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Abstract
We present Rieoptax, an open source Python library for Riemannian optimization in JAX. We
show that many differential geometric primitives, such as Riemannian exponential and logarithm
maps, are usually faster in Rieoptax than existing frameworks in Python, both on CPU and GPU.
We support various range of basic and advanced stochastic optimization solvers like Riemannian
stochastic gradient, stochastic variance reduction, and adaptive gradient methods. A distinguish-
ing feature of the proposed toolbox is that we also support differentially private optimization on
Riemannian manifolds.

1. Introduction

Riemannian geometry is a generalization of the Euclidean geometry [49, 66] and includes several
nonlinear spaces such as positive definite matrices [18, 92], Grassmann manifold [5, 15, 33], Stiefel
manifold [5, 25, 33], kendall shape spaces [59, 60, 71], hyperbolic spaces [94, 95], and special
Euclidean and orthogonal group [38, 87], to name a few. Optimization with manifold based con-
straints has become increasingly popular and has been employed in various applications such as
low rank matrix completion [21], learning taxonomy embeddings [76, 77], neural networks [53–
55, 75, 81], optimal transport [9, 26, 46, 73, 88], shape analysis [52, 90], and topological dimension
reduction [56], among others. In addition, privacy preserving machine learning [29, 31] has become
crucial in real applications, which has been generalized to manifold-valued problems very recently
[44, 82, 96]. Nevertheless, such feature is absent in existing Riemannian optimization libraries.

In this work, we introduce Rieoptax (Riemannian Optimization in Jax), an open source Python
library for Riemannian optimization in JAX [23, 37]. The proposed library is mainly driven by the
needs of efficient implementation of manifold-valued operations and optimization solvers, readily
compatible with GPU and even TPU processors as well as the needs of privacy-supported Rieman-
nian optimization. To the best of our knowledge, Rieoptax is the first library to provide privacy
guarantees within the Riemannian optimization framework.

1.1. Background on Riemannian optimization, privacy, and JAX

Riemannian Optimization. Riemannian Optimization [5, 20] considers the following problem

min
w∈M

f(w) (1)

where f : M → R, and M denotes a Riemannian manifold. Instead of considering (1) as a
constrained problem, Riemannian optimization [5, 20] views it as an unconstrained problem on
the manifold space. Riemannian (stochastic) gradient descent [19, 98] generalizes the Euclidean
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gradient descent with intrinsic updates on manifold, i.e., wt+1 = Expwt
(−ηt gradf(wt)), where

gradf(wt) is the Riemannian (stochastic) gradient, Expw(·) is the Riemannian exponential map at
w and ηt is the step size. Recent years have witnessed significant advancements for Riemannian
optimization where more advanced solvers are generalized from the Euclidean space to Riemannian
manifolds. These include variance reduction methods [42, 43, 57, 85, 100, 101], adaptive gradient
methods [14, 58], accelerated gradient methods [7, 8, 45, 68, 99], quasi-Newton methods [51, 80],
zeroth-order methods [67] and second order methods, such as trust region methods [4] and cubic
regularized Newton’s methods [6].

Differential privacy on Riemannian Manifolds. Differential privacy (DP) provides a rigorous
treatment for data privacy by precisely quantifying the deviation in the model’s output distribution
under modification of a small number of data points [29–32]. Provable guarantees of DP coupled
with properties like immunity to arbitrary post-processing and graceful composability have made it
a de-facto standard of privacy with steadfast adoption in the real applications [3, 10, 28, 34, 74].

Recently, there is a surge of interest on differential privacy over Riemannian manifolds, which
has been explored in the context of Fréchet mean computation [82, 96] and, more generally, em-
pirical risk minimization problems where the parameters are constrained to lie on a Riemannian
manifold [44].

JAX and its ecosystem. JAX [23, 37] is recently introduced machine learning framework which
support automatic differentiation capabilities [13] via grad(). Further some of the distinguishing
features of JAX are just-in-time (JIT) compilation using the accelerated linear algebra (XLA) com-
piler [41] via jit(), automatic vectorization (batch-level parallelism) support with vmap(), and
strong support for parallel computation via pmap(). All the above transformations can be com-
posed arbitrarily because JAX follows the functional programming paradigm and implements these
as pure functions.

Given that JAX has so many interesting features, its ecosystem has been constantly expanding in
the last couple of years. Examples include neural network modules (Flax [48], Haiku [50], Equinox
[62], Jraph [39], Equivariant-MLP [35]), reinforcement learning agents (Rlax [12]), Euclidean opti-
mization algorithms (Optax [12]), federated learning (Fedjax [83]), optimal transport toolboxes (Ott
[27]), sampling algorithms (Blackjax [64]), differential equation solvers (Diffrax [61]), rigid body
simulators (Brax [36]), differentiable physics (Jax-md [86]).

1.2. Rieoptax

We believe the proposed framework for Riemannian optimization in JAX is a timely contribution,
bringing several benefits of JAX and new features (such as privacy support) to the manifold opti-
mization community, which are discussed below.

• Automatic and efficient vectorization with vmap(): functions that are written for inputs of
size 1 can be converted to functions that take batch of inputs by wrapping it with vmap(). For
example, the function def dist(point a, point b) for computing distance between
a single point a and a single point b can be converted to function that computes distance
between a batch of point a and/or a batch point b by wrapping dist with vmap()
without modifying the dist() function. This is useful in many cases, e.g., Fréchet mean
computation minw∈M

{
1
n

∑n
i=1 fi(w) :=

1
n

∑n
i=1 dist2(w, zi)

}
. Furthermore, vectorization

with vmap() is usually faster or on par with manual vectorization [23].
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• Per-example gradient clipping : A key process in differentially private optimization is per-
example gradient clipping 1

n

∑n
i=1 clipτ (gradfi(w)) , where clipτ ensures norm is atmost

τ . Here, the order of operations is important: the gradients are first clipped and then aver-
aged. Popular libraries including Autograd [69], Pytorch [78] and Tensorflow [1] are heavily
optimized to directly compute the mean gradient 1

n

∑n
i=1 gradfi(w) and hence do not ex-

pose per-example gradients i.e., gradfi(w). Hence, one has to resort to ad-hoc techniques
[40, 65, 84] or come up with algorithmic modifications [24] which inherently have speed ver-
sus performance trade-off. JAX, however, offers native support for handling such scenarios
and JAX-based differentially private Euclidean optimization methods have been shown to be
much faster than their non-JAX counterparts [91]. We observe that JAX offer similar benefits
for differentially private Riemannian optimization as well.

• Single Source Multiple Devices (SSMD) Paradigm : JAX follows SSMD paradigm, and hence
code written for CPU can be run on GPU/TPU without any modification.

Rieoptax is made available at https://anonymous.4open.science/r/Rieoptax/
for review and will be made public.

2. Implementation Overview

The package currently implements several commonly used geometries, optimization algorithms
and differentially private mechanisms on manifolds. More geometries and advanced solvers will be
added in the future.

2.1. Geometries

Geometry module contains manifolds equipped with Riemannian metrics. Each Geometry contains
Riemannian inner product inp(), and induced norm norm(), Riemannian exponential exp()
and logarithm maps log(), induced Riemannian distance dist(), parallel transport pt(), and
transformation from Euclidean gradient to Riemannian gradient egrad to rgrad().

Manifolds include symmetric positive definite (SPD) matrices SPD(m) := {X ∈ Rm×m : X =
X⊤,X ≻ 0}, hyperbolic space, Grassmann manifold G(m, r) := {[X] : X ∈ Rm×r,X⊤X = I}
where [X] := {XO : O ∈ O(r)}, O(r) denotes the orthogonal group and hypersphere S(d) :=
{x ∈ Rd : x⊤x = 1}. We use TxM to represent the tangent space at x and ⟨u, v⟩x to represent the
Riemannian inner product. For more detailed treatment on these geometries, we refer to [5, 20, 95].

• rieoptax.geometry.spd.SPDAffineInvariant : SPD matrices with the affine-
invariant metric [79]: SPD(m) with ⟨U,V⟩X = tr(X−1UX−1V) for U,V ∈ TXSPD(m).

• rieoptax.geometry.spd.SPDLogEuclidean : SPD matrices with the log-Euclidean
metric [11]: SPD(m) with ⟨U,V⟩X = tr

(
DUlogm(X)DVlogm(X)

)
where DUlogm(X) is

the directional derivative of matrix logarithm at X along U.

• rieoptax.geometry.hyperbolic.PoincareBall : Poincare-ball model of Hy-
perbolic space with Poincare metric [95], i.e., D(d) := {x ∈ Rd : x⊤x < 1} with ⟨u,v⟩x =
4u⊤v/(1− x⊤x)2 for u,v ∈ TxD(d).
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• rieoptax.geometry.hyperbolic.LorentzHyperboloid Lorentz Hyperboloid
model of Hyperbolic space [95], i.e., H(d) = {x ∈ Rd : ⟨x,x⟩L = −1} with ⟨u,v⟩x =
⟨u,v⟩L for u,v ∈ TxH(d), where ⟨u,v⟩L := −u0v0 + u1v1 + · · ·ud−1vd−1.

• rieoptax.geometry.grassmann.GrassmannCanonicalMetric : Grassmann
manifold with the canonical metric [33], i.e., G(m, r) with ⟨U,V⟩X = tr

(
UTV

)
for U,V ∈

TXG(m, r).

• rieoptax.geometry.hypersphere.HypersphereCanonicalMetric : Hyper-
sphere manifold which canonical metric [5, 20], i.e., S(d) with ⟨u,v⟩x = u⊤v for u,v ∈
TxS(d).

2.2. Optimizers

Optimizers module contains Riemannian optimization algorithms.

• riepotax.optimizers.first order.rsgd : Riemannian stochastic gradient de-
scent [19].

• riepotax.optimizers.first order.rsvrg : Riemannian stochastic variance re-
duced gradient descent [100].

• riepotax.optimizers.first order.rsrg : Riemannian stochastic recursive gra-
dient descent [57].

• riepotax.optimizers.first order.rasa : Riemannian adaptive stochastic gra-
dient algorithm [58].

• riepotax.optimizers.zeroth order.zo rgd : Zeroth-order Riemannian gradi-
ent descent [67].

2.3. Mechanism

Mechanism module contains differential private mechanisms on Riemannian manifolds.

• rieoptax.mechanism.output perturbation.RieLaplaceMechanism : Im-
plements Riemannian Laplace mechanism [82] which is used for privatizing Fréchet mean
computation.

• rieoptax.mechanism.output perturbation.LogEuclideanMechanism : Im-
plements log-Euclidean mechanism [96] which is used for differentially private Fréchet mean
on SPD matrices with log-Euclidean metric.

• rieoptax.mechanism.gradient perturbation.DPRGDMechanism : Implements
noise calibration for Differentially private Riemannian gradient descent [44] based on mo-
ments accountant [2] in autodp library [97].

• rieoptax.mechanism.gradient perturbation.DPRSGDMechanism : Imple-
ments noise calibration for Differentially private Riemannian stochastic gradient descent [44]
based on moments accountant [2] in autodp library [97].
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3. Benchmarking Rieoptax

In this section, we benchmark the proposed Rieoptax against existing Riemannian optimization li-
braries in Python. These include Pytorch [78] based Mctorch [70] and Geoopt [63], Tensorflow [89]
based Tensorflow-Riemopt (Tf-Riemopt) [89], Numpy [47] based Pymanopt [93], and Tensorflow
based Geomstats [72]. While Geomstats supports Numpy, Pytorch, and Tensorflow as backend,
currently only Tensorflow backend provides support for both CPU and GPU. Other non-Python
based libraries include Manopt [22] in Matlab and Manopt.jl [16] in Julia [17]. We benchmark the
Riemannian exponential (Exp) and logarithm (Log) maps with the proposed Rieoptax against the
aforementioned Python libraries whenever available with 64bitfloat precision. For CPU bench-
marking we use Processor AMD EPYC 7B1 with 2 cores and 16GB RAM. For GPU benchmarking,
we use CUDA version 11.4 on 16GB Tesla P100.

• Hypersphere canonical metric: Hypersphere S(d) is supported in Geoopt, Tf-Riemopt,
Geomstats, and Pyamanopt. On GPU however, Geomstats raises an error. we benchmark for
dimensions d ∈ {50, 100, 500, 1000, 5000, 10000, 25000, 50000}.

• Loretnz hyperboloid model: Loretnz hyperboloid model H(d) is supported in Geoopt,
Tf-Riemopt, Geomstats, and Mctorch. While Riemannian exponential map is available in
Mctorch, it does not implement the logarithm map. We benchmark for dimensions d ∈
{50, 100, 500, 1000, 5000, 10000, 25000, 50000}.

• Grassmann with canonical metric : Grassmann manifold G(m, r) with canonical metric is
supported in Tf-Riemopt, Pymanopt, Geomstats. However, we notice that the logarithm map
in Tf-Riemopt is incorrectly implemented and Geomstats represents Grassmann in projector
matrix XX⊤ ∈ Rm×m instead of X ∈ Rm×r, which is prohibitively expensive. We thus
exclude these two libraries from benchmarking. We benchmark for matrix size (m, r) ∈
{(100, 10), (500, 10), (750, 10), (1000, 10), (2000, 10), (5000, 10)}.

• SPD with affine invariant metric : SPD manifold SPD(m) with affine invariant metric is
supported in Geoopt, Tf-Riemopt, Geomstats. We benchmark for matrix size m ∈ {10, 50, 75,
100, 150, 200}.

Figures 1 and 2 present the timing results with CPU- and GPU-based computations, respectively.
Overall, we observe that Rieoptax offers significant time improvement, especially on GPU. For
SPDAffineInvariant Case, Rieoptax is slightly slower than Geoopt because eigh which provides
eigen decomposition is slightly slower in JAX compared to Pytorch. Given that JAX is a relatively
new framework, we believe it will be faster even in this case in the near future.

4. Conclusion and future roadmap

In this work, we present a Python library for (privacy-supported) Riemannian optimization, Rieop-
tax, and illustrate its efficacy on both CPU and GPU evaluation. Our roadmap includes adding
support for more manifold geometries, optimization algorithms, and a collection of example codes
showcasing the usage of Rieoptax in various applications.
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Figure 1: Benchmarking of Geometric Primitives on CPU.
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Figure 2: Benchmarking of Geometric Primitives on GPU.
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