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Abstract

We introduce a new general identifiable framework for principled disentanglement1

referred to as Structured Nonlinear Independent Component Analysis (SNICA).2

Our contribution is to extend the identifiability theory of deep generative models3

for a very broad class of structured models. While previous works have shown4

identifiability for specific classes of time-series models, our theorems extend this to5

more general temporal structures as well as to models with more complex structures6

such as spatial dependencies. In particular, we establish the major result that7

identifiability for this framework holds even in the presence of noise of unknown8

distribution. The SNICA setting therefore subsumes all the existing nonlinear9

ICA models for time-series and also allows for new much richer identifiable10

models. Finally, as an example of our framework’s flexibility, we introduce the11

first nonlinear ICA model for time-series that combines the following very useful12

properties: it accounts for both nonstationarity and autocorrelation in a fully13

unsupervised setting; performs dimensionality reduction; models hidden states; and14

enables principled estimation and inference by variational maximum-likelihood.15

1 Introduction16

A central tenet of unsupervised deep learning is that noisy and high dimensional real world data is17

generated by a nonlinear transformation of lower dimensional latent factors. Learning such lower18

dimensional features is valuable as they may allow us to understand complex scientific observations19

in terms of much simpler, semantically meaningful, representations (Morioka et al., 2020a; Zhou20

and Wei, 2020). Access to a ground truth generative model and its latent features would also greatly21

enhance several other downstream tasks such as classification (Klindt et al., 2020; Banville et al.,22

2021), transfer learning (Khemakhem et al., 2020b), as well as causal inference (Monti et al., 2019;23

Wu and Fukumizu, 2020).24

A recently popular approach to deep representation learning has been to learn disentangled features.25

Whilst not rigorously defined, the general methodology has been to use deep generative models such26

as VAEs (Kingma and Welling, 2014; Higgins et al., 2017) to estimate semantically distinct factors27

of variation that generate and encode the data. A substantial problem with the vast majority of work28

on disentanglement learning is that the models used are not identifiable – that is, they do not learn29

the true generative features, even in the limit of infinite data – in fact, this task has been proven30

impossible without inductive biases on the generative model (Hyvärinen and Pajunen, 1999; Locatello31

et al., 2019). Lack of identifiability plagues deep learning models broadly and has been implicated as32

one of the reasons for unexpectedly poor behaviour when these models are deployed in real world33

applications (D’Amour et al., 2020). Fortunately, in many applications the data have dependency34

structures, such as temporal dependencies which introduce inductive biases. Recent advances in both35

identifiability theory and practical algorithms for nonlinear ICA (Hyvärinen and Morioka, 2016, 2017;36

Hälvä and Hyvärinen, 2020; Morioka et al., 2021; Klindt et al., 2020; Oberhauser and Schell, 2021)37
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exploit this and offer a principled approach to disentanglement for such data. Learning statistically38

independent nonlinear features in such models is well-defined, i.e. those models are identifiable.39

However, the existing nonlinear ICA models suffer from numerous limitations. First, they only40

exploit specific types of temporal structures, such as either temporal dependencies or nonstationarity.41

Second, they often work under the assumption that some ’auxiliary’ data about a latent process is42

observed, such as knowledge of the switching points of a nonstationary process as in Hyvärinen43

and Morioka (2016); Khemakhem et al. (2020a) . Furthermore, all the models cited above, with the44

exception of Khemakhem et al. (2020a), assume that the data are fully observed and noise-free, even45

though observation noise is very common in practice, and even Khemakhem et al. (2020a) assumes46

the noise distribution to be exactly known. Lastly, the identifiability theorems in those works usually47

restrict the latent components to a specific class of models such as exponential families (but see48

Hyvärinen and Morioka (2017)).49

In this paper we introduce a new framework for identifiable disentanglement, Structured Nonlinear50

ICA (SNICA), which removes each of the aforementioned limitations in a single unifying framework.51

Furthermore, the framework guarantees identifiability for a very rich class of models, in a much52

more general sense than done previously. Importantly, our identifiability results are able to exploit53

dependency structures of any arbitrary order, and therefore can extend identifiability for instance to54

spatially structured data. This is the first major theoretical contribution of our paper.55

The second important theoretical contribution of our paper proves that models within the SNICA56

framework are identifiable even in the presence of additive output noise of arbitrary, unknown57

distribution. We achieve this by extending the theorems by Gassiat et al. (2020b,a). The subsequent58

practical implication is that SNICA models can perform dimensionality reduction to identifiable latent59

components and de-noise observed data. We note that noisy-observation part of the identifiability60

theory is not even limited to nonlinear ICA but applies to any system observed under noise.61

Third, we give mild sufficient conditions, relating to the strength and the non-Gaussian nature of the62

temporal or spatial dependencies, enabling identifiability of nonlinear independent components in63

this general framework. An important implication is that our theorems can be used, for example, to64

develop models for disentangling identifiable features from spatial or spatio-temporal data.65

As an example of the flexibility of the SNICA framework, we present a new nonlinear ICA model66

called ∆-SNICA . It achieves the following, previously unattainable, very practical properties: the67

ability to account for both nonstationarity and autocorrelation in a fully unsupervised setting; perform68

dimensionality reduction; model latent states; and to enable principled estimation and inference by69

variational maximum-likelihood methods. We demonstrate the practical utility of the model in an70

application to noisy neuroimaging data that is hypothesized to contain meaningful lower dimensional71

latent components and complex temporal dynamics.72

2 Background73

We start by giving some brief background on Nonlinear ICA and identifiability. Consider a model74

where the distribution of observed data x is given by pX(x;θ) for some parameter vector θ. This75

model is called identifiable if the following condition is fulfilled:76

∀(θ,θ′) pX(x;θ) = pX(x;θ′)⇒ θ = θ′ . (1)

In other words, based on the observed data distribution alone, we can uniquely infer the parameters77

that generated the data. For models parameterized with some nonparametric function estimator f , such78

as a deep neural network, we can replace θ with f in the equation above. In practice, identifiability79

might hold for some parameters, not all; and parameters might be identifiable up to some more or80

less trivial indeterminacies, such as scaling.81

In a typical nonlinear ICA setting we observe some x ∈ RN which has been generated by an invertible82

nonlinear mixing function f from latent independent components s ∈ RN , with p(s) =
∏N
i=1 p(s

(i)),83

as per:84

x = f(s) , (2)

Identifiability of f would then mean that we can in theory find the true f , and subsequently the85

true data generating components. Unfortunately, without some additional structure this model is86
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unidentifiable, as shown by Hyvärinen and Pajunen (1999): there is an infinite number of possible87

solutions and these have no trivial relation with each other. To solve this problem, previous work88

(Sprekeler et al., 2014; Hyvärinen and Morioka, 2016, 2017) developed models with temporal89

structure. Such time series models were generalized and expressed in a succinct way by Hyvärinen90

et al. (2019); Khemakhem et al. (2020a) by assuming the independent components are conditionally91

independent upon some observed auxiliary variable ut: p(st|ut) =
∏N
i=1 p(s

(i)
t |ut) . In a time series92

context, the auxiliary variable might be history, e.g. ut = xt−1, or the index of a time segment to93

model nonstationarity (or piece-wise stationarity). (It could also be data from another modality, such94

as audio data used to condition video data (Arandjelovic and Zisserman, 2017).)95

Notice that the mixing function f in (2) is assumed bijective and thus dimension reduction is not96

possible in most of the above models. The only exception is Khemakhem et al. (2020a) who97

achieve this by assuming that we know the distribution of some additive noise on the observations98

x = f(s) + ε , and by choosing f as injective rather than bijective. This allows to estimate posterior99

of s by an identifiable VAE (iVAE). We will take a similar strategy in what follows.100

3 Definition of Structured Nonlinear ICA101

In this section, we first present the new framework of Structured Nonlinear ICA (SNICA) – a broad102

class of models for identifiable disentanglement and learning of independent components when data103

has structural dependencies. Next, we give an example of a particularly useful specific model that fits104

within our framework, called ∆-SNICA , by using switching linear dynamical latent processes.105

3.1 Structured Nonlinear ICA framework106

Consider observations (xt)t∈T = ((x
(1)
t , . . . , x

(M)
t ))t∈T where T is a discrete indexing set of arbitrary107

dimension. For discrete time-series models, like previous works, T would be a subset of N. Crucially,108

however, we allow it to be any arbitrary indexing variable that describes a desired structure. For109

instance, T could be a subset of N2 for spatial data, which no previous work has allowed for.110

We assume the data is generated according the following nonlinear ICA model. First, there exist111

latent components s(i) = (s
(i)
t )t∈T for i ∈ {1, . . . , N} where for any t, t′ ∈ T, the distributions of112

(s
(i)
t )16i6N and (s

(i)
t′ )16i6N are the same, which is a weak form of stationarity. Second, we assume113

that for any m ∈ N∗ and (t1, . . . , tm) ∈ Tm, p(st1 , . . . , stm) =
∏N
i=1 p(s

(i)
t1 , . . . , s

(i)
tm): that is, the114

components are unconditionally independent. We further assume that the nonlinear mixing function115

f : RN → RM with M > N is injective, so there may be more observed variables than components.116

Finally, denote observational noise by εt ∈ RM and assume that they are i.i.d. for all t ∈ T and117

independent of the signals s(i). Putting these together, we assume the mixing model where for each118

t ∈ T,119

xt = f(st) + εt , (3)

where st = (s
(1)
t , . . . , s

(N)
t ). Importantly, εt can have any arbitrary unknown distribution, even with120

dependent entries; in fact, it may even not have finite moments.121

The main appeal of this framework is that, under the conditions given in next section, we can now122

guarantee identifiability for a very broad and rich class of models. First, notice that all previous123

Nonlinear ICA time-series models can be recast and often improved upon when viewed through this124

new unifying framework. To see this, consider the model in Hälvä and Hyvärinen (2020) which125

captures nonstationarity in the independent components through a global hidden Markov chain.126

We can transform this model into the SNICA framework if we instead model each independent127

component as its own HMM (Figure 1a), with the added benefit that we now have marginally128

independent components and are able to perform dimensionality reduction into low dimensional129

latent components. Nonlinear ICA with time-dependencies, such as in an autoregressive model,130

proposed by Hyvärinen and Morioka (2017) is also a special case of our framework (Figure 1b),131

but again with the extension of dimensionality reduction. Furthermore, this framework allows for132

a plethora of new Nonlinear ICA models to be developed. As described above, these do not have133

to be limited to time-series but could for instance be a process on a two-dimensional graph with134

appropriate (in)dependencies (see Figure 1c). However, we now proceed to introduce a particularly135

useful time-series model using our framework.136
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Figure 1: Graphical models for the SNICA framework

3.2 ∆-SNICA : Nonlinear ICA with switching linear dynamical systems137

While the above framework has great generality, any practical application will need a specific model.138

Next we propose one, again with the goal of subsuming previous models used in nonlinear ICA. In139

particular, we combine the two statistical properties of "non-stationarity"(e.g HMMs) and stationary140

temporal dependencies (e.g. autoregressive models). No model has combined these two aspects in the141

context of nonlinear ICA. Yet, real world processes, such as video/audio data, financial time-series,142

and brain signals, exhibit these properties – disentangling latent features in such models would hence143

be very useful.144

Our new model is depicted in Figure 1d. The independent components are generated by a Switching145

Linear Dynamical System (SLDS) (Ackerson and Fu, 1968; Chang and Athans, 1978; Hamilton,146

1990; Ghahramani and Hinton, 2000) with additional latent variables to express rich dynamics.147

Formally, for each independent component i ∈ {1, . . . , N}, consider the following SLDS over some148

latent vector y(i)
t :149

y
(i)
t = B(i)

ut
y

(i)
t−1 + b(i)

ut
+ ε(i)

ut
, (4)

where ut := u
(i)
t is a state of a first-order hidden Markov chain (u

(i)
t )t=1:T . Crucially, we assume that150

the independent components at each time-point are the first elements y(i)
t,1 of y(i)

t = (y
(i)
t,1, . . . , y

(i)
t,d)

T ,151

i.e. s(i)
t = y

(i)
t,1. The rest of the elements in y

(i)
t are latent variables modelling hidden dynamics.152

The great utility of using such a higher-dimensional latent variable is that this model allows us, for153

example, as a special case, to consider higher-order ARMA processes, thus modelling each s(i)
t as154

switching between ARMA processes of an order determined by the dimensionality of yt. We call the155

ensuing model ∆-SNICA ("Delta-SNICA", with delta as in "dynamic").156

4 Identifiability157

In this section, we present two very general identifiability theorems for SNICA. We basically decouple158

the problem into two parts. First, we consider identifying the noise-free distribution of f(st) from159

noisy data. Theorem 1 states conditions—on tail behaviour, non-degeneracy, and non-Gaussianity—160

under which it is possible to recover the distribution of a process based on noisy data with unknown161

noise distribution. Second, we consider demixing of the nonlinearly mixed data. Theorem 2 provides162

general conditions—on temporal or spatial dependencies, and non-Gaussianity—that allow recovery163

of the mixing function f when there is no more noise. We then consider application of these theorems164

to SNICA. In particular, they enable identifiability based on either the "nonstationarities" or the165

temporal dependencies, thus generalizing results of previous work.166

4.1 Identifiability with unknown noise distribution167

Consider the model168

xt = zt + εt , (5)
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where (zt)t∈T is a family of random variables in RM such that all zt, t ∈ T, have the same marginal169

distribution, and (εt)t∈T is a family of independent (over t) and identically distributed random170

variables, independent of (zt)t∈T. Let P be the common distribution of each εt, for t ∈ T. Let t1171

and t2 in T, and consider the following assumptions.172

• (A1) [Tail behaviour] For some ρ < 3, there exist A and B such that for all λ ∈ RN ,173

E[exp(〈λ, zt1〉)] 6 A exp(B‖λ‖ρ) .
• (A2) [Non-degeneracy] For any η ∈ CM , E[exp{〈η, zt2〉}| zt1 ] is not the null random174

variable.175

• (A3) [Non-Gaussianity] The following assertion is false: there exist a vector η ∈ RM and176

independent random variables z̃ and u, such that u is a non dirac Gaussian random variable177

and 〈η, zt1〉 has the same distribution as z̃ + u.178

We defer the detailed discussion on the practical meaning of the assumptions (A1-A3) in the context179

of SNICA to Section 4.3. We next present Theorem 1 which establishes identifiability under unknown180

noise (its proof is postponed to Section A.2 in the Supplementary Material):181

Theorem 1 Assume that assumptions (A1), (A2) and (A3) hold for some (t1, t2) ∈ T2. Then, up182

to translation, for all m > 2, for all (t3, . . . , tm) ∈ Tm−2, the application that associates the183

distribution of (zt1 , . . . , ztm) and P to the distribution of (xt1 , . . . ,xtm) is one-to-one.184

Here, up to translation means that adding a constant vector to all εt, and substracting this constant to185

all zt, t ∈ {t1, . . . , tm}, does not change the distribution of (xt1 , . . . ,xtm). The proof of Theorem 1186

extends that of Theorem 1 in (Gassiat et al., 2020b), see also (Gassiat et al., 2020a), which assumed187

sub-Gaussian noise-free data. Our extension allows the noise-free data to have heavier tails, which is188

important since (noise-free) data in many real-world applications is super-Gaussian, i.e. heavy-tailed,189

as is well-known in work on linear ICA (Hyvärinen et al., 2001).190

Importantly, there is no assumption on the unknown noise distribution in Theorem 1. In fact, it does191

not even assume a mixing as in ICA, and thus extends greatly outside of the framework of this paper.192

4.2 Identifiability of the mixing function193

Based on Theorem 1, it is possible to recover the distribution of the noise-free data in SNICA in (3)194

by setting zt = f(st). Next, we consider under which conditions the mixing function f is identifiable.195

Denote by S = S(1) × · · · × S(N) the support of the distribution of all st. We consider the situation196

where each S(i) ⊂ R, 1 6 i 6 N , is connected, so that each S(i) is an interval. We assume moreover197

that the injective mixing function f is a C2 diffeomorphism between S and a C2 differentiable198

manifoldM ⊂ RM . Formally, this means that there exists an atlas {ϕϑ : Uϑ → RN}ϑ∈Θ ofM199

such that for all ϑ, ϑ′ ∈ Θ, the map ϕϑ ◦ ϕ−1
ϑ′ is a C2 map, and f is a bijection RN →M such that200

for all ϑ ∈ Θ, ϕϑ ◦ f and f−1 ◦ ϕ−1
ϑ have continuous second derivatives. The sets Uϑ, ϑ ∈ Θ, cover201

M and are open inM. The proof of Theorem 2 is postponed to Section A.3 in the Supplementary202

Material.203

Theorem 2 Assume that there exist m > 2 and (t1, . . . , tm) ∈ Tm such that the vector204

(s
(i)
t1 , . . . , s

(i)
tm) has a density p

(i)
m which is C2 on (S(i))m. Assume moreover that there exist205

(k, l) ∈ {1, . . . ,m}2 with k 6= l such that the following assumptions hold with Q(i)
m = log p

(i)
m .206

• (B1) (Uniform (k, l)-dependency). For all i ∈ {1, . . . , N}, the set of zeros of ∂2

∂s
(i)
tk
∂s

(i)
tl

Q
(i)
m207

is a meagre subset of (S(i))m, i.e. it contains no open subset.208

• (B2) (Local (k, l)-non quasi Gaussianity). For any open subset A ⊂ Sm, there exists at209

most one i ∈ {1, . . . , N} such that there exists a function α : Rm−1 → R and a constant210

c ∈ R such that for all s ∈ A,211

∂2

∂s
(i)
tk
∂s

(i)
tl

Q(i)
m = c α(s

(i)
tk
, s

(i)
(−tk,−tl))α(s

(i)
tl
, s

(i)
(−tk,−tl)) , (6)

where s
(i)
(−tk,−tl) is (s

(i)
t1 , . . . , s

(i)
tm) without the coordinates tk and tl.212

5



Then, f−1 can be recovered up to permutation and coordinate-wise transformations from the distribu-213

tion of (f(st1), . . . , f(stm)).214

4.3 Applications to SNICA215

In this section, we provide additional comments on the assumptions (A1-A3) and (B1-B2) and their216

verification in the context of SNICA.217

Assumption (A1) is a condition on the tails of the noise-free data: it allows tails that are somewhat218

heavier than Gaussian tails. It is in fact equivalent to assuming that for some ρ̃ > 3/2, there exists219

A′, B′ > 0 such that for all t > 0, P(‖zt1‖ > t) 6 A′ exp(−B′tρ̃).220

Assumption (A2) is a non-degeneracy condition likely to be fulfilled for any randomly chosen221

SNICA model parameters. As an example, consider a model such as Fig. 1c, where there exist hidden222

variables (ut)t∈T taking values in a finite set {1, . . . ,K} such that the pairs of variables (zt, ut) have223

the same distribution for all t ∈ T, and such that conditioned on (ut)t∈T, the variables (zt)t∈T are224

independent and the distribution of zt only depends on ut. (As a special case, this model includes225

the temporal HMM setting described in Fig. 1a.) Let (t1, t2) ∈ T2. For all u, v ∈ {1, . . . ,K}, let226

π(u) = put1
(u) be the mass function of ut1 , Q(u, v) = put2 |ut1

(v|u) be the transition matrix from227

ut1 to ut2 , and γu(z) = pzt1
|ut1

(z|u) be the density of zt1 conditionally to ut1 = u. By assumption,228

it is also the density of zt2 conditionally to ut2 = u. Theorem 3 provides sufficient conditions for229

assumption (A2) to hold:230

Theorem 3 Assume that Q has full rank, minu π(u) > 0 and the (γu)16u6K are linearly indepen-231

dent, then (A2) is satisfied as soon as the functions (η 7→
∫

exp(〈η, z〉)γv(z)dz)16v6K do not have232

simultaneous zeros.233

Besides the non-simultaneous zeros assumption, the assumptions of Theorem 3 are reminiscent of234

those used for the identifiability of non-parametric hidden Markov models, see for instance Gassiat235

et al. (2016); Lehéricy (2019). The key element is that zt1 and zt2 are not independent. Thus, we see236

that (A2) holds if the π and the γ are not degenerate (in the precise sense given by Theorem 3), for the237

latent state models in Figs. 1a,1c.Another situation where (A2) holds is when zt2 is a complete statistic238

(Lehmann and Casella, 2006) in the statistical model {Pzt2 |zt1
(·|zt1)}zt1

, where Pzt2 |zt1
(·|zt1) is239

the distribution of zt2 conditionally to zt1 . Consider the two following examples where this holds: 1)240

When the model {Pzt2
|zt1

(·|zt1)}zt1
is an exponential family. In this situation, complete statistics241

are known. 2) Autoregressive models with additive innovation of the form zt2 = h(zt1) + vt2 for242

some bijective function h when the additive noise vt2 is a complete statistics in the statistical model243

{Pvt2
|zt1

(·|zt1)}zt1
(note that vt2 cannot be independent of zt1 here). The case in Fig. 1b is typically244

covered by this example.245

Assumption (A3) states that no direction of the noise free data has a non Dirac Gaussian variable246

component. It holds as soon as zt = f(st) and the range of f is such that its orthogonal projection on247

any line is not the full line. This assumption holds for instance in the following cases: 1) The range248

of f is compact, or 2) the range of f is contained in a half-cylinder, that is, there exists a hyperplane249

such that the range of f is only on one side of this hyperplane and the projection of the range of f on250

this hyperplane is bounded.251

Assumption (B1) and Assumption (B2) are similar to those in (Hyvärinen and Morioka, 2017;252

Oberhauser and Schell, 2021) in the special case of time-series, i.e. T = N. (B1) then entails253

that there must be sufficiently strong statistical dependence between nearby time points. (B2) is a254

condition which excludes Gaussian processes and processes which can be trivially transformed to be255

Gaussian. (For treatment of the Gaussian case, see Appendix B in Supplementary Material.) We can256

further provide a simple and equivalent formulation when the independent components s(i) follow257

independent and stationary HMMs with two hidden states, which is a special case of SNICA. Denote258

by γ(i)
0 and γ(i)

1 the densities of s(i)
t conditionally to {u(i)

t = 0} and {u(i)
t = 1} respectively.259

Theorem 4 Assume that the stationary distribution π of the hidden chain is such that 0 < π(0) < 1260

and that its transition matrix is invertible. Then (B1) and (B2) are satisfied with m = 2 if and only if261

on any open interval, γ(i)
0 and γ(i)

1 are not proportional.262
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(a) Identifiability experiment
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Figure 2: (a) Mean absolute correlation coefficients between ground true independent components
and their estimates by ∆-SNICA (solid lines), with different orders of complexity (number of layers)
and two different dimensions of observed (12, 24) and latent (6, 12) data. Results for IIA-HMM
(dashed line) shown for comparison. (b) Mean absolute correlation coefficient between estimated
noise free data and ground true noise free data for ∆-SNICA .

Thus, a very simple HMM leads to these conditions being verified. Hyvärinen and Morioka (2017)263

already showed that the conditions (B1) and (B2) also hold in the case of non-Gaussian autoregressive264

models. Thus, we see that our identifiability theory applies both in the case HMM’s (Fig 1a) and265

autoregressive models (Fig 1b), the two principal kinds of temporal structure proposed in previous266

work, while extending them to further cases and combinations such as in Fig 1c,1d.267

5 Experiments268

Estimation method One challenge is that it is not practically possible to learn ∆-SNICA by exact269

maximum-likelihood methods. However, by framing the model within conjugate exponential families270

we are able to perform learning and inference using Structured VAEs (Johnson et al., 2017) – the271

current state-of-art in variational inference for structured data. Despite lacking consistency guarantees272

(but see Wang and Blei (2018)), we find that our model performs very well. A detailed treatment273

of estimation and inference of ∆-SNICA is given in Supplementary Material. Our code is openly274

available at [address redacted for anonymity].275

5.1 Experiments on simulated data276

The identifiability theorems stated above hold in the limit of infinite data. Additionally, a consistent277

estimator would be required to learn the ground-truth components. In the real world, we are limited278

by data and estimation methods and hence it is unclear as to what extent we are actually able to279

estimate identifiable components – and whether identifiability reflects in better performance in real280

world tasks. To explore this, we first performed experiments on simulated data. We compared the281

performance of our model to the current state-of-the-art, IIA-HMM (Morioka et al., 2020b).282

Investigating identifiability and consistency We simulated 100K long time-sequences from the ∆-283

SNICA model and computed the mean absolute correlation coefficient (MCC) between the estimated284

latent components and ground truth independent components (see Supplementary material for further285

implementation details). More precisely, to illustrate the dimensionality reduction capabilities286

we considered two settings where the observed data dimension M , was either 12 or 24 and the287

number of independent components, N was 3 and 6, respectively. Since IIA-HMM is unable to do288

dimensionality reduction, we used PCA to get the data dimension to match that of the latent states.289

We considered four levels of mixing of increasing complexity by randomly initialized MLPs of the290

following number of layers: 1 (linear ICA), 2, 3, and 5. The results in Figure 2a) illustrate the clearly291

superior performance of our model. This is expected as IIA-HMM has a much simpler model of292

dynamics, and no noise model, and likely lost information due to PCA pre-processing. Details and293

more evaluations are provided in the Supplementary Material.294

Application to denoising ∆-SNICA is able to denoise time-series signals by learning the generative295

model and then performing inference on latent variables. We illustrate this using the same settings296

as above, with the exception that we now use our learned encoder and inference to get the posterior297

means of the independent components and then use these in the ground-truth decoder to get predicted298
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noise-free observations, denoted as f̂(st) – we measured the correlation between f̂(st) and the299

ground-truth f(st). Note that IIA-HMM, or any other latent variable nonlinear ICA model, is not300

able to perform this task. The results in Figure 2b) show that our model performs well in this task.301

5.2 Experiments on real MEG data302

To demonstrate real-data applicability, ∆-SNICA was applied to multivariate time series of electrical303

activity in the human brain, measured by magnetoencephalography (MEG). Recently, many studies304

have demonstrated the existence of fast transient networks measured by MEG in the resting state and305

the dynamic switching between different brain networks (Baker et al., 2014; Vidaurre et al., 2017).306

Additionally, such MEG data is high-dimensional and very noisy. Thus this data provides an excellent307

target for ∆-SNICA to disentangle the underlying low-dimensional components.308

Data and Preprocessing We considered a resting state MEG sessions from the Cam-CAN dataset.309

During the resting state recording, subjects sat still with their eyes closed. In the task-session data,310

the subjects carried out a (passive) audio–visual task including visual stimuli and auditory stimuli.311

We exclusively used the resting-session data for the training of the network, and task-session data312

was only used in the evaluation. The modality of the sensory stimulation provided a class label that313

we used in the evaluation, giving in total two classes. We band-pass filtered the data between 4 Hz314

and 30 Hz (see Supplementary Material for the details of data and settings).315

Methods The resting-state data from all subjects were temporally concatenated and used for316

training. The number of layers of the decoder and encoder were equal and took values 2, 3, 4.317

We fixed the number of independent components to 5. To evaluate the obtained features, we318

performed classification of the sensory stimulation categories by applying feature extractors trained319

with (unlabeled) resting-state data to (labeled) task-session data. Classification was performed using320

a linear support vector machine (SVM) classifier trained on the stimulation modality labels and321

sliding-window-averaged features obtained for each trial. The performance was evaluated by the322

generalizability of a classifier across subjects. i.e., one-subject-out cross-validation. For comparison,323

we evaluated the baseline methods: IIA-HMM and IIA-TCL (Morioka et al., 2021). We also324

visualized the spatial activity patterns obtained by ∆-SNICA , using the weight vectors from encoder325

neural network across each layer.326

Results Figure 3 a) shows the classification accuracies of the stimulus categories, across different327

methods and the number of layers for each model. The performances by ∆-SNICA were consistently328

higher than those by the other (baseline) methods, which indicates the importance of the modeling of329

the MEG signals by ∆-SNICA . Figure 3 b) shows an example of spatial patterns from the encoder330

network learned by the ∆-SNICA . We used the visualization method presented in (Hyvärinen and331

Morioka, 2016). We manually picked one out of the hidden nodes from the third layer in encoder332

network, and plotted its weighted-averaged sensor signals, We also visualized the most strongly333

contributing second- and first-layer nodes. We see progressive pooling of L1 units to form left lateral334

frontal, right lateral frontal and parietal patterns in L2 which are then all pooled together in L3335

resulting in a lateral frontoparietal pattern. Most of the spatial patterns in the third layer (not shown)336

are actually similar to those previously reported using MEG (Brookes et al., 2011).337

6 Related work338

The SNICA setting is much broader than any previous work, in fact it subsumes most existing time-339

series nonlinear ICA models (Hyvärinen and Morioka, 2017; Oberhauser and Schell, 2021; Hälvä and340

Hyvärinen, 2020). Furthermore, we extend identifiability to models exploiting any higher ordered341

structures in data rather than just time-dependencies used in previous work. Another major theoretical342

contribution here is to show that identifiability with noise of unknown, arbitrary distribution, while343

previous work on noisy nonlinear ICA assumed noise of known distribution and known variance344

(Khemakhem et al., 2020a).345

Importantly, the SNICA framework is fully probabilistic and thus accomodates for higher order346

latent variables, leading to "purely unsupervised" learning. This is in large contrast to previous347

research which have been developed for the case where we are able to observe some additional348

auxiliary variable, such as audio signals accompanying video (Hyvärinen et al., 2019; Khemakhem349
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a b

Figure 3: ∆-SNICA on MEG data. (a) Classification accuracies of linear SVMs newly trained with
auditory-visual task data to predict stimulus category, with feature extractors trained by ∆-SNICA in
advance with resting-state data. Each point represents a testing accuracy on a target subject (chance
level: 50%). (b) Example of spatial patterns of the components learned by ∆-SNICA (L=3). Each
topography corresponds to one spatial pattern. L3: approximate total spatial pattern of one selected
third-layer unit. L2: the patterns of the three second-layer units maximally contributing to this L3
unit. L1: for each L2 unit, the two most strongly contributing first-layer units.

et al., 2020a,b), or heuristically define the auxiliary variable based on time structure (Hyvärinen and350

Morioka, 2016). In practice this means that we are able to estimate our models using (variational)351

MLE, which is more principled than the heuristic self-supervised methods in most earlier papers. The352

only existing frameworks allowing MLE (Hälvä and Hyvärinen, 2020; Khemakhem et al., 2020a)353

used model restricted to exponential families, and had either no HMM or a very simple one.354

The switching linear dynamical model, ∆-SNICA in Section 3.2, shows the above benefits in the355

form of a single model. That is, unlike any existing model, it combines: 1) temporal dependencies356

and "non-stationarity" (or HMM) in a single model 2) dimensionality reduction within a rigorous357

maximum likelihood learning and inference framework, and 3) a separate observation equation with358

general observational noise. This results in a very rich, realistic, and principled model for time series.359

Very recently, Morioka et al. (2021) proposed a related model by considering innovations of time360

series to be nonstationary. However, their model is noise-free, restricted to exponential families361

of at least order two, and not applicable to the spatial case, thus making our identifiability results362

significantly stronger. From a more practical viewpoint, their model suffers from the fact that it either363

does not allow for dimensionality reduction (if an HMM is used) or requires a manual segmentation364

(if HMM is not used). Nor does it have a clear distinction into a state dynamics equation and a365

measurement equation which allows for cleaning or denoising of the data.366

Limitations Our identifiability theory makes some restrictive assumptions, and it remains to be367

seen if they could be lifted in future work. In particular, the data is not allowed to have too heavy tails;368

the noise must be additive, and independent of the signal; and the practical interpretation of some369

of the assumptions, such as (A3) is difficult. Regarding practical applications, our specific model370

only scratches the surface of what is possible in this framework. In particular, we did not develop a371

model with spatial distributions, nor did we model non-Gaussian observational noise – our main aim372

was to lay the foundations for the relevant identification theory. Future work should aim to make the373

estimation more efficient computationally; this is a ubiquitous problem in deep learning, but specific374

solutions for this concrete problem may be achievable (Gresele et al., 2020).375

7 Conclusion376

We proposed a new general framework for identifiable disentanglement, based on nonlinear ICA377

with very general temporal dynamics or spatial structure. Observational noise of arbitrary unknown378

distribution is further included. We prove identifiability of the models in this framework with high379

generality and mathematical rigour. For real data analysis, we propose a special case which still380

subsumes all existing time series models in nonlinear ICA, while generalizing them in many ways381

(see Section 6 for details). We hope this work will contribute to wide-spread application of identifiable382

methods for disentanglement in a highly principled, probabilistic framework.383

9



References384

Ackerson, G. and Fu, K. (1968). On state estimation in switching environments. IEEE Transactions385

on Automatic Control, 15:179–188.386

Arandjelovic, R. and Zisserman, A. (2017). Look, listen and learn. In 2017 IEEE International387

Conference on Computer Vision (ICCV), pages 609–617. IEEE.388

Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T., Smith, P. J. P., and Woolrich, M.389

(2014). Fast transient networks in spontaneous human brain activity. Elife, 3:e01867.390

Banville, H., Chehab, O., Hyvärinen, A., Engemann, D.-A., and Gramfort, A. (2021). Uncovering the391

structure of clinical EEG signals with self-supervised learning. J. Neural Engineering, 18(046020).392

Belouchrani, A., Meraim, K. A., Cardoso, J.-F., and Moulines, E. (1997). A blind source separation393

technique based on second order statistics. IEEE Trans. on Signal Processing, 45(2):434–444.394

Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephenson, M. C., Barnes, G. R.,395

Smith, S. M., and Morris, P. G. (2011). Investigating the electrophysiological basis of resting396

state networks using magnetoencephalography. Proceedings of the National Academy of Sciences,397

108(40):16783–16788.398

Chang, C. B. and Athans, M. (1978). State estimation for discrete systems with switching parameters.399

IEEE Transactions on Aerospace and Electronic Systems, AES-14(3):418–425.400

D’Amour, A., Heller, K. A., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J.,401

Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam,402

A., Lucic, M., Ma, Y., McLean, C. Y., Mincu, D., Mitani, A., Montanari, A., Nado, Z., Natarajan,403

V., Nielson, C., Osborne, T. F., Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne,404

M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S.,405

Yun, T., Zhai, X., and Sculley, D. (2020). Underspecification presents challenges for credibility in406

modern machine learning. CoRR, abs/2011.03395.407

Gassiat, E., Cleynen, A., and Robin, S. (2016). Inference in finite state space non parametric hidden408

Markov models and applications. Statistics and Computing, 26(1-2):61–71.409

Gassiat, E., Le Corff, S., and Lehéricy, L. (2020a). Deconvolution with unknown noise distribution is410

possible for multivariate signals. arXiv:2006.14226.411

Gassiat, E., Le Corff, S., and Lehéricy, L. (2020b). Identifiability and consistent estimation of412

nonparametric translation hidden markov models with general state space. Journal of Machine413

Learning Research, 21(115):1–40.414

Ghahramani, Z. and Hinton, G. E. (2000). Variational learning for switching state-space models.415

Neural computation, 12(4):831–864.416

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas,417

M., Brooks, T., Parkkonen, L., et al. (2013). Meg and eeg data analysis with mne-python. Frontiers418

in neuroscience, 7:267.419

Gresele, L., Fissore, G., Javaloy, A., Schölkopf, B., and Hyvärinen, A. (2020). Relative gradient420

optimization of the jacobian term in unsupervised deep learning. In Advances in Neural Information421

Processing Systems (NeurIPS2020), Virtual.422

Hälvä, H. and Hyvärinen, A. (2020). Hidden Markov nonlinear ICA: Unsupervised learning from423

nonstationary time series. In Proc. 36th Conf. on Uncertainty in Artificial Intelligence (UAI2020),424

Toronto, Canada (virtual).425

Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics,426

45(1-2):39–70.427

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner,428

A. (2017). beta-vae: Learning basic visual concepts with a constrained variational framework.429

10



Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. Wiley Inter-430

science.431

Hyvärinen, A. and Morioka, H. (2016). Unsupervised feature extraction by time-contrastive learning432

and nonlinear ICA. In Advances in Neural Information Processing Systems (NIPS2016), Barcelona,433

Spain.434

Hyvärinen, A. and Morioka, H. (2017). Nonlinear ICA of temporally dependent stationary sources.435

In Proc. Artificial Intelligence and Statistics (AISTATS2017), Fort Lauderdale, Florida.436

Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis: Existence and437

uniqueness results. Neural Networks, 12(3):429–439.438

Hyvärinen, A., Sasaki, H., and Turner, R. (2019). Nonlinear ICA using auxiliary variables and439

generalized contrastive learning. In Proc. Artificial Intelligence and Statistics (AISTATS2019),440

Okinawa, Japan.441

Johnson, M. J., Duvenaud, D., Wiltschko, A. B., Datta, S. R., and Adams, R. P. (2017). Composing442

graphical models with neural networks for structured representations and fast inference.443

Khemakhem, I., Kingma, D. P., Monti, R. P., and Hyvärinen, A. (2020a). Variational autoencoders and444

nonlinear ICA: A unifying framework. In Proc. Artificial Intelligence and Statistics (AISTATS2020).445

Khemakhem, I., Monti, R. P., Kingma, D. P., and Hyvärinen, A. (2020b). ICE-BeeM: Identifiable446

conditional energy-based deep models based on nonlinear ICA. In Advances in Neural Information447

Processing Systems (NeurIPS2020), Virtual.448

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes.449

Klindt, D., Schott, L., Sharma, Y., Ustyuzhaninov, I., Brendel, W., Bethge, M., and Paiton, D. (2020).450

Towards nonlinear disentanglement in natural data with temporal sparse coding. arXiv preprint451

arXiv:2007.10930.452

Lehéricy, L. (2019). Consistent order estimation for nonparametric hidden Markov models. Bernoulli,453

25(1):464–498.454

Lehmann, E. L. and Casella, G. (2006). Theory of point estimation. Springer Science & Business455

Media.456

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and Bachem, O. (2019).457

Challenging common assumptions in the unsupervised learning of disentangled representations. In458

Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine459

Learning Research.460

Monti, R. P., Zhang, K., and Hyvärinen, A. (2019). Causal discovery with general non-linear461

relationships using non-linear ICA. In Proc. 35th Conf. on Uncertainty in Artificial Intelligence462

(UAI2019), Tel Aviv, Israel.463

Morioka, H., Calhoun, V., and Hyvärinen, A. (2020a). Nonlinear ICA of fMRI reveals primitive464

temporal structures linked to rest, task, and behavioral traits. NeuroImage, 218:116989.465

Morioka, H., Calhoun, V., and Hyvärinen, A. (2020b). Nonlinear ica of fmri reveals primitive466

temporal structures linked to rest, task, and behavioral traits. NeuroImage, 218:116989.467

Morioka, H., Hälvä, H., and Hyvärinen, A. (2021). Independent innovation analysis for nonlinear468

vector autoregressive process. In Proc. Artificial Intelligence and Statistics (AISTATS2021), Virtual.469

Oberhauser, H. and Schell, A. (2021). Nonlinear independent component analysis for continuous-time470

signals. arXiv preprint arXiv:2102.02876.471

Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., Calder, A. J., Marslen-472

Wilson, W. D., Duncan, J., Dalgleish, T., et al. (2014). The cambridge centre for ageing and473

neuroscience (cam-can) study protocol: a cross-sectional, lifespan, multidisciplinary examination474

of healthy cognitive ageing. BMC neurology, 14(1):1–25.475

11



Sprekeler, H., Zito, T., and Wiskott, L. (2014). An extension of slow feature analysis for nonlinear476

blind source separation. J. of Machine Learning Research, 15(1):921–947.477

Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A., Dixon, M., Tyler, L. K., Henson,478

R. N., et al. (2017). The cambridge centre for ageing and neuroscience (cam-can) data repository:479

Structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample.480

Neuroimage, 144:262–269.481

Vidaurre, D., Smith, S. M., and Woolrich, M. W. (2017). Brain network dynamics are hierarchically482

organized in time. Proceedings of the National Academy of Sciences, 114(48):12827–12832.483

Wang, Y. and Blei, D. M. (2018). Frequentist consistency of variational bayes. Journal of the484

American Statistical Association, 114(527):1147–1161.485

Wu, P. and Fukumizu, K. (2020). Causal mosaic: Cause-effect inference via nonlinear ica and486

ensemble method. In International Conference on Artificial Intelligence and Statistics, pages487

1157–1167. PMLR.488

Zhou, D. and Wei, X.-X. (2020). Learning identifiable and interpretable latent models of high-489

dimensional neural activity using pi-vae. arXiv preprint arXiv:2011.04798.490

Checklist491

1. For all authors...492

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s493

contributions and scope? [Yes]494

(b) Did you describe the limitations of your work? [Yes] See Section 6495

(c) Did you discuss any potential negative societal impacts of your work? [No] This work is496

mainly theoretical, with the aim of providing theoretical guarantees for the identifiability497

of a new framework for deep models. Identifiability is curcial for reproducible science498

and interpretable results and generally a desirable property. Our theoretical guarantees499

abstract away the nature of the data and the practical implementation. We are strictly500

against any malicious uses of such deep models.501

(d) Have you read the ethics review guidelines and ensured that your paper conforms to502

them? [Yes] All authors have read this in depth and adhered fully to it in the paper503

2. If you are including theoretical results...504

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See section 4505

and supplementary material506

(b) Did you include complete proofs of all theoretical results? [Yes] These are all in the507

supplementary material508

3. If you ran experiments...509

(a) Did you include the code, data, and instructions needed to reproduce the main ex-510

perimental results (either in the supplemental material or as a URL)? [Yes] We have511

provided link though its redacted for the initial review period to protect anonymity.512

Experimental details are also given in supplementary material513

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they514

were chosen)? [Yes] These are given in the supplementary material and more concretely515

in the code516

(c) Did you report error bars (e.g., with respect to the random seed after running experi-517

ments multiple times)? [Yes] see Section 5518

(d) Did you include the total amount of compute and the type of resources used (e.g.,519

type of GPUs, internal cluster, or cloud provider)? [Yes] See Experimental details in520

Supplementary material and the Acknowledgement section for provider521

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...522

(a) If your work uses existing assets, did you cite the creators? [Yes] Cam-CAN was cited523

in the real data experiments section524

12



(b) Did you mention the license of the assets? [Yes] See supplementary for experiments;525

we mention that Cam-CAN is released under creative commons license. License for526

our model’s code is on the github page.527

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]528

We provided URL to the code for our model but it has been anonymized for review529

(d) Did you discuss whether and how consent was obtained from people whose data you’re530

using/curating? [Yes] As explained in Supplementary material, we applied and were531

approved for data access at Cam-CAN532

(e) Did you discuss whether the data you are using/curating contains personally identifiable533

information or offensive content? [Yes] As explained in the Supplementary material,534

the Cam-CAN data is anonymized535

5. If you used crowdsourcing or conducted research with human subjects...536

(a) Did you include the full text of instructions given to participants and screenshots, if537

applicable? [N/A] no experiments with human subjects were conducted538

(b) Did you describe any potential participant risks, with links to Institutional Review539

Board (IRB) approvals, if applicable? [N/A] no experiments with human subjects were540

conducted541

(c) Did you include the estimated hourly wage paid to participants and the total amount542

spent on participant compensation? [N/A] no experiments with human subjects were543

conducted544

13


