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Abstract

Recent advances on large-scale pre-training have shown great potentials of lever-1

aging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution2

(OoD) generalization, for which the goal is to perform well on possible unseen3

domains after fine-tuning on multiple training domains. However, maximally4

exploiting a zoo of PTMs is challenging since fine-tuning all possible combinations5

of PTMs is computationally prohibitive while accurate selection of PTMs requires6

tackling the possible data distribution shift for OoD tasks. In this work, we7

propose ZooD, a paradigm for PTMs ranking and ensemble with feature selection.8

Our proposed metric ranks PTMs by quantifying inter-class discriminability9

and inter-domain stability of the task data features extracted by the PTMs in a10

leave-one-domain-out cross-validation manner. The top-K ranked models are then11

aggregated for the target OoD task. To avoid accumulating noise induced by model12

ensemble, we propose an efficient variational EM algorithm to select informative13

features. We evaluate our paradigm on a diverse model zoo consisting of 35 models14

for various OoD tasks and demonstrate: (i) model ranking is better correlated with15

fine-tuning ranking than previous methods and up to 9859x faster than brute-force16

fine-tuning; (ii) OoD generalization outperforms the state-of-the-art methods and17

accuracy on most challenging task DomainNet is improved from 46.5% to 50.6%.18

1 Introduction19

Training and test data being Independent and Identically Distributed (IID) is a primary assumption20

behind most machine learning systems. However, this assumption does not hold in many real-world21

scenarios as real-world is marred with continuous distribution shifts [26]. Machine learning models22

encounter serious performance degradation [8, 20, 22] in such Out-of-Distribution (OoD) scenarios.23

To alleviate the accuracy degradation caused by distribution shifts, numerous algorithms have been24

proposed [4, 1, 27, 31, 5, 28, 45, 19, 13, 33, 6]. Recently, Gulrajani and Lopez-Paz [18] have argued25

for the systematic comparisons of OoD algorithms and introduced a standard and rigorous test bed26

called DomainBed. Their experimental comparison has raised some doubts about the effectiveness27

of OoD algorithms since they often fail to outperform the simple empirical risk minimization.28

On the other hand, recent works [21, 2, 53, 42] have shown the advantages of pre-training for improving29

OoD generalization, i.e., learning from multiple training domains and being well applied to an unseen do-30

main. The availability of a large set of Pre-Trained Models (PTMs) provides a possibility for solving var-31

ious OoD tasks. However, it is challenging to sufficiently exploit the power of a model zoo (a large set of32

PTMs). One naive approach could be fine-tuning all possible combinations of PTMs on the target dataset33

and choosing the best performing one. However, naive fine-tuning is a costly and inflexible method with34

the risk of over-fitting [55]. Fine-tuning may also require exhaustive hyper-parameters search. Besides,35

fine-tuning becomes computationally prohibitive for a model zoo consisting of several hundred models36

and a dataset containing a large number of examples, making it impossible to use at any practical scale.37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Figure 1: An overview of ZooD. Given a task with multiple training domains, the model ranking
component evaluates and selects the top-K models that generalize well on this task. The features from
selected models are then aggregated and denoised based on the feature selection component.

Recently, many ranking metrics have been proposed to estimate the transferability of models under38

IID assumption [7, 47, 37, 55, 54]. However, ranking a zoo of models for generalization on unseen dis-39

tribution shifts is more challenging compared with IID setting. Moreover, even if a metric can correctly40

evaluate the transferability of each PTM, simply using the best model will not fully utilize rich knowl-41

edge present in a zoo of models. But the problem is even more serious that the most transferable model42

will include some noise, because noise and invariant features are undistinguishable in the sense that they43

are all stable across domains. Previous study [52] also pointed this out and emphasized the necessity of44

feature denoising. Therefore, if we leverage the model zoo by assembling relatively transferable models,45

the accumulation of noise features may increase memory use and hurt the predictive performance.46

To solve the aforementioned problems, we propose ZooD, a paradigm to rank and aggregate a Zoo of47

PTMs for OoD generalization. An overview of our method is shown in Figure 1. Given a classification48

task with multiple training domains, to evaluate the generalization capability of each model, we49

quantify both the inter-class discriminability and inter-domain stability of the features extracted50

from each PTM in a leave-one-domain-out cross-validation manner, i.e., choosing one domain as the51

validation domain and each domain rotating as the validation domain, which is critical for identifying52

models that can extract domain-invariant features. Each PTM in the zoo is ranked by this quantification.53

ZooD then continues with model aggregation consisting of model ensemble and feature selection.54

By introducing latent masks over candidate features, an efficient EM algorithm is proposed to select55

informative features. To tackle the intractability of the posterior, variational approximation to the56

true posterior using a factorizable distribution is derived. We further extent it to large-scale datasets57

by building a local estimator under the stochastic approximation [43].58

To demonstrate the efficacy of our method, we have performed extensive experiments with 35 diverse59

PTMs and 7 OoD datasets. First, we show that our ranking metric is strongly correlated with the60

fine-tuning performance of PTMs compared with existing IID metrics. Second, we illustrate the61

outstanding performance of ZooD on OoD datasets. For instance, on Office-Home, we get 85.1%62

average accuracy compared with previous SOTA of 70.6%. Lastly, we show the speedup of our method63

compared with brute-force fine-tuning. ZooD gives a maximum speedup of ≈ 10000× (0.27 GPU64

hours vs 2662.27 GPU hours), making it practical and scalable.65

Finally, to speed-up research and make our work more reproducible, we have devised a test bench66

consisting of extracted features, fine-tuning accuracy results, and ranking scores for all 35 PTMs in67

our model zoo. This testbed can help future research as the process of getting fine-tuning accuracy68

results based on DomainBed [18] for a zoo of models is computationally expensive. For instance,69

fine-tuning 35 models on all 7 OoD datasets costed approximately 35140 GPU hours (equivalent to70

1464 GPU days or 4 GPU years). Concisely, our contributions are as follows:71

(i) We propose an efficient and scalable ranking metric to gauge the generalization-ability of PTMs72

for unseen domains.73

(ii) Using EM, we propose a method for selecting informative features and discarding invariant but74

noisy features in an ensemble of models.75

(iii) We have established a test bed for PTMs on 7 OoD datasets, including features extracted by 3576

PTMs in our model zoo, fine-tuning accuracy results and model ranking scores by different methods.77
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2 Related Work78

Pre-training for OoD generalization. To tackle the problem of distribution shifts between training and79

test data, various OoD methods [4, 1, 27, 31, 15, 11, 5, 28, 45, 13, 33, 6] have been proposed with the aim80

to learn invariant representations across different environments. However, a standard evaluation [18] of81

many OoD algorithms shows that they do not significantly outperform simple ERM. On the other hands,82

recent works have shown effectiveness of pre-trained models for OoD generalization. Yi et al. [53]83

theoretically showed that adversarially pre-trained models also perform better for OoD generalization.84

Anonymous [3] performed a large-scale empirical analysis and show that the right choice of pre-trained85

models can achieve SOTA results. They also showed IID performance is not a good indicator of OoD86

performance and emphasized on the importance of model selection. Albuquerque et al. [2] showed87

the importance of feature extractor by proposing a new OoD-based pretext task for SSL pre-training88

that can outperform supervised training. CLIP [42] demonstrated that large-scale pre-training on a89

dataset of image-text pairs results in much more robust models for downstream tasks with various90

distribution shifts. Our work is based on these observations and we aim to facilitate utilization of PTMs91

by proposing an efficient metric as well as efficient feature ensemble and selection method.92

Ranking pre-trained models by metric design. Large-scale, ever-increasing and evolving nature93

of PTMs requires a low-cost and flexible selection metric. Recently, a number of metrics have94

been introduced to estimate transferability of source-task-learned representations for target task95

under IID conditions. H-score [7] estimates the transferability by finding the relationship between96

extracted features and target class labels. NCE [47] proposes to estimate transferability via measuring97

conditional entropy between source and target labels. LEEP [37] simplifies NCE by using the joint98

distribution of source and target labels to estimate log expected empirical prediction. LogME [55, 54]99

estimates maximum value of label evidence given features from pre-trained models. The use of features100

instead of labels makes LogME more generalizable as it can be employed beyond classification.101

However, these transferability metrics focus on determining the compatibility of source-task-learned102

representations for the target task. We, on the other hand, aim to compute stability of these features103

across domains in addition to source-target transferability.104

Ensemble and feature selection. Early works have shown that model ensemble can significantly105

improve predictive performance [14]. In the age of deep learning, Lakshminarayanan et al. [29]106

propose deep ensemble to measure predictive uncertainty. Similar works [39, 40] on uncertainty107

estimation focus on the context of outlier detection and reinforcement learning. When facing a zoo108

of PTMs, it’s natural to leverage the rich knowledge by assembling multiple PTMs. In prior works,109

Liu et al. [34] propose using PTMs as teacher models that distill knowledge to a target model for110

downstream tasks. Shu et al. [46] propose Zoo-Tuning that learns to aggregate the parameters of111

multiple PTMs to a target model. However, these methods require the target model must have the112

identical architecture as the PTMs, thus sacrificing flexibility.113

Our proposed paradigm involves selecting informative features from assembled feature extractors. In114

the related works of Bayesian variable selection, a prior is introduced over potential predictor subsets115

and subsequent method estimates posterior to identify promising subset models. Here we mainly116

focus on Stochastic search variable selection (SSVS) [38]. Meuwissen and Goddard [36] introduce117

a random effects variant of SSVS for gene mapping. Li and Zhang [32] consider regression modeling118

in high-dimensional spaces incorporating structural information. Ročková and George [44] propose119

EMVS for high-dimentional SSVS promising sparse high posterior probability submodels. Note that120

all aforementioned feature selection methods are only effective under the IID assumption, while in our121

paradigm, invariant and informative features can be selected from aggregated PTMs, which improves122

predictive performance for OoD tasks.123

3 ZooD for OoD Generalization124

3.1 Model Transferability Ranking125

Assume that we have a domain distribution D from which we observe m domains:
{
D1,D2,···,Dm

}
.126

Each domain Di is a set of (label, data) pairs, i.e. Di=
{
(yij ,xij),1≤ j≤ni

}
. Meanwhile, we have127

a zoo of pre-trained feature extractors: M={ϕ1,ϕ2,···,ϕk,···}. Our objective is to train a predictor128

f , along with one of the selected feature extractors from M (e.g., ϕk), such that the composed model129

f ◦ϕk performs well on both the m observed domains and unseen domains from D.130
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In this work, we propose an algorithm that facilitates model selection without carrying out the131

fine-tuning step. For every model in M, the algorithm produces an associated score, by which we132

can rank the models, such that the higher-ranked ones have a better chance to deliver stronger results133

after fine-tuning.134

The proposed algorithm is a combination of 1) a model transferability metric and 2) a leave-one-135

domain-out cross-validation scheme. More specifically, we evaluate each feature extractor m times,136

and each time we treat the data from the held-out domain as validation data {(y′j ,x′
j)}n

′

j=1, while137

aggregating all remaining (m−1) domains’ data as the training data {(yi,xi)}ni=1. In the end, we138

average the m values of the model transferability metric. Finally, we rank all feature extractors in139

descending order of the average.140

The transferability of each ϕ can be quantified in terms of inter-class discriminability and inter-domain141

stability. First, we denote the aggregated domain’s label and feature as y= (y1,...,yn)
⊤ ∈Rn and142

Φ =
(
ϕ(x1),...,ϕ(xn)

)⊤ ∈ Rn×d, respectively. We use y′ ∈ Rn′
and Φ′ ∈ Rn′×d for the held-out143

domain. Inter-domain stability is referring to correlation shift and covariate shift. Therefore, we144

formulate the objective as the following density function:145

p(y′,Φ′∣∣y,Φ)=p(y′|Φ′,y,Φ)p(Φ′|Φ),
where p(y′|Φ′,y,Φ) measures discriminability and correlation shift between features Φ′ and labels146

y′, given the aggregated training data. Meanwhile, p(Φ′|Φ) measures covariate shift between features147

Φ and Φ′. Given a hypothetical space F of classifiers, we can write p(y|Φ)=
∫
f∈Fp(y|Φ,f)p(f)df .148

According to the Laplace approximation [35], if p(y|Φ, f) is unimodal at µ, we can take Taylor149

expansion of the log-likelihood at the mode logp(y|Φ,f)≈ logp(µ|Φ,f)− 1
2 (y−µ)⊤Λ(y−µ), where150

Λ=−∇y⊤∇ylogp(y|Φ,f)
∣∣
y=µ

. The quadratic term implies that p(y|Φ,f) can be approximated with151

a Gaussian distribution. Similar to You et al. [54], we consider a linear classifier, i.e. f ◦ϕ(x)=w⊤ϕ(x)152

with a Gaussian prior of w:153

w∼N (0,α−1Id), y
∣∣Φ,w∼N (Φw,β−1In),

where α and β are two positive parameters. We estimate α̂ and β̂ by maximizing the model evidence154

p(y|Φ;α,β)=
∫
w∈Rd

p(y|Φ,w;β)p(w;α)dw

according to Algorithm 3 in You et al. [54] and compute the likelihood of y′ as follows:155

p(y′|Φ′,y,Φ;α̂,β̂)=
p(y′,y|Φ′,Φ;α̂,β̂)

p(y|Φ;α̂,β̂)
.

For measuring covariate shift, we approximate the distribution of ϕ(x) with a Gaussian distribution156

N (µ̂ϕ,Σ̂ϕ), where µ̂ϕ and Σ̂ϕ are estimated from the training data Φ. Then we compute the density157

p(Φ′|Φ)=p(Φ′|µ̂ϕ,Σ̂ϕ) to quantify the covariate shift.158

Finally, we compute the density at the logarithmic scale and this defines the proposed metric159

Metric=logp(y′|Φ′,y,Φ)+logp(Φ′|Φ). (1)

Please refer to Appendix B.3 and B.4 for more details.160

One distinctive aspect of our selection process is the cross-domain validation, embodied in the first term161

of (1). Across different domains, there are domain-invariant and domain-specific features, where over-162

fitting to the latter can severely harm the OoD generalization. By evaluating on held-out domains, we are163

able to filter out models that fixate on domain-specific features. To provide theoretical justification, an164

explicit analysis in the linear regression setting is conducted, where we show that the model with the opti-165

mal Metric is the one that select all domain-invariant features. Despite the over-simplification, it does re-166

flect the essence of our approach. Due to page limit, the technical details are presented in Appendix B.5.167

3.2 Model Ensemble with Feature Selection168

The top-ranked PTMs in Section 3.1 are preferred for solving the OoD generalization task. To further169

aggregate different PTMs, we consider assembling the top-ranked feature extractors and rewrite170

Φ=
[
Φ(1),...,Φ(k)

]
, where Φ(i) is the feature matrix from the i-th ranked feature extractor.171
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As we show in experiments, in most cases, aggregating features from multiple models can significantly172

outperform any single model. However, simply concatenating features inevitably introduces more173

noise. As found in [52], non-informative but invariant features from training domains may only174

bring some noise, that is irrelevant to the classification problem, and the accumulation of noise hurts175

the learnability of the OoD generalization task while increasing the memory and computation cost.176

Therefore, we modify previous top linear model and present a feature selection tool under the Bayesian177

linear model framework in Section 3.1.178

First, we impose a binary mask z = (z1,z2, ... ,zd)⊤ for the weight vector w = (w1,w2, ... ,wd)
⊤,179

where zi = 1 indicates that wi is an active weight in the top linear model, i.e. wi ̸= 0, meaning the180

corresponding feature is informative, while wi ≈ 0 if zi = 0, indicating a noisy feature that should181

be screened. Therefore the Bayesian feature selection is formulated by estimating the probability πi182

of zi with πi :=p(zi=1) and π={π1,π2,...,πd}.183

To facilitate the utility of the mask, we assume that the weights {wi} are independent of each other184

and each weight wi is drawn from either a slab prior or a spike prior [24] with the mean of zero:185

p(wi|zi,αi,1,αi,2)=

{
N (0,α−1

i,1 ) if zi=1;

N (0,α−1
i,2 ) if zi=0.

We make the Bayesian treatment to linear model in Section 3.1 by introducing gamma priors for all186

inverse variance terms:187

αi,1∼Gamma(νi,1,νi,2), αi,2∼Gamma(νi,3,νi,4), β∼Gamma(ν0,1,ν0,2),

and denote all hyper-parameters as ν = {νi,j}. In addition, we denote all latent variables as188

ξ=
{
β,{wi,zi,αi,1,αi,2}di=1

}
. Under certain conditions, maximizing marginal likelihood provably189

leads to consistent selection and obeys Occam’s razor phenomenon [17, 51], and thus screens non-190

informative features. To estimate πi, the maximum marginal likelihood estimator of (π,ν) is given by191

π̂,ν̂=argmax
π,ν

logp(y|Φ;π,ν)=argmax
π,ν

log

∫
ξ

p(y,ξ|Φ;π,ν)dξ.

However, direct maximization of (2) is intractable due to the integration over ξ. EM algorithm might192

be a solution here [44]. In the E-step, we compute the conditional expectation:193

Eξ

[
logp(y,ξ|Φ;π,ν)

∣∣y,Φ;πold,νold
]
.

Notice that evaluating the expectation involving the posterior distribution of ξ. However in our case,194

it is not straightforward to obtain an analytical form of the true posterior distribution. We instead195

approximate it using Variational Inference [10] by introducing a tractable distribution Q. Considering196

the following objective function:197

L(Q)=

∫
ξ

Q(ξ;π,ν)log
p(y,ξ|Φ;π,ν)
Q(ξ;π,ν)

dξ,

which is a lower bound of logp(y|Φ;π,ν). It has been shown the maximizer of L(Q) is the optimal198

approximator of p(ξ|y,Φ;π,ν) under the KL divergence. To obtain an explicit solution, we factorize199

Q into200

Q(ξ)=Q(β)

d∏
i=1

[
Q(zi)Q(wi)Q(αi,1)Q(αi,2)

]
, (2)

which holds for the classical mean-field family. After all variational parameters in (2) are updated201

by running one-step coordinate gradient descent [10], in the M-step, we update πnew and νnew by202

maximizing:203

Eξ∼Q(ξ;πold,νold)

[
logp(y,ξ|Φ;π,ν)

]
.

By repeating the E and M step, the estimator (πnew,νnew) converges to an optimal solution. We then204

screen those variables with converged prior πi smaller than the predefined threshold τ . Our derivations205

for variational approximations and prior hyper-parameters optimization are listed in Appendix C.3.206

However, the proposed algorithm still suffers from heavy computational cost: each iteration costs207

O(nd2). To address this problem, we propose an efficient version based on Stochastic Variational208

Inference [23]. A local estimator Qs(ξ) is established under stochastic approximation that enjoys less209

computational complexity and guarantees convergence to global optimum [43]. We successfully reduce210

the computation cost to O(nsd2) with ns≪n. The complete algorithm is presented in Appendix C.4.211
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Figure 2: Comparison of ZooD ranking scores with three features-based ranking methods. The
plots illustrate ground-truth out-of-domain accuracies (x-axis), ranking scores (y-axis) and Kendall’s
coefficient τ for 35 PTMs on seven datasets.

4 Experiments212

In this section, we demonstrate the effectiveness of ZooD. First, we evaluate the ability of our ranking213

metric to estimate OoD performance and compare it with ground-truth performance and several214

existing IID ranking methods. Second, we show that our aggregation methods achieves significant215

improvements and SOTA results on several OoD datasets. Finally, we demonstrate that ZooD requires216

significantly less computation, and, therefore, is practically scalable compared with naive fine-tuning.217

Setup Details. We use 35 PTMs with diverse architectures, pre-training methods and pre-training218

datasets. We divide the PTMs into three groups. Group 1 consists of models with different architectures,219

Group 2 consists of models pre-trained with different training methods, and Group 3 consists of220

models pre-trained on large-scale datasets. We conduct experiments on six OoD datasets: PACS [30],221

VLCS [16], Office-Home [48], TerraIncognita [9], DomainNet [41], and NICO (NICO-Animals222

& NICO-Vehicles) [19]. Each of the datasets has multiple domains. The standard way to conduct223

experiment is to choose one domain as test (unseen) domain and use the remaining domains as training224

domains, which is named leave-one-domain-out protocol. The top linear classifier is trained on225

the training domains only and tested on the test domain. Each domain rotates as the test domain226

and the average accuracy is reported for each dataset. To get ground-truth performance, we follow227

DomainBed [18] to fine-tune top linear classifiers for the PTMs on these OoD datasets. We adopt the228

leave-one-domain-out cross-validation setup in DomainBed with 10 experiments for hyper-parameter229

selection and run 3 trials. We triple the number of iterations for DomainNet (5000 to 15000) as it230

is a large-scale dataset requiring more iterations [12] and decrease the number of experiments for231

hyper-parameter selection from 10 to 5. More details on the experimental setup are in Appendix A.1.232

4.1 Comparison with IID Ranking Metrics233

IID ranking methods. We divide existing ranking methods into two groups. One group consists of234

methods that employ PTM’s classification layer for ranking. These methods include NCE [47] and235

LEEP [37]. The other group consists of approaches that only use PTM’s extracted features. These meth-236

ods include H-Score [7] and LogME [55]. Additionally, we also use kNN with k=200 [50] as a baseline.237

Evaluation metrics. To evaluate PTMs on OoD datasets with ranking methods, we follow leave-one-238

domain-out validation protocol [30]. For ZooD and kNN, we further adopt leave-one-domain-out239

validation for training domains and take average results as the performance prediction for the held-out240

test domain. To compute the correlation between ranking scores and ground-truth performance, we241

use two metrics. First, to compare the ranking of a transferability metric with accuracy, we employ242

Kendall’s coefficient τ [25]. Unlike Pearson’s correlation, τ measures correlation based on the order of243
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Figure 3: Comparison of ZooD ranking scores with two classification-layer based ranking methods. The
plots illustrate ground-truth out-of-domain accuracies (x-axis), ranking scores (y-axis) and Kendall’s
coefficient τ for 25 PTMs that have classification layers on seven datasets.

Table 1: Comparisons: (a) τw between ZooD and feature-based transferability estimation methods
using all of our PTMs. (b) τw between ZooD and classification-based transferability estimation
methods. For this comparison, we consider 25 models that have classification heads. (c) Our method
v.s. brute-force fine-tuning in terms of computing cost. For this comparison, we consider all 35 models.

(a) τw for feature based

kNN H-Score LogME ZooD

PACS 0.76 0.57 0.88 0.91
VLCS 0.49 0.45 0.79 0.80
Office-Home 0.78 0.68 0.86 0.86
TerraIncognita 0.40 -0.20 0.02 0.46
DomainNet 0.89 0.62 0.65 0.76
NICO-Animals 0.73 0.72 0.89 0.90
NICO-Vehicles 0.82 0.75 0.90 0.92

(b) τw for Classification based

LEEP NCE ZooD

PACS 0.76 0.81 0.89
VLCS 0.57 0.32 0.88
Office-Home 0.76 0.94 0.86
TerraIncognita 0.02 -0.44 0.59
DomainNet 0.77 0.87 0.72
NICO-Animals 0.58 0.92 0.94
NICO-Vehicles 0.69 0.92 0.95

(c) Speed-up over brute-force

GPU Hours ZooD Fine-tuning Speed Up

PACS 0.27 2662.27 9859×
VLCS 0.29 2706.67 9332×
Office-Home 0.39 3089.87 7922×
TerraIncognita 0.49 3920.27 8000×
DomainNet 11.24 17055.33 1516×
NICO-Animals 0.32 2914.40 9107×
NICO-Vehicles 0.30 2794.13 9313×

two measures. Consequently, it is a better criterion for ranking. Second, to measure the performance of244

transferability metric for top-model selection, we utilize weighted Kendall’s coefficient τw [49]. The245

τw gives more weight to the ranking of top-performing models compared with the rest of the models.246

Therefore, it is a better comparative criterion for top model selection.247

Results. First, we compare our method with feature-based scoring methods: kNN, H-Score, and248

LogME. These methods, similar to our method, rank models based on the penultimate layer. We249

compare ZooD with these methods for the full set of 35 PTMs. We plot ranking scores and ground-truth250

accuracies in Figure 2. For quantitative comparison, we also provide τ values. It can be seen that ZooD251

is better correlated with fine-tuning accuracy than other ranking methods on most of the datasets. For252

example, our method has a τ of 0.85 compared with LogME’s τ of 0.77 on Office-Home and a τ of253

0.40 compared with LogME’s τ of 0.04 on TerraIncognita.254

Furthermore, our metric is more stable and consistent. Precisely, τ of ZooD varies between 0.40255

∼ 0.85 compared with 0.04 ∼ 0.80 for LogME, -0.08 ∼ 0.67 for H-Score, and 0.16 ∼ 0.86 for kNN.256

The consistency of transferability metric across different datasets is critical since the purpose of a257

transferability metric is to estimate performance on a new dataset without having access to ground-truth258

accuracy. Whenever an estimation metric is inherently unstable, it is hard to determine its reliability259

for a new dataset.260

Note that our method uses a linear model with Gaussian error to approximate the top classifier. This261

helps us achieve efficient model assessment, especially on small and medium-sized datasets in which262

the bias caused by model approximation is negligible compared with the estimation error due to263

insufficient data. However, on DomainNet, things may be different. The bias caused by model264

approximation dominants the evaluation performance on large datasets. Therefore, our method does265

not outperform kNN on DomainNet.266

Second, we compare our method with classification-layer based methods: NCE and LEEP. For this267

comparison, we select a subset of our PTMs that have classification layers. The results are illustrated268
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Table 2: Comparison of out-of-domain accuracies between ZooD and SOTA OoD methods. The results
of MixStyle [56] and SWAD [12] are from SWAD, and other results are from Gulrajani and Lopez-Paz
[18] (denoted with †). Our results are average of three trials.

Method PACS VLCS Office-Home TerraInc. Domain Avg
ERM† 85.5 77.5 66.5 46.1 40.9 63.3
IRM† 83.5 78.6 64.3 47.6 33.9 61.6
GroupDRO† 84.4 76.7 66.0 43.2 33.3 60.7
I-Mixup† 84.6 77.4 68.1 47.9 39.2 63.4
MLDG† 84.9 77.2 66.8 47.8 41.2 63.6
MMD† 84.7 77.5 66.4 42.2 23.4 58.8
DANN† 83.7 78.6 65.9 46.7 38.3 62.6
CDANN† 82.6 77.5 65.7 45.8 38.3 62.0
MTL† 84.6 77.2 66.4 45.6 40.6 62.9
SagNet† 86.3 77.8 68.1 48.6 40.3 64.2
ARM† 85.1 77.6 64.8 45.5 35.5 61.7
VREx† 84.9 78.3 66.4 46.4 33.6 61.9
RSC† 85.2 77.1 65.5 46.6 38.9 62.7
MixStyle 85.2 77.9 60.4 44.0 34.0 60.3
SWAD 88.1 79.1 70.6 50.0 46.5 66.9

ZooD
Single 96.0 79.5 84.6 37.3 48.2 69.1
Ensemble 95.5 80.1 85.0 38.2 50.5 69.9
F. Selection 96.3 80.6 85.1 42.3 50.6 71.0
F. Ratio (% ) 24.3 24.5 62.5 76.8 99.8

in Figure 3. It can be seen that ZooD is also more stable and consistent than NCE and LEEP. Moreover,269

Our method achieves superior performance on the difficult real-world TerraIncognita dataset. This270

dataset consists of obscure and blurry images captured by WildCams installed in different territories.271

NCE has a negative correlation for this dataset. On the other hand, our method, although not perfect,272

captures the relation in a better way. For this challenging dataset, our method has a τ of 0.45 compared273

with 0.12 and -0.32 for LEEP and NCE, respectively.274

Third, we compare weighted Kendall’s coefficient of our method with other ranking methods. The275

weighted Kendall’s coefficient is a better metric to gauge the performance of a metric for top model276

selection. We also divide these results into two groups: comparison with feature-based scoring methods277

in Table 1a and comparison with classification-based scoring methods in Table 1b. Our method278

outperforms feature-based scoring methods on 6 out of 7 datasets. Similarly, it also outperforms both279

LEEP and NCE on 5 out of 7 datasets. Moreover, our ranking method is more stable as it performs280

better on challenging datasets. For example, it has τw of 0.46 ∼ 0.92 compared with LogME’s τw281

of 0.02 ∼ 0.90 and H-Score’s τw of -0.20 ∼ 0.75.282

In summary, transferability estimation of ZooD correlates better with ground-truth accuracy on most283

of the OoD datasets compared with previous ranking methods. It also outperforms most feature-based284

metrics for model selection in terms of τw. Additionally, it is more stable and consistent across datasets,285

making it a better choice for pre-trained model selection.286

4.2 SOTA Results with Our Selection Method287

We also compare ZooD (model ranking and feature selection) with several recent SOTA OoD methods288

and demonstrate that it achieves substantial performance improvements. We compare previous OoD289

methods with three versions of our method: 1) Single: fine-tune the top-1 model by transferability290

metric; 2) Ensemble: fine-tune an ensemble of the top-K models; 3) F. Selection: fine-tune an291

ensemble of the top-K models with feature selection, which is the expected result using ZooD. By292

fine-tuning, we mean using ERM with DomainBed settings to fine-tune a top linear classifier for the293

PTMs. Their predictive performance and F. Ratio (the percentage of features used in F. Selection)294

are listed in the last four lines of Table 2.295

In all experiment results, except TerraIncognita (discussed in the next paragraph), our method achieves296

remarkable improvement against ERM and recent SOTA. For Single, we list the improvements over297
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the previous SOTA as follows: +14% on Office-Home, +7.9% on PACS, +1.7% on DomainNet, and298

+0.4% on VLCS. This result also shows that even without aggregation, using proper pre-trained model299

can improve OoD generalization by a large margin.300

The performance of Single does not outperform the previous SOTA on TerraIncognita. This is because301

previous methods fine-tune the whole network. In contrast, we only train a classifier on top of a302

fixed feature extractor. TerraIncognita is a much more challenging dataset compared with other OoD303

datasets, as the majority of its images are obscured by the background. Therefore it requires fully304

fine-tuning. To show the effectiveness of ZooD with fully fine-tuning, we select top-1 ranked model305

and fine-tune the whole model. Our resulted model achieves a +2.6% improvement compared with306

the previous SOTA. One limitation of ZooD when aggregating multiple models is that fine-tuning the307

whole models is difficult due to the limitation of GPU memory. However, for OoD tasks, fine-tuning308

the whole model may not perform better than fine-tuning the top classifier. For example, the results309

of fine-tuning the full top-ranked models on PACS, VLCS and Office-Home are 90.6, 79.1 and 83.4,310

respectively. Empirically, we find if a PTM is suitable for a given OoD task, fine-tuning the top311

classifier has better OoD generalization than fine-tuning the full model.312

To efficiently utilize multiple models, we propose to select informative features in Section 3.2.313

Here, we compare the performance improvement by F. Selection with Single and Ensemble. ZooD314

significantly outperforms both candidates while only using a small portion of aggregated features from315

top-K models. Even on the most sophisticated DomainNet, ZooD can improve predictive performance316

by +2.4% compared with Single and +0.1% compared with Ensemble.317

Figure 4: Comparison of selected-feature ensem-
ble vs. all-feature ensemble for varying number
of top models in the ensemble.

To find the appropriate number K for the model318

ensemble, we performed an ablation study. We319

varied the number of K, e.g. K ∈ {3,5,7}. The320

performance changes are plotted in Figure 4. We321

found the performance by aggregating top-3 mod-322

els strikes the right balance between performance323

and computational complexity. Hence, K=3 is set324

to the default value.325

In summary, our ranking metric in ZooD is good326

enough to select a model that can outperform the327

previous SOTA methods without adding any bells328

and whistles. Furthermore, feature selection in329

ZooD can efficiently utilize informative features from top-K models to further improve the OoD330

generalization. Based on extensive experimental results on various OoD datasets, we conclude ZooD331

makes it easy and efficient to exploit a large set of PTMs for OoD generalization.332

4.3 Computational Efficiency of ZooD333

In the previous sections, we show its performance on several small and large-scale OoD datasets. Here,334

we illustrate the precision and computational efficiency of ZooD by comparing it with brute-force335

fine-tuning in terms of GPU hours. The results are shown in Table 1c. ZooD provides a minimum of336

1516× speed-up for DomainNet and a maximum of 9859× speed-up for PACS. Cumulatively, our337

method took a total of 13 GPU hours to evaluate all the PTMs on all the datasets compared with 35140338

GPU hours (equivalent to 4 GPU years) for brute-force fine-tuning. Therefore, ZooD is a scalable and339

practical method for OoD generalization.340

5 Conclusion341

Machine learning models rely on IID assumption, which is often violated due to constant distribution342

shifts in the real-world applications. In this work, we argue for leveraging a large set of PTMs to improve343

OoD generalization and propose ZooD, a paradigm for efficient PTMs ranking and aggregation. Our344

paradigm avoids the computationally-prohibitive fine-tuning by ranking PTMs based on quantifying345

their inter-class discriminability and inter-domain stability, and selecting the most informative features346

from top-ranked PTMs ensemble. Extensive experiments show ZooD is superior in ranking correlation347

with the ground-truth performance and achieves SOTA results on various OoD benchmarks.348
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