak” feature selection models, where each learner attempts to solve the task using157

a sparse set of features (Figure 1). These models are then trained in such a way as to discover distinct158

predictive groups. We first consider the group selection models in more detail before describing how159

the group selection models are combined and the training procedure.160
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Figure 1: An illustration of CompFS. We use an ensemble of group selection models to discover
composite features and an aggregate predictor to combine these features when issuing predictions.

4.1 Group Selection Models161

CompFS is composed of a set of group selection models, each of which primarily aims to solve the162

traditional feature selection problem specified by (1). We achieve this by solving (3) using a neural163

network-based approach with stochastic gating of the input features. Each group selection model164

consists of the following three components (Figure 1):165

• Group Selection Probability, πi = (π1,i, · · · , πp,i) ∈ [0, 1]p, which is a trainable vector that166

governs the Bernoulli distribution used to generate the gate vector mi. Each element of the167

selection probability πk,i indicates the importance of the corresponding feature to the target.168

• Group Encoder, fθi : X p → Z , that takes as input the selected subset of features x̃i and outputs169

latent representations zi ∈ Z .170

• Group Predictor, hϕi
: Z → Y , that takes as input the latent representations of the selected subset171

of features, zi = fθi(x̃i), and outputs predictions on the target outcome.172

Solving (3) directly is not possible since the sampling step has no differentiable inverse. Instead, we173

use the relaxed Bernoulli distribution [53, 34] and apply the reparameterization trick as follows.174

Formally, given selection probability π = (π1, · · · , πp) and independent Uniform(0, 1) random175

variables (U1, · · · , Up), we can generate a relaxed gate vector m̃ = (m̃1, · · · , m̃p) ∈ (0, 1)p based176

on the following reparameterization trick [53]:177

m̃k = σ
(1
τ

(
log πk − log(1− πk) + logUk − log(1− Uk)

))
, (8)

where σ(x) = (1 + exp(−x))−1 is the sigmoid function. This relaxation is parameterized by π and178

temperature τ ∈ (0,∞). Further, as τ → 0, the gate vectors m̃k converge to Bernoulli(πk) random179

variables. Crucially this is differentiable with respect to π.180

Given group selection probability πi, we first sample relaxed Bernoulli random variable m̃i according181

to (8) and then use m̃i in a gating procedure to select the group of features. The output of the gate is:182

x̃i = gatei(x) = m̃i ⊙ x+ (1− m̃i)⊙ x̄, (9)
where we replace the variables that were not selected by their mean value x̄. The mean is used because183

in particular tasks a feature having a value of 0 may be particularly meaningful. The gate output x̃i is184

then fed into the group encoder fθi to yield representation zi = fθi(x̃i). This representation is finally185

passed to the group predictor hϕi
to produce the prediction for an individual learner, ŷi = hϕi

(zi).186

4.2 Group Aggregation187

The final component necessary for CompFS is a way to aggregate the individual group selection188

models. This is achieved via an overall predictor, hϕ : Z → Y , that takes as input the set of latent189

representations {z1, . . . , zN} produced by the individual learners and outputs predictions on the190

target outcome. For simplicity, we apply a linear prediction head to the latent representations and use191

element-wise summation to aggregate. Thus, the prediction of the ensemble is given by:192

ŷ = hϕ({z1, . . . , zN}) = ρ

[ N∑
i=1

Wizi + bi

]
, (10)
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where N is the number of members of the ensemble and ρ is a suitable transformation (e.g. softmax).193

Note that by using element-wise summation, our model satisfies (4) for acting on composite features.194

4.3 Loss Functions195

Group Selection Models. The individual learners can be trained to perform (traditional) feature196

selection (1) by minimizing the following loss function:197

LGi
= Ex,y∼pXY

[
ℓY

(
y, hϕi

(fθi(gatei(x)))
)
+ β⟨πi⟩2

]
, (11)

where ℓY is a suitable loss function for the prediction task (e.g. cross-entropy for classification tasks198

and MSE for regression tasks) and β ≥ 0 balances the two terms. Note the selections probabilities πi199

are not regularized with the typical L1 penalty. Instead, we apply an L2 penalty to the mean selection200

probability ⟨πi⟩ for each individual learner. This is justified as follows. Recall the optimization201

problem given by (5). We desire a solution with the maximal number of predictive groups N , while202

minimizing the number of selected features per group
∑N

i=1 |Gi|. The standard L1 penalty term does203

not achieve this goal since adding an additional feature to either group Gi or Gj incurs the same204

penalty. In contrast, the L2 penalty imposed on ⟨πi⟩ penalizes adding extra features to already large205

groups, favoring the construction of smaller groups over larger ones.206

Aggregate Predictor. The aggregate predictor can be trained jointly with the group feature selection207

models by minimizing a standard prediction loss (where ℓY is the same as in (11)):208

LE = Ex,y∼pXY

[
ℓY

(
y, hϕ({z1, . . . , zn})

)]
. (12)

Additional Regularization. If we simply apply the losses given by Eqs. (11), (12), there will be209

limited (or even no) differentiation among the individual learners and the optimal solution would210

be for each learner to simply solve the traditional feature selection problem (1). This results in211

all learners selecting the same features, which does not achieve our aim of discovering groups of212

predictive features. In order to encourage differentiation between the models, we introduce an213

additional loss that penalizes the selection of the same features in multiple groups:214

LR = Ex,y∼pXY

[ N∑
i=1

∑
j>i

πi · πj

]
. (13)

Overall Loss. Combining the above, our overall loss function therefore can be written as follows:215

L =

N∑
i=1

LGi
+ βELE + βRLR, (14)

where βE , βR ≥ 0 are hyperparameters to balance the losses.216

Training CompFS with the loss given by (14) is designed to achieve the following: (1) The overall217

ensemble network should be a good predictor (LE). (2) Each individual learner should to solve the218

traditional feature selection problem (LGi
), which requires the group predictor to be accurate while219

selecting minimal features. (3) Finally, we want the groups to be distinct and thus discourage highly220

similar groups (LR). However, note that we do not exclude the possibility of some overlap of features221

between groups. The model is end-to-end differentiable, so we train with gradient descent.222

Evaluation. During evaluation, only the gating procedure changes. The way features can be selected223

is chosen by the user. A standard solution which we adopt in this paper is using a threshold λ and224

calculating the gate vector mi as follows: mk,i = 1, if πk,i > λ and 0 otherwise.225

5 Experiments226

We evaluate CompFS using several synthetic and semi-synthetic datasets where ground truth feature227

importances and group structure are known. Specific architectural details are given in App. C.228
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Additional information regarding experiments, benchmarks, and datasets can be found in App. D.229

Additional ablations and sensitivity analysis are in App. A.230

Benchmarks. The primary goal of our experiments is to demonstrate the utility of discovering231

composite features over traditional feature selection. Our main benchmark is an oracle feature232

selection method (“Oracle") that perfectly selects the ground truth features but provides no structure,233

giving all features as one group. We also include comparisons to a linear feature selection method234

(LASSO) [73] and two non-linear, state of the art approaches, Stochastic Gates (STG) [81] and235

Supervised Concrete Autoencoder (Sup-CAE) [6]. Finally, we compare with Group LASSO [82],236

where we enumerate all groups with 1 or 2 features as predefined groups. Note this represents a237

significant simplification of the task for Group Lasso (see App. G for additional baselines).238

Metrics. Since the ground truth feature groups G1, . . . ,GN are known, we use True Positive Rate239

(TPR) and False Discovery Rate (FDR) to assess the discovered features against the ground truth. To240

assess composite features, i.e. grouping, we define the Group Similarity (Gsim) as the normalized241

Jaccard similarity between ground truth feature groups and the most similar proposed group:242

Gsim =
1

max(N,K)

N∑
i=1

max
j∈[K]

J (Gi, Ĝj), (15)

where J is the Jaccard index [33] and Ĝ1, . . . , ĜK are the discovered groups. Gsim∈ [0, 1], where243

Gsim= 1 corresponds to perfect recovery of the ground truth groups, while Gsim= 0 when none of the244

correct features are discovered. See App. E for additional details together with examples. We assess245

the models by seeing if the ground truth features have been correctly discovered, using TPR and FDR.246

We then see if the underlying grouping has been uncovered (and correct features) using Gsim.247

5.1 Synthetic Experiments.248

Dataset Description. We begin by evaluating our method on a range of synthetic datasets where249

the ground truth feature importance is known (Table 1). We generate synthetic datasets by sampling250

from the Gaussian distribution with initially no correlations across the features (X ∼ N (0, I)). We251

construct binary classification tasks, where the class y is determined by the following decision rules:252

• (Syn1) y = 1 if x1 > 0.55 or x2 > 0.55, 0 otherwise. The ground truth groups are {{1}, {2}}.253

This task assesses whether the model can separate two features rather than group them together.254

• (Syn2) y = 1 if x1x2 > 0.30 or x3x4 > 0.30, 0 otherwise. The ground truth groups are255

{{1, 2}, {3, 4}}. This task requires identifying groups consisting of more than one variable.256

• (Syn3) y = 1 if x1x2 > 0.30 or x1x3 > 0.30, 0 otherwise. The ground truth groups are257

{{1, 2}, {1, 3}}. This task investigates whether a model can split the features into two overlapping258

groups of two, rather than one group with all three features.259

• (Syn4) y = 1 if x1x4 > 0.30 or x7x10 > 0.30, 0 otherwise. The ground truth groups are260

{{1, 4}, {7, 10}}. This task is equivalent to Syn2, however, here the features exhibit strong261

correlation in collections of 3. This task demonstrates the difficulty of carrying out group feature262

selection (and indeed standard feature selection) when the features are highly correlated.263

The decision rules are created such that there is minimal class imbalance. We use signals with 500264

dimensions to demonstrate the utility in the high dimensional regime. We use 20000 samples to train265

and 200 to test. Each experiment is repeated 10 times.266

Analysis. On both Syn1 and Syn2, CompFS achieves high TPR with no false discoveries (0%267

FDR) and significantly higher Gsim than the Oracle. Despite allowing CompFS to discover up to268

5 groups, CompFS typically finds the correct number of groups (2), demonstrating that it is not269

necessary for the number of allowed composite features to match the ground truth, which is vital270

in real-world use cases where this is unknown. Syn3 is significantly more challenging due to the271

overlapping structure and we observe essentially the same performance as Oracle. Despite finding all272

the correct features and no false discoveries, CompFS typically finds the union {1, 2, 3} rather than273

the underlying group structure {{1, 2}, {1, 3}}. Finally, for Syn4, while CompFS has a relatively274

high FDR, it frequently finds the ground truth relevant features and groups with similar Gsim to Oracle.275
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Table 1: Performance on Synthetic Datasets, values are recorded with their standard deviations.

DATASET MODEL TPR FDR GSIM NO. GROUPS ACCURACY (%)

SYN1

COMPFS(5) 100.0 ± 0.0 0.0 ± 0.0 0.91 ± 0.14 2.2 ± 0.4 98.9 ± 0.5
ORACLE 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0
LASSO 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 81.8 ± 2.0

GROUP LASSO 100.0 ± 0.0 0.0 ± 0.0 0.67 ± 0.00 3.0 ± 0.0 83.8 ± 1.4
STG 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 97.8 ± 1.4

SUP-CAE 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 97.8 ± 1.4

SYN2

COMPFS(5) 95.0 ± 15.0 0.0 ± 0.0 0.90 ± 0.20 1.8 ± 0.4 95.5 ± 5.4
ORACLE 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0
LASSO 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00 0.0 ± 0.0 52.6 ± 2.9

GROUP LASSO 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00 0.0 ± 0.0 52.2 ± 0.9
STG 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 93.9 ± 2.2

SUP-CAE 37.5 ± 31.7 42.5 ± 44.2 0.24 ± 0.20 1.0 ± 0.0 61.9 ± 12.8

SYN3

COMPFS(5) 100.0 ± 0.0 0.0 ± 0.0 0.68 ± 0.05 1.3 ± 0.5 97.4 ± 1.1
ORACLE 100.0 ± 0.0 0.0 ± 0.0 0.67 ± 0.00 1.0 ± 0.0 100.0 ± 0.0
LASSO 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00 0.0 ± 0.0 56.5 ± 4.0

GROUP LASSO 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00 0.0 ± 0.0 54.6 ± 1.3
STG 100.0 ± 0.0 0.0 ± 0.0 0.67 ± 0.00 1.0 ± 0.0 95.3 ± 1.7

SUP-CAE 23.3 ± 31.6 66.7 ± 47.1 0.23 ± 0.31 1.0 ± 0.0 62.6 ± 12.6

SYN4

COMPFS(5) 90.0 ± 12.2 51.9 ± 13.8 0.47 ± 0.20 2.5 ± 0.7 95.8 ± 1.8
ORACLE 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0
LASSO 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00 0.0 ± 0.0 51.8 ± 3.2

GROUP LASSO 0.0 ± 0.0 10.0 ± 31.6 0.00 ± 0.00 0.1 ± 0.3 53.0 ± 1.1
STG 100.0 ± 0.0 66.7 ± 0.0 0.17 ± 0.00 1.0 ± 0.0 94.2 ± 2.1

SUP-CAE 72.5 ± 14.2 16.7 ± 14.7 0.39 ± 0.08 1.0 ± 0.0 72.2 ± 13.2

This is a challenging task with significant correlation between features. Despite this, CompFS is276

able to uncover the underlying group structure, providing additional insight over traditional feature277

selection. STG typically performs well in terms of traditional feature selection, but scores poorly in278

terms of Gsim due to not providing any group information.279

5.2 Semi-Synthetic Experiments.280

Dataset Description. Next, we assess our ability to identify composite features using semi-synthetic281

molecular datasets. These tasks are analogs of real-world problems, such as identifying biologically282

active chemical groups; however, the labels are determined by a synthetic “binding logic” so that the283

ground truth feature relevance is known. We use several of the datasets constructed by [56], some of284

which were also used by [66].2 The synthetic “binding logics” are expressed as a combination of285

molecular fragments that must either be present or absent for binding to occur and are used to label286

molecules from the ZINC database [32]. Each logic includes up to four functional groups (Table 6).287

Molecules are featurized using a set of 84 functional groups, where feature xi = 1 if the molecule288

contains functional group i and 0 otherwise. The specific binding logics are given in App. F.289

Table 2: Performance on Chemistry Datasets, values are recorded with their standard deviations.

DATASET MODEL TPR FDR GSIM NO. GROUPS ACCURACY (%)

CHEM1

COMPFS(5) 100.0 ± 0.0 0.0 ± 0.0 0.82 ± 0.20 1.9 ± 0.5 100.0 ± 0.0
ORACLE 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0
LASSO 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 75.8 ± 0.0

GROUP LASSO 100.0 ± 0.0 0.0 ± 0.0 0.67 ± 0.00 3.0 ± 0.0 100.0 ± 0.0
STG 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0

SUP-CAE 62.5 ± 13.2 23.3 ± 17.5 0.37 ± 0.07 1.0 ± 0.0 77.8 ± 11.0

CHEM2

COMPFS(5) 100.0 ± 0.0 0.0 ± 0.0 0.72 ± 0.24 2.2 ± 0.6 100.0 ± 0.0
ORACLE 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0
LASSO 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 81.6 ± 0.0

GROUP LASSO 100.0 ± 0.0 0.0 ± 0.0 0.40 ± 0.00 5.0 ± 0.0 81.6 ± 0.0
STG 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0

SUP-CAE 66.7 ± 0.0 0.0 ± 0.0 0.42 ± 0.00 1.0 ± 0.0 80.9 ± 9.5

CHEM3

COMPFS(5) 100.0 ± 0.0 7.3 ± 11.7 0.62 ± 0.17 2.4 ± 0.5 100.0 ± 0.0
ORACLE 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0
LASSO 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 87.4 ± 5.2

GROUP LASSO 100.0 ± 0.0 20.0 ± 0.0 0.20 ± 0.00 10.0 ± 0.0 91.5 ± 0.0
STG 100.0 ± 0.0 0.0 ± 0.0 0.50 ± 0.00 1.0 ± 0.0 100.0 ± 0.0

SUP-CAE 62.5 ± 13.2 23.3 ± 17.5 0.37 ± 0.07 1.0 ± 0.0 77.8 ± 11.0

2Data from https://github.com/google-research/graph-attribution/raw/main/data/all_
16_logics_train_and_test.zip.
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Analysis. All methods are able to identify the ground truth relevant features; however, only CompFS290

provides deeper insights. Unlike for Syn1-4, LASSO correctly selects the ground truth features291

since the dataset consists of binary variables and thus it is possible to find performant linear models.292

However, while discovering the correct features, Group LASSO selects all possible combinations of293

these features, adding no benefit over standard feature selection.294

For Chem1-2, CompFS perfectly recovers the group structure in the majority of experiments, leading295

to high Gsim far exceeding traditional feature selection. On Chem3, we occasionally discover296

additional features that are not part of the binding logic. However, a number of molecular fragments297

are strongly correlated with the binding logic, even though they are not themselves included. In fact,298

some features contain information about multiple functional groups. For example, esters contain299

a carbonyl and an ether; both are in the binding logic for Chem3, while ester is not, despite being300

highly informative, and thus occasionally CompFS incorrectly selects this feature. In spite of this,301

CompFS achieves significantly higher Gsim than even Oracle. This demonstrates the benefit of302

the grouping discovered by CompFS, even with a modest number of false discoveries. As before,303

CompFS typically finds the correct number of groups (2), despite being able to discover up to 5304

groups, further demonstrating that the number of composite features need not be known a priori,305

which is the case in real-world applications.306

5.3 Real-World Data: METABRIC307 Table 3: METABRIC performance.
We compare CompFS and STG us-
ing 25 features to an MLP using all
489 features.

Model AUC ROC

MLP (All features) 0.869
CompFS(5) 0.830

STG 0.843

Dataset Description. Finally, we assess CompFS on a real-308

world dataset, METABRIC [19, 60], where the ground truth309

group structure is unknown. METABRIC contains gene ex-310

pression, mutation, and clinical data for 1,980 primary breast311

cancer samples. We evaluated the ability to predict the proges-312

terone receptor (PR) status of the tissue based on the gene ex-313

pression data, which consists of measurements for 489 genes.314

Analysis. CompFS suffers limited performance degradation compared to using all features, despite315

only using 5% of the features (Table 3). Despite imposing a more rigid structural form on how316

features can interact in the predictive model, STG only had marginally greater predictive power than317

CompFS. However, CompFS provides greater insight into how the features interact than STG.318

We found supporting evidence in the scientific literature for all but 1 of the genes discovered by319

CompFS (Table 10). In addition, within each group, we found further evidence of the interactions320

between genes, demonstrating the ability for CompFS to learn informative groups of features. For321

example, in Group 1, CXCR1 and PEN-2 (the protein encoded by PSENEN) are known to interact322

[5]. In Group 2, BMP6 encodes a member of the TGF-β superfamily of proteins, and TGF-β323

triggers activation of SMAD3 [17]. In the same group, MAPK1 activity is dependent on the activity324

of PRKCQ in breast cancer cells [13], while MAPK1 is also known to interact with MAPT [45],325

SMAD3 [23], and BMP6 [85]. Additional supporting evidence can be found in Appendix H.326

6 Conclusion327

In this paper, we introduced CompFS, an ensemble-based approach that tackles the newly proposed328

challenge of composite feature selection. Using synthetic and semi-synthetic data, we assess our329

ability to go beyond traditional feature selection and recover deeper underlying connections between330

variables. CompFS is not without limitations: as with other methods, points of difficulty arise when331

features are highly correlated, or if predictive composites contain overlapping features. Future work332

may overcome this by using correlated gates. Further, as with many traditional feature selection333

methods, there are no guarantees on false discovery rate. This could be tackled by first proposing334

candidate composite features, and then using the Group Knockoff procedure. Additionally, to discover335

groups, CompFS requires the introduction of additional hyperparameters which could be challenging336

to tune in practice. More broadly, as with standard feature selection, groups found under composite337

feature selection must be verified by domain experts (both features but additionally interactions).338

However, we believe the additional structure provided by composite feature selection could be of339

significant benefit to a wide variety of practitioners.340
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