
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Rieoptax: Riemannian Optimization in JAX

author names withheld

Under Review for OPT 2022

Abstract
We present Rieoptax, an open source Python library for Riemannian optimization in JAX. We
show that many differential geometric primitives, such as Riemannian exponential and logarithm
maps, are usually faster in Rieoptax than existing frameworks in Python, both on CPU and GPU.
We support various range of basic and advanced stochastic optimization solvers like Riemannian
stochastic gradient, stochastic variance reduction, and adaptive gradient methods. A distinguish-
ing feature of the proposed toolbox is that we also support differentially private optimization on
Riemannian manifolds.

1. Introduction

Riemannian geometry is a generalization of the Euclidean geometry [49, 66] and includes several
nonlinear spaces such as positive definite matrices [18, 92], Grassmann manifold [5, 15, 33], Stiefel
manifold [5, 25, 33], kendall shape spaces [59, 60, 71], hyperbolic spaces [94, 95], and special
Euclidean and orthogonal group [38, 87], to name a few. Optimization with manifold based con-
straints has become increasingly popular and has been employed in various applications such as
low rank matrix completion [21], learning taxonomy embeddings [76, 77], neural networks [53–
55, 75, 81], optimal transport [9, 26, 46, 73, 88], shape analysis [52, 90], and topological dimension
reduction [56], among others. In addition, privacy preserving machine learning [29, 31] has become
crucial in real applications, which has been generalized to manifold-valued problems very recently
[44, 82, 96]. Nevertheless, such feature is absent in existing Riemannian optimization libraries.

In this work, we introduce Rieoptax (Riemannian Optimization in Jax), an open source Python
library for Riemannian optimization in JAX [23, 37]. The proposed library is mainly driven by the
needs of efficient implementation of manifold-valued operations and optimization solvers, readily
compatible with GPU and even TPU processors as well as the needs of privacy-supported Rieman-
nian optimization. To the best of our knowledge, Rieoptax is the first library to provide privacy
guarantees within the Riemannian optimization framework.

1.1. Background on Riemannian optimization, privacy, and JAX

Riemannian Optimization. Riemannian Optimization [5, 20] considers the following problem

min
w∈M

f(w) (1)

where f : M → R, and M denotes a Riemannian manifold. Instead of considering (1) as a
constrained problem, Riemannian optimization [5, 20] views it as an unconstrained problem on
the manifold space. Riemannian (stochastic) gradient descent [19, 98] generalizes the Euclidean

© .



RIEOPTAX

gradient descent with intrinsic updates on manifold, i.e., wt+1 = Expwt
(−ηt gradf(wt)), where

gradf(wt) is the Riemannian (stochastic) gradient, Expw(·) is the Riemannian exponential map at
w and ηt is the step size. Recent years have witnessed significant advancements for Riemannian
optimization where more advanced solvers are generalized from the Euclidean space to Riemannian
manifolds. These include variance reduction methods [42, 43, 57, 85, 100, 101], adaptive gradient
methods [14, 58], accelerated gradient methods [7, 8, 45, 68, 99], quasi-Newton methods [51, 80],
zeroth-order methods [67] and second order methods, such as trust region methods [4] and cubic
regularized Newton’s methods [6].

Differential privacy on Riemannian Manifolds. Differential privacy (DP) provides a rigorous
treatment for data privacy by precisely quantifying the deviation in the model’s output distribution
under modification of a small number of data points [29–32]. Provable guarantees of DP coupled
with properties like immunity to arbitrary post-processing and graceful composability have made it
a de-facto standard of privacy with steadfast adoption in the real applications [3, 10, 28, 34, 74].

Recently, there is a surge of interest on differential privacy over Riemannian manifolds, which
has been explored in the context of Fréchet mean computation [82, 96] and, more generally, em-
pirical risk minimization problems where the parameters are constrained to lie on a Riemannian
manifold [44].

JAX and its ecosystem. JAX [23, 37] is recently introduced machine learning framework which
support automatic differentiation capabilities [13] via grad(). Further some of the distinguishing
features of JAX are just-in-time (JIT) compilation using the accelerated linear algebra (XLA) com-
piler [41] via jit(), automatic vectorization (batch-level parallelism) support with vmap(), and
strong support for parallel computation via pmap(). All the above transformations can be com-
posed arbitrarily because JAX follows the functional programming paradigm and implements these
as pure functions.

Given that JAX has so many interesting features, its ecosystem has been constantly expanding in
the last couple of years. Examples include neural network modules (Flax [48], Haiku [50], Equinox
[62], Jraph [39], Equivariant-MLP [35]), reinforcement learning agents (Rlax [12]), Euclidean opti-
mization algorithms (Optax [12]), federated learning (Fedjax [83]), optimal transport toolboxes (Ott
[27]), sampling algorithms (Blackjax [64]), differential equation solvers (Diffrax [61]), rigid body
simulators (Brax [36]), differentiable physics (Jax-md [86]).

1.2. Rieoptax

We believe the proposed framework for Riemannian optimization in JAX is a timely contribution,
bringing several benefits of JAX and new features (such as privacy support) to the manifold opti-
mization community, which are discussed below.

• Automatic and efficient vectorization with vmap(): functions that are written for inputs of
size 1 can be converted to functions that take batch of inputs by wrapping it with vmap(). For
example, the function def dist(point a, point b) for computing distance between
a single point a and a single point b can be converted to function that computes distance
between a batch of point a and/or a batch point b by wrapping dist with vmap()
without modifying the dist() function. This is useful in many cases, e.g., Fréchet mean
computation minw∈M

{
1
n

∑n
i=1 fi(w) :=

1
n

∑n
i=1 dist2(w, zi)

}
. Furthermore, vectorization

with vmap() is usually faster or on par with manual vectorization [23].

2



RIEOPTAX

• Per-example gradient clipping : A key process in differentially private optimization is per-
example gradient clipping 1

n

∑n
i=1 clipτ (gradfi(w)) , where clipτ ensures norm is atmost

τ . Here, the order of operations is important: the gradients are first clipped and then aver-
aged. Popular libraries including Autograd [69], Pytorch [78] and Tensorflow [1] are heavily
optimized to directly compute the mean gradient 1

n

∑n
i=1 gradfi(w) and hence do not ex-

pose per-example gradients i.e., gradfi(w). Hence, one has to resort to ad-hoc techniques
[40, 65, 84] or come up with algorithmic modifications [24] which inherently have speed ver-
sus performance trade-off. JAX, however, offers native support for handling such scenarios
and JAX-based differentially private Euclidean optimization methods have been shown to be
much faster than their non-JAX counterparts [91]. We observe that JAX offer similar benefits
for differentially private Riemannian optimization as well.

• Single Source Multiple Devices (SSMD) Paradigm : JAX follows SSMD paradigm, and hence
code written for CPU can be run on GPU/TPU without any modification.

Rieoptax is made available at https://anonymous.4open.science/r/Rieoptax/
for review and will be made public.

2. Implementation Overview

The package currently implements several commonly used geometries, optimization algorithms
and differentially private mechanisms on manifolds. More geometries and advanced solvers will be
added in the future.

2.1. Geometries

Geometry module contains manifolds equipped with Riemannian metrics. Each Geometry contains
Riemannian inner product inp(), and induced norm norm(), Riemannian exponential exp()
and logarithm maps log(), induced Riemannian distance dist(), parallel transport pt(), and
transformation from Euclidean gradient to Riemannian gradient egrad to rgrad().

Manifolds include symmetric positive definite (SPD) matrices SPD(m) := {X ∈ Rm×m : X =
X⊤,X ≻ 0}, hyperbolic space, Grassmann manifold G(m, r) := {[X] : X ∈ Rm×r,X⊤X = I}
where [X] := {XO : O ∈ O(r)}, O(r) denotes the orthogonal group and hypersphere S(d) :=
{x ∈ Rd : x⊤x = 1}. We use TxM to represent the tangent space at x and ⟨u, v⟩x to represent the
Riemannian inner product. For more detailed treatment on these geometries, we refer to [5, 20, 95].

• rieoptax.geometry.spd.SPDAffineInvariant : SPD matrices with the affine-
invariant metric [79]: SPD(m) with ⟨U,V⟩X = tr(X−1UX−1V) for U,V ∈ TXSPD(m).

• rieoptax.geometry.spd.SPDLogEuclidean : SPD matrices with the log-Euclidean
metric [11]: SPD(m) with ⟨U,V⟩X = tr

(
DUlogm(X)DVlogm(X)

)
where DUlogm(X) is

the directional derivative of matrix logarithm at X along U.

• rieoptax.geometry.hyperbolic.PoincareBall : Poincare-ball model of Hy-
perbolic space with Poincare metric [95], i.e., D(d) := {x ∈ Rd : x⊤x < 1} with ⟨u,v⟩x =
4u⊤v/(1− x⊤x)2 for u,v ∈ TxD(d).

3

https://anonymous.4open.science/r/Rieoptax/


RIEOPTAX

• rieoptax.geometry.hyperbolic.LorentzHyperboloid Lorentz Hyperboloid
model of Hyperbolic space [95], i.e., H(d) = {x ∈ Rd : ⟨x,x⟩L = −1} with ⟨u,v⟩x =
⟨u,v⟩L for u,v ∈ TxH(d), where ⟨u,v⟩L := −u0v0 + u1v1 + · · ·ud−1vd−1.

• rieoptax.geometry.grassmann.GrassmannCanonicalMetric : Grassmann
manifold with the canonical metric [33], i.e., G(m, r) with ⟨U,V⟩X = tr

(
UTV

)
for U,V ∈

TXG(m, r).

• rieoptax.geometry.hypersphere.HypersphereCanonicalMetric : Hyper-
sphere manifold which canonical metric [5, 20], i.e., S(d) with ⟨u,v⟩x = u⊤v for u,v ∈
TxS(d).

2.2. Optimizers

Optimizers module contains Riemannian optimization algorithms.

• riepotax.optimizers.first order.rsgd : Riemannian stochastic gradient de-
scent [19].

• riepotax.optimizers.first order.rsvrg : Riemannian stochastic variance re-
duced gradient descent [100].

• riepotax.optimizers.first order.rsrg : Riemannian stochastic recursive gra-
dient descent [57].

• riepotax.optimizers.first order.rasa : Riemannian adaptive stochastic gra-
dient algorithm [58].

• riepotax.optimizers.zeroth order.zo rgd : Zeroth-order Riemannian gradi-
ent descent [67].

2.3. Mechanism

Mechanism module contains differential private mechanisms on Riemannian manifolds.

• rieoptax.mechanism.output perturbation.RieLaplaceMechanism : Im-
plements Riemannian Laplace mechanism [82] which is used for privatizing Fréchet mean
computation.

• rieoptax.mechanism.output perturbation.LogEuclideanMechanism : Im-
plements log-Euclidean mechanism [96] which is used for differentially private Fréchet mean
on SPD matrices with log-Euclidean metric.

• rieoptax.mechanism.gradient perturbation.DPRGDMechanism : Implements
noise calibration for Differentially private Riemannian gradient descent [44] based on mo-
ments accountant [2] in autodp library [97].

• rieoptax.mechanism.gradient perturbation.DPRSGDMechanism : Imple-
ments noise calibration for Differentially private Riemannian stochastic gradient descent [44]
based on moments accountant [2] in autodp library [97].

4



RIEOPTAX

3. Benchmarking Rieoptax

In this section, we benchmark the proposed Rieoptax against existing Riemannian optimization li-
braries in Python. These include Pytorch [78] based Mctorch [70] and Geoopt [63], Tensorflow [89]
based Tensorflow-Riemopt (Tf-Riemopt) [89], Numpy [47] based Pymanopt [93], and Tensorflow
based Geomstats [72]. While Geomstats supports Numpy, Pytorch, and Tensorflow as backend,
currently only Tensorflow backend provides support for both CPU and GPU. Other non-Python
based libraries include Manopt [22] in Matlab and Manopt.jl [16] in Julia [17]. We benchmark the
Riemannian exponential (Exp) and logarithm (Log) maps with the proposed Rieoptax against the
aforementioned Python libraries whenever available with 64bitfloat precision. For CPU bench-
marking we use Processor AMD EPYC 7B1 with 2 cores and 16GB RAM. For GPU benchmarking,
we use CUDA version 11.4 on 16GB Tesla P100.

• Hypersphere canonical metric: Hypersphere S(d) is supported in Geoopt, Tf-Riemopt,
Geomstats, and Pyamanopt. On GPU however, Geomstats raises an error. we benchmark for
dimensions d ∈ {50, 100, 500, 1000, 5000, 10000, 25000, 50000}.

• Loretnz hyperboloid model: Loretnz hyperboloid model H(d) is supported in Geoopt,
Tf-Riemopt, Geomstats, and Mctorch. While Riemannian exponential map is available in
Mctorch, it does not implement the logarithm map. We benchmark for dimensions d ∈
{50, 100, 500, 1000, 5000, 10000, 25000, 50000}.

• Grassmann with canonical metric : Grassmann manifold G(m, r) with canonical metric is
supported in Tf-Riemopt, Pymanopt, Geomstats. However, we notice that the logarithm map
in Tf-Riemopt is incorrectly implemented and Geomstats represents Grassmann in projector
matrix XX⊤ ∈ Rm×m instead of X ∈ Rm×r, which is prohibitively expensive. We thus
exclude these two libraries from benchmarking. We benchmark for matrix size (m, r) ∈
{(100, 10), (500, 10), (750, 10), (1000, 10), (2000, 10), (5000, 10)}.

• SPD with affine invariant metric : SPD manifold SPD(m) with affine invariant metric is
supported in Geoopt, Tf-Riemopt, Geomstats. We benchmark for matrix size m ∈ {10, 50, 75,
100, 150, 200}.

Figures 1 and 2 present the timing results with CPU- and GPU-based computations, respectively.
Overall, we observe that Rieoptax offers significant time improvement, especially on GPU. For
SPDAffineInvariant Case, Rieoptax is slightly slower than Geoopt because eigh which provides
eigen decomposition is slightly slower in JAX compared to Pytorch. Given that JAX is a relatively
new framework, we believe it will be faster even in this case in the near future.

4. Conclusion and future roadmap

In this work, we present a Python library for (privacy-supported) Riemannian optimization, Rieop-
tax, and illustrate its efficacy on both CPU and GPU evaluation. Our roadmap includes adding
support for more manifold geometries, optimization algorithms, and a collection of example codes
showcasing the usage of Rieoptax in various applications.

5



RIEOPTAX

102 103 104

dim

10 5

10 4

10 3

10 2

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats
Pymanopt

(a) Hypersphere Exp

102 103 104

dim

10 5

10 4

10 3

10 2

10 1

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats
Mctorch

(b) Lorentz Exp

103 104

dim

10 4

10 3

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Tf-Riemopt
Pymanopt

(c) Grassmann Exp

102 103 104

dim

10 4

10 3

10 2

10 1

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats

(d) SPD Exp

102 103 104

dim

10 5

10 4

10 3

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats
Pymanopt

(e) Hypersphere Log

102 103 104

dim

10 5

10 4

10 3

10 2
Ti

m
e 

in
 S

ec
on

ds
Rieoptax
Geoopt
Tf-Riemopt
Geomstats

(f ) Lorentz Log

103 104

dim

10 4

10 3

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Pymanopt

(g) Grassmann Log

102 103 104

dim

10 4

10 3

10 2

10 1

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats

(h) SPD Log

Figure 1: Benchmarking of Geometric Primitives on CPU.

102 103 104

dim

10 3

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt

(a) Hypersphere Exp

102 103 104

dim

10 4

10 3

10 2

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats
Mctorch

(b) Lorentz Exp

103 104

dim

10 3

2 × 10 3

3 × 10 3

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Tf-Riemopt

(c) Grassmann Exp

102 103 104

dim

10 3

10 2

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats

(d) SPD Exp

102 103 104

dim

10 3

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt

(e) Hypersphere Log

102 103 104

dim

10 4

10 3

10 2

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats

(f ) Lorentz Log

103 104

dim

10 3

1.25 × 10 3

1.5 × 10 3

1.75 × 10 3

2 × 10 3

2.25 × 10 3

2.5 × 10 3
2.75 × 10 3

Ti
m

e 
in

 S
ec

on
ds

Rieoptax

(g) Grassmann Log

102 103 104

dim

10 3

10 2

10 1

Ti
m

e 
in

 S
ec

on
ds

Rieoptax
Geoopt
Tf-Riemopt
Geomstats

(h) SPD Log

Figure 2: Benchmarking of Geometric Primitives on GPU.

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. In USENIX Conference on Operat-
ing Systems Design and Implementation, 2016.

6



RIEOPTAX

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Tal-
war, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 308–318, 2016.

[3] John M Abowd. The US Census Bureau adopts differential privacy. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2867–2867, 2018.

[4] P-A Absil, Christopher G Baker, and Kyle A Gallivan. Trust-region methods on Riemannian
manifolds. Foundations of Computational Mathematics, 7(3):303–330, 2007.

[5] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix
manifolds. In Optimization Algorithms on Matrix Manifolds. Princeton University Press,
2009.

[6] Naman Agarwal, Nicolas Boumal, Brian Bullins, and Coralia Cartis. Adaptive regularization
with cubics on manifolds. Mathematical Programming, 188(1):85–134, 2021.

[7] Kwangjun Ahn and Suvrit Sra. From Nesterov’s estimate sequence to Riemannian accelera-
tion. In Conference on Learning Theory, pages 84–118. PMLR, 2020.

[8] Foivos Alimisis, Antonio Orvieto, Gary Bécigneul, and Aurelien Lucchi. A continuous-
time perspective for modeling acceleration in Riemannian optimization. In International
Conference on Artificial Intelligence and Statistics, pages 1297–1307. PMLR, 2020.

[9] Jason Altschuler, Sinho Chewi, Patrik R Gerber, and Austin Stromme. Averaging on the
Bures-Wasserstein manifold: dimension-free convergence of gradient descent. Advances in
Neural Information Processing Systems, 34:22132–22145, 2021.

[10] D Apple. Learning with privacy at scale. Apple Machine Learning Journal, 1(8), 2017.

[11] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric means in a
novel vector space structure on symmetric positive-definite matrices. SIAM journal on matrix
analysis and applications, 29(1):328–347, 2007.

[12] Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci,
Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou,
Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena
Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, John Quan, George Papa-
makarios, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener,
Stephen Spencer, Srivatsan Srinivasan, Luyu Wang, Wojciech Stokowiec, and Fabio Viola.
The DeepMind JAX Ecosystem, 2020. URL http://github.com/deepmind.

[13] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Marchine
Learning Research, 18:1–43, 2018.

[14] Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In
International Conference on Learning Representations, 2019.

7

http://github.com/deepmind


RIEOPTAX

[15] Thomas Bendokat, Ralf Zimmermann, and P-A Absil. A Grassmann manifold handbook:
Basic geometry and computational aspects. arXiv preprint arXiv:2011.13699, 2020.

[16] Ronny Bergmann. Manopt. jl: Optimization on manifolds in julia. Journal of Open Source
Software, 7(70):3866, 2022.

[17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM review, 59(1):65–98, 2017.

[18] Rajendra Bhatia. Positive definite matrices. In Positive Definite Matrices. Princeton univer-
sity press, 2009.

[19] Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions
on Automatic Control, 58(9):2217–2229, 2013.

[20] Nicolas Boumal. An introduction to optimization on smooth manifolds. To appear with
Cambridge University Press, Jun 2022. URL https://www.nicolasboumal.net/
book.

[21] Nicolas Boumal and Pierre-antoine Absil. RTRMC: A Riemannian trust-region method for
low-rank matrix completion. Advances in neural information processing systems, 24, 2011.

[22] Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. Manopt, a Matlab
toolbox for optimization on manifolds. The Journal of Machine Learning Research, 15(1):
1455–1459, 2014.

[23] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[24] Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Hanwen Shen, and Uthaipon
Tantipongpipat. Fast and memory efficient differentially private-sgd via jl projections. Ad-
vances in Neural Information Processing Systems, 34:19680–19691, 2021.

[25] Rudrasis Chakraborty and Baba C Vemuri. Statistics on the Stiefel manifold: theory and
applications. The Annals of Statistics, 47(1):415–438, 2019.

[26] Sinho Chewi, Tyler Maunu, Philippe Rigollet, and Austin J Stromme. Gradient descent
algorithms for Bures-Wasserstein barycenters. In Conference on Learning Theory, pages
1276–1304. PMLR, 2020.

[27] Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and
Olivier Teboul. Optimal transport tools (ott): A jax toolbox for all things Wasserstein. arXiv
preprint arXiv:2201.12324, 2022.

[28] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately.
Advances in Neural Information Processing Systems, 30, 2017.

[29] Cynthia Dwork. Differential privacy: A survey of results. In International conference on
theory and applications of models of computation, pages 1–19. Springer, 2008.

8

https://www.nicolasboumal.net/book
https://www.nicolasboumal.net/book


RIEOPTAX

[30] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Annual international con-
ference on the theory and applications of cryptographic techniques, pages 486–503. Springer,
2006.

[31] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

[32] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foun-
dations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[33] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with or-
thogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353,
1998.

[34] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security, pages 1054–1067, 2014.

[35] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups. In International Conference
on Machine Learning, pages 3318–3328. PMLR, 2021.

[36] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax - a differentiable physics engine for large scale rigid body simulation, 2021.
URL http://github.com/google/brax.

[37] Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning pro-
grams via high-level tracing. Systems for Machine Learning, 4(9), 2018.

[38] Jean Gallier and Jocelyn Quaintance. Differential geometry and Lie groups: a computational
perspective, volume 12. Springer Nature, 2020.

[39] Jonathan Godwin*, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf, Yujia Li,
Kimberly Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez. Jraph: A library for
graph neural networks in jax., 2020. URL http://github.com/deepmind/jraph.

[40] Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint
arXiv:1510.01799, 2015.

[41] Google. Xla : Compiling machine learning for peak performance, 2020.

[42] Andi Han and Junbin Gao. Improved variance reduction methods for Riemannian non-convex
optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[43] Andi Han and Junbin Gao. Riemannian stochastic recursive momentum method for non-
convex optimization. In International Joint Conference on Artificial Intelligence, pages
2505–2511, 8 2021.

9

http://github.com/google/brax
http://github.com/deepmind/jraph


RIEOPTAX

[44] Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Differentially private Rie-
mannian optimization. arXiv preprint arXiv:2205.09494, 2022.

[45] Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Riemannian accelerated
gradient methods via extrapolation. arXiv preprint arXiv:2208.06619, 2022.

[46] Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Riemannian block SPD
coupling manifold and its application to optimal transport. arXiv preprint arXiv:2201.12933,
2022.

[47] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array
programming with numpy. Nature, 585(7825):357–362, 2020.

[48] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, An-
dreas Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX,
2020. URL http://github.com/google/flax.

[49] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces. Academic
press, 1979.

[50] Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX,
2020. URL http://github.com/deepmind/dm-haiku.

[51] Wen Huang, Kyle A Gallivan, and P-A Absil. A Broyden class of quasi-Newton methods for
Riemannian optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015.

[52] Wen Huang, Kyle A Gallivan, Anuj Srivastava, and Pierre-Antoine Absil. Riemannian opti-
mization for registration of curves in elastic shape analysis. Journal of Mathematical Imaging
and Vision, 54(3):320–343, 2016.

[53] Zhiwu Huang and Luc Van Gool. A Riemannian network for SPD matrix learning. In Thirty-
first AAAI conference on artificial intelligence, 2017.

[54] Zhiwu Huang, Chengde Wan, Thomas Probst, and Luc Van Gool. Deep learning on lie groups
for skeleton-based action recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6099–6108, 2017.

[55] Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building deep networks on grassmann mani-
folds. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[56] Oleg Kachan. Persistent homology-based projection pursuit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 856–
857, 2020.

[57] Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive gradi-
ent algorithm. In International Conference on Machine Learning, pages 2516–2524. PMLR,
2018.

10

http://github.com/google/flax
http://github.com/deepmind/dm-haiku


RIEOPTAX

[58] Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic
gradient algorithms on matrix manifolds. In International Conference on Machine Learning,
pages 3262–3271. PMLR, 2019.

[59] David G Kendall. Shape manifolds, procrustean metrics, and complex projective spaces.
Bulletin of the London mathematical society, 16(2):81–121, 1984.

[60] David G Kendall. A survey of the statistical theory of shape. Statistical Science, 4(2):87–99,
1989.

[61] Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

[62] Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees
and filtered transformations. Differentiable Programming workshop at Neural Information
Processing Systems 2021, 2021.

[63] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in
PyTorch. arXiv preprint arXiv:2005.02819, 2020.

[64] Junpeng Lao and Rémi Louf. Blackjax: A sampling library for JAX, 2020. URL http:
//github.com/blackjax-devs/blackjax.

[65] Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-
example gradient clipping. Proceedings on Privacy Enhancing Technologies, 2021(1), 2021.

[66] John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer
Science & Business Media, 2006.

[67] Jiaxiang Li, Krishnakumar Balasubramanian, and Shiqian Ma. Stochastic zeroth-order Rie-
mannian derivative estimation and optimization. Mathematics of Operations Research, 2022.

[68] Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, and Licheng Jiao. Accelerated
first-order methods for geodesically convex optimization on Riemannian manifolds. Ad-
vances in Neural Information Processing Systems, 30, 2017.

[69] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gradients in
numpy. In ICML 2015 AutoML workshop, 2015.

[70] Mayank Meghwanshi, Pratik Jawanpuria, Anoop Kunchukuttan, Hiroyuki Kasai, and
Bamdev Mishra. McTorch, a manifold optimization library for deep learning. arXiv preprint
arXiv:1810.01811, 2018.

[71] Nina Miolane, Susan Holmes, and Xavier Pennec. Template shape estimation: correcting an
asymptotic bias. SIAM Journal on Imaging Sciences, 10(2):808–844, 2017.

[72] Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann
Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, et al. Geomstats: a
Python package for Riemannian geometry in machine learning. Journal of Machine Learning
Research, 21(223):1–9, 2020.

11

http://github.com/blackjax-devs/blackjax
http://github.com/blackjax-devs/blackjax


RIEOPTAX

[73] Bamdev Mishra, NTV Satyadev, Hiroyuki Kasai, and Pratik Jawanpuria. Manifold optimiza-
tion for non-linear optimal transport problems. arXiv preprint arXiv:2103.00902, 2021.

[74] Joe Near. Differential privacy at scale: Uber and Berkeley collaboration. In Enigma 2018
(Enigma 2018), 2018.

[75] Xuan Son Nguyen, Luc Brun, Olivier Lézoray, and Sébastien Bougleux. A neural network
based on spd manifold learning for skeleton-based hand gesture recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12036–
12045, 2019.

[76] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical repre-
sentations. Advances in neural information processing systems, 30, 2017.

[77] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the Lorentz model
of hyperbolic geometry. In International Conference on Machine Learning, pages 3779–
3788. PMLR, 2018.

[78] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[79] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor
computing. International Journal of computer vision, 66(1):41–66, 2006.

[80] Chunhong Qi, Kyle A Gallivan, and P-A Absil. Riemannian BFGS algorithm with appli-
cations. In Recent Advances in Optimization and its Applications in Engineering, pages
183–192. Springer, 2010.

[81] Guodong Qi, Huimin Yu, Zhaohui Lu, and Shuzhao Li. Transductive few-shot classifica-
tion on the oblique manifold. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8412–8422, 2021.

[82] Matthew Reimherr, Karthik Bharath, and Carlos Soto. Differential privacy over Riemannian
manifolds. Advances in Neural Information Processing Systems, 34:12292–12303, 2021.

[83] Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. FedJAX: Federated learning simulation
with JAX. arXiv preprint arXiv:2108.02117, 2021.

[84] Gaspar Rochette, Andre Manoel, and Eric W Tramel. Efficient per-example gradient compu-
tations in convolutional neural networks. arXiv preprint arXiv:1912.06015, 2019.

[85] Hiroyuki Sato, Hiroyuki Kasai, and Bamdev Mishra. Riemannian stochastic variance reduced
gradient algorithm with retraction and vector transport. SIAM Journal on Optimization, 29
(2):1444–1472, 2019.

[86] Samuel S. Schoenholz and Ekin D. Cubuk. Jax m.d. a framework for differentiable physics.
In Advances in Neural Information Processing Systems, volume 33. Curran Associates, Inc.,
2020.

12



RIEOPTAX

[87] Jon M Selig. Geometric fundamentals of robotics, volume 128. Springer, 2005.

[88] Dai Shi, Junbin Gao, Xia Hong, ST Boris Choy, and Zhiyong Wang. Coupling matrix man-
ifolds assisted optimization for optimal transport problems. Machine Learning, 110(3):533–
558, 2021.

[89] Oleg Smirnov. TensorFlow RiemOpt: a library for optimization on Riemannian manifolds.
arXiv preprint arXiv:2105.13921, 2021.

[90] Anuj Srivastava, Eric Klassen, Shantanu H Joshi, and Ian H Jermyn. Shape analysis of elastic
curves in Euclidean spaces. IEEE transactions on pattern analysis and machine intelligence,
33(7):1415–1428, 2010.

[91] Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. Enabling fast differentially
private SGD via just-in-time compilation and vectorization. Advances in Neural Information
Processing Systems, 34:26409–26421, 2021.

[92] Yann Thanwerdas and Xavier Pennec. O (n)-invariant Riemannian metrics on SPD matrices.
arXiv preprint arXiv:2109.05768, 2021.

[93] James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox
for optimization on manifolds using automatic differentiation. Journal of Machine Learning
Research, 17(137):1–5, 2016.

[94] Abraham Albert Ungar. Analytic hyperbolic geometry and Albert Einstein’s special theory
of relativity. World Scientific, 2008.

[95] Abraham Albert Ungar. A gyrovector space approach to hyperbolic geometry. Synthesis
Lectures on Mathematics and Statistics, 1(1):1–194, 2008.

[96] Saiteja Utpala, Praneeth Vepakomma, and Nina Miolane. Differentially private Fr\’echet
mean on the manifold of symmetric positive definite (SPD) matrices. arXiv preprint
arXiv:2208.04245, 2022.

[97] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differ-
ential privacy and analytical moments accountant. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1226–1235. PMLR, 2019.

[98] Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Conference on Learning Theory, pages 1617–1638. PMLR, 2016.

[99] Hongyi Zhang and Suvrit Sra. An estimate sequence for geodesically convex optimization.
In Conference On Learning Theory, pages 1703–1723. PMLR, 2018.

[100] Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian SVRG: Fast stochastic opti-
mization on Riemannian manifolds. Advances in Neural Information Processing Systems,
29, 2016.

[101] Pan Zhou, Xiao-Tong Yuan, and Jiashi Feng. Faster first-order methods for stochastic non-
convex optimization on Riemannian manifolds. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 138–147. PMLR, 2019.

13


	Introduction
	Background on Riemannian optimization, privacy, and JAX
	Rieoptax

	Implementation Overview
	Geometries
	Optimizers
	Mechanism

	Benchmarking Rieoptax
	Conclusion and future roadmap

