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Abstract

The fundamental model of all solid crystalline materials (periodic crystals) is a1

periodic set of atomic centers considered up to rigid motion in Euclidean space.2

The major obstacle to materials discovery was highly ambiguous representations3

that didn’t allow fast and reliable comparisons, and led to numerous (near-) dupli-4

cates in all experimental databases. This paper introduces the new invariants that5

are crystal descriptors without false negatives and are called Pointwise Distance6

Distributions (PDD). The PDD invariants are numerical matrices with a near-linear7

time complexity and an exactly computable metric. The strongest theoretical result8

is generic completeness (absence of false positives) for all finite and periodic sets of9

points in any dimension. The strength of PDD is demonstrated by 200B+ pairwise10

comparisons of all 660K+ periodic structures from the world’s largest Cambridge11

Structural Database of 1.17M+ known crystals over two days on a modest desktop.12

1 Motivations for resolving the data ambiguity challenge in Problem 1.113

This paper resolves the long-standing challenge of ambiguous data representation for periodic14

structures that model all solid crystalline materials (crystals). Any real crystal is best modeled as a15

periodic set S ⊂ Rn of points at all atomic centers, whose positions have a physical meaning and16

are determined via X-ray diffraction patterns. Edges between points are excluded because they only17

abstractly represent inter-atomic bonds that depend on thresholds for distances and angles [18].18

The simplest example is a lattice Λ ⊂ Rn consisting of all integer linear combinations of a basis19

whose vectors span a unit cell U , whose translational copies are shown in Fig. 1 only for convenience.20

Figure 1: These isometric lattices are given by different cells and motifs. 1st: U = 〈(1, 0), (0, 1)〉,
M = {(0, 0)}. 2nd: U = 〈(1, 0), (0, 1)〉, M = {( 1

2 ,
1
2 )}. 3rd: U = 〈(1, 0), (1, 1)〉, M = {(0, 0)}.

4th: U = 〈( 1√
2
, 1√

2
), (− 1√

2
, 1√

2
)〉, M = {( 1

2 ,
1
2 )}. 5th: U = 〈(

√
2, 0), ( 1√

2
, 1√

2
)〉, M = {(0, 0)}.

Materials discovery still relies on trial-and-error because periodic crystals are traditionally represented21

by non-invariants (descriptors with false negatives) or discontinuous invariants such as symmetry22

groups that break down under tiny perturbations. These conventional descriptions cannot identify23

fraudulent structures in experimental datasets that keep depositing numerous (near-)duplicates without24

reliable tools for justified comparisons [19]. The ambiguity challenge will be rigorously stated in25

Problem 1.1 as a classification of periodic sets up to isometry preserving the rigid form of crystals.26
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Fig. 1 illustrates the first obstacle: the same lattice can be generated by infinitely many different bases27

or unit cells. So distinguishing only lattices up to isometry is already non-trivial. Then any periodic28

point set S is a sum Λ +M = {~u+ ~v : u ∈ Λ, v ∈M}, where a motif M is a finite set of points29

in the basis of U . Any lattice Λ is considered as a periodic set with a 1-point motif M = {p}. A30

single point p can be arbitrarily chosen in a unit cell U as in the first two pictures of Fig. 1. Basis31

vectors of U and atomic coordinates of motif points (atomic centers) in M form a conventional32

Crystallographic Information File (CIF). Fig. 2 (left) shows the ambiguity of the CIF pair (Λ,M)33

even if a basis of U is fixed. The recent work by Edelsbrunner et al [17] initiated a new research34

area in classifications of periodic point sets up to isometry. An isometry of Euclidean space Rn is35

any map that maintains inter-point distances. Any orientation-preserving isometry can be realized36

as a continuous rigid motion, for example any composition of translations and rotations in R3. This37

equivalence is most natural for periodic point sets that represent real rigid structures.38

Figure 2: Left : even for a fixed cell of a lattice Λ, different motifs M can define isometric periodic
sets Λ +M . Right: for almost any perturbation, the symmetry group and (the minimum volume of)
any reduced cell discontinuously change, which justifies continuity (1.1d) in Problem 1.1.

Crystals can be reliably distinguished up to isometry only by an isometry invariant that takes the same39

value on all isometric sets, hence having no false negatives. If a descriptor allows false negatives, we40

can make no reliable conclusions because equivalent objects can have different representations as in41

Fig. 1 and 2 (left). Hence, non-invariants such as edge-lengths and angles of a unit cell, or coordinates42

of motif points in a cell basis cannot be used to justifiably compare crystals [4]. It suffices to classify43

up to isometry including mirror reflections. As a linear map, an isometry f reverses orientation if the44

determinant det(v1, . . . , vn) of basis vectors has the same sign as det(f(v1), . . . , f(vn)).45

The traditional approach to identify a periodic crystal is to use its conventional or reduced cell [31,46

section 9.3]. This reduced cell has been known to be discontinuous under perturbations [1] even47

for lattices when a motif M is a single point. More formally, [17, section 1] and [20, Theorem 15]48

proved that a continuous reduced cell cannot be defined for all lattices. For more general periodic49

sets, discontinuity of many past discrete invariants such as symmetry groups becomes clearer in50

Fig. 2 (right) showing that even real-valued invariants struggle to continuously quantify the similarity51

between nearly sets. The minimum volume of a cell U can easily double, while the density (the52

number or mass of points divided by the cell volume) remains constant under perturbations of points.53

The continuous isometry classification of periodic sets has been an open problem since 1980 [1].54

Problem 1.1 Find a function I on all periodic sets of unlabeled points in Rn such that55

(1.1a) invariance : if any periodic point sets S ∼= Q are isometric in Rn, then I(S) = I(Q), so the56

invariant I has no false negatives;57

(1.1b) completeness : if I(S) = I(Q) for any periodic point sets S,Q, then S ∼= Q are isometric, so58

the invariant I has no false positives;59

(1.1c) metric : a distance d between values of I satisfies all axioms; 1) d(I1, I2) = 0 if and only if60

I1 = I2, 2) symmetry d(I1, I2) = d(I2, I1), 3) triangle inequality d(I1, I3) ≤ d(I1, I2) + d(I2, I3);61

(1.1d) continuity : d(I(S), I(Q)) ≤ CdB(S,Q) for a fixed constant C and any sets S,Q ⊂ Rn;62

(1.1e) computability : the invariant I , the metric d and verification of I(S) = I(Q) should be done63

in a near-linear time in the number of motif points of periodic sets for a fixed dimension n;64

(1.1f) inverse design : any periodic point set S ⊂ Rn can be reconstructed from its invariant I(S). �65
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Problem 1.1 is the ultimate Data Science challenge for all periodic crystals S whose non-invariant66

input (a cell basis and a motif) should be transformed into a complete invariant I(S), which uniquely67

and unambiguously represents any S. Such a complete invariant can be considered as a materials68

genome [13] or a DNA-type code that also allows an explicit reconstruction for any periodic crystal.69

For example, Computer Vision tries to identify humans or other objects such as road signs by using70

pixel-based images as input. Similar to other real objects, any periodic crystal can be given by71

(infinitely) many inputs. Hence the ambiguity challenge exemplified by rigorously stated Problem 1.172

was the major obstacle on the road to an efficient materials design.73

The proposed solution to Problem 1.1 is the isometry invariant I called the Pointwise Distance74

Distribution PDD. Theorems 3.2, 4.3, 5.1 , 4.4 prove that PDD satisfies all conditions of Problem 1.1,75

even (1.1b) at least for generic sets. More exactly, Theorem 4.4 shows that any periodic point set76

S ⊂ Rn in general position can be explicitly reconstructed from PDD and lattice invariants.77

The strength of PDD was experimentally checked for all 660K+ periodic crystals in the world’s78

largest Cambridge Structural Database (CSD). Despite the CSD being curated to contain only real and79

distinct structures [19], the new invariants identified several pairs of duplicates. All the underlying80

publications are now being investigated for data integrity by five journals, see details in section 6.81

Problem 1.1 is stated in the hardest scenario when points are unordered and unlabeled because many82

real crystals have identical compositions. For example, diamond and graphite (whose 2-dimensional83

layer is famous graphene) consist of pure carbon but have vastly different physical properties.84

Conditions (1.1cd) for a continuous metric are stronger than a complete classification in (1.1ab):85

detecting an isometry gives a discontinuous metric d(S,Q) = 1 (or another positive number) for86

all non-isometric S 6∼= Q even if S,Q are near duplicates as in Fig. 2 (right). Continuity under87

perturbations is practically important because atoms vibrate, and any real measurement of a crystal88

produces slightly different parameters of a unit cell and a motif. Any simulation of periodic structures89

introduces floating point errors because of inevitable approximations by iterative optimization.90

Thousands of near-duplicates are routinely produced, though only a few structures are synthesized.91

Five real structures of 5679 predicted on a supercomputer over 12 weeks are a typical example92

[18]. This ‘embarrassment of over-prediction’ wastes resources and time to run simulations and then93

analyze results, often by visual inspection, because there were no fast and reliable tools.94

Computability condition (1.1e) avoids the trivial function I(S) = S in Problem 1.1. Inverse design95

in (1.1f) allows one to replace the traditional blind sampling (of ambiguous cells and motifs leading96

to (near-)duplicates via optimization) with a guided exploration of the crystal space parameterized by97

complete and reversible invariants. Section 2 shows that the state-of-the-art tools remain stuck with98

conditions (1.1ab) while the new invariants satisfy the stronger practical requirements (1.1cdef).99

2 A review of the related state-of-the-art on comparing periodic point sets100

Any point p in Rn can be identified with the vector ~p from the origin 0 to p. The Euclidean distance101

between p, q ∈ Rn is denoted by |p−q|, which is the length of ~p−~q. All conditions in Problem 1.1 are102

not completely fulfilled by the state-of-the art methods even for finite sets in Rn. The non-isometric103

4-point sets in Fig. 3 (left) are a counter-example to the completeness of the distance distribution [7].104

Figure 3: Left: point sets K = {(±2, 0), (±1, 1)} and T = {(±2, 0), (−1,±1)} can not be
distinguished by their six pairwise distances

√
2,
√

2, 2,
√

10,
√

10, 4. Right: 1D periodic sets
S(r) = {0, r, 2 + r, 4} + 8Z and Q(r) = {0, 2 + r, 4, 4 + r} + 8Z for 0 < r ≤ 1 have the same
Patterson function [38, p. 197, Fig. 2]. All these pairs are distinguished by PDD in section 3.

The existence of an isometry between two m-point sets in Rn can be checked in timeO(mdn/3e logm)105

by [8], which can be improved to O(m logm) in R4 [32]. Significant results on matching bounded106
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rigid shapes and registration of finite point sets were obtained in [41, 24, 21, 16]. The research on107

graph isomorphisms [42, 27] can be potentially used for periodic graphs with fixed edges between108

points of a periodic set. These methods focused on binary true/false answers without continuously109

quantifying the similarity. Mémoli’s seminal work on distributions of distances [35], also known as110

shape distributions [37, 5, 29, 26, 22], for bounded metric spaces is closest to the proposed Pointwise111

Distance Distributions (PDD) for periodic point sets. However, Problem 1.1 is not reducible to the112

finite sets by taking a cube or a ball of a fixed (even very large) cut-off radius within a periodic point113

set. Indeed, one can easily find non-isometric subsets of the same lattice as in Fig. 4 (left).114

Figure 4: Left: hard to choose a finite subset that truly represents an infinite periodic set, discontinuity
under perturbations of points or set sizes is similar to Fig. 2 (right). Right: an ambiguous input is
transformed into the invariant PDD to visualize any dataset as a Minimum Spanning Tree (MST).

The Mercury software visually compares periodic structures [10] by minimizing the Root Mean115

Square Deviation (RMSD) of atomic positions from up to a given number m (15 by default) of closest116

molecules in two structures. This RMSD fails the triangle inequality and is too slow for pairwise117

comparisons, see section 6. One natural similarity is the maximum displacement of atoms under118

thermal vibrations. This bottleneck distance dB(S,Q) between periodic point sets is the maximum119

Euclidean distance needed to perturb every point p ∈ S to its unique match in Q. Since dB is120

minimized over infinitely many bijections and points, dB is computationally intractable. Even worse,121

dB(S,Q) = +∞ for the set of integers S = Z and Q = (1 + ε)Z scaled up for any small ε > 0. If122

we scale given periodic sets S,Q to the same density, the resulting dB(S,Q) < +∞ is the wobbling123

distance [23], which is discontinuous under perturbations, see the supplementary materials.124

The discontinuity under perturbations is the major weakness of many past invariants including125

Voronoi diagrams, which should be matched via infinitely many rotations [36], space groups and126

other group-theoretic invariants [28]. The key example in Fig. 2 (right) shows that a continuous127

distance between nearly identical sets should be close to 0, not identically 0. These sets have different128

symmetries and can be related only by pseudo-symmetries depending on manual thresholds [46].129

One of the oldest crystal descriptors is the X-ray diffraction pattern whose single crystal form is best130

for determining a 3D structure of an experimental crystal [12]. Since not all materials can be grown as131

single crystals, the powder X-ray diffraction pattern (PXRD) is more common. All periodic structures132

with identical PXRDs are called homometric,[39], see the periodic versions S(1) = {0, 1, 3, 4}+ 8Z133

and Q(1) = {0, 3, 4, 5} + 8Z of the 4-point set T,K in Fig. 3. The more general sets S(r), Q(r)134

with identical Pair Distribution Functions (PDF) will be distinguished by PDD in section 3.135

For any k ≥ 1, Edelsbrunner et al. [17] introduced the k-th density function ψk(t) of a periodic136

point set S = Λ +M ⊂ R3 as the total volume of the regions within the unit cell U of Λ covered137

by exactly k balls B(p; t) with a radius t ≥ 0 and centres at motif points p ∈ M , divided by the138

unit cell volume Vol[U ]. The density function ψk(t) was proved to be invariant under isometry,139

continuous under perturbations, complete for periodic sets satisfying certain conditions of general140

position in R3, and computable in time O(mk3), where m is the motif size of S. Section 5 in [17]141

gave the counter-example to completeness: the 1-dimensional periodic sets S15 = X + Y + 15Z142

and Q15 = X − Y + 15Z for X = {0, 4, 9} and Y = {0, 1, 3} [30, section 4] have the same density143

functions for all k ≥ 1 [34, Example 10] but were distinguished in [20, Example 5b].144

The latest advance [3] reduces the isometry classification of all periodic point sets to an isoset of145

isometry classes of α-clusters around points in a motif at a certain radius α, which was motivated by146

the seminal work of Dolbilin with co-authors about Delone sets [15, 6, 14]. The continuous metric147

on isosets [2, Corollary 35] has only an approximate algorithm, so Problem 1.1 remained open.148
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3 The Pointwise Distance Distribution PDD(S; k) of a periodic point set S149

Distances to neighbors were considered in [20, Definition 5], though only their average was proved to150

be invariant under permutations of points. New Definition 3.1 below introduces the weights that make151

PDD continuous under perturbations in Theorem 4.3. See all proofs in the supplementary materials.152

Definition 3.1 (Pointwise Distance Distribution PDD) Let a periodic set S = Λ +M have points153

p1, . . . , pm in a unit cell. For k ≥ 1, consider the m× k matrix D(S; k), whose i-th row consists of154

the ordered distances di1 ≤ · · · ≤ dik measured from pi to its first k nearest neighbors in the full155

set S. The rows of D(S; k) are lexicographically ordered as follows. A row (di1, . . . , dik) is smaller156

than (dj1, . . . , djk) if a few first distances coincide: di1 = dj1, . . . , dil = djl for l ∈ {1, . . . , k − 1}157

and the next (l + 1)-st distances satisfy di,l+1 < dj,l+1. If w rows are identical to each other, any158

such group is collapsed to one row with the weight w/m. For each row, put this weight in the first159

column. The final m× (k + 1)-matrix is the Pointwise Distance Distribution PDD(S; k). �160

The matrix D(T ; 3) in Table 1 has two pairs of identical rows, so the matrix PDD(T ; 3) consists of161

two rows of weight 1
2 below. The matrix D(K; 3) in Table 1 has only one pair of identical rows, so162

PDD(K; 3) has three rows of weights 1
2 , 1

4 , 1
4 . Then PDD(T ; 3) 6= PDD(K; 3)163

Table 1: Each point in T,K ⊂ R2 from Figure 3 has ordered distances to three other points.

T points neighb.1 neighb.2 neighb.3

(−2, 0)
√

2
√

10 4
(+2, 0)

√
2

√
10 4

(−1, 1)
√

2 2
√

10
(+1, 1)

√
2 2

√
10

K points neighb.1 neighb.2 neighb.3

(−2, 0)
√

2
√

2 4
(+2, 0)

√
10

√
10 4

(−1,−1)
√

2 2
√

10
(−1,+1)

√
2 2

√
10

PDD(T ; 3) =

(
1/2

√
2 2

√
10

1/2
√

2
√

10 4

)
6= PDD(K; 3) =

 1/4
√

2
√

2 4
1/2

√
2 2

√
10

1/4
√

10
√

10 4

 .164

Theorem 3.2 (isometry invariance of PDD(S; k)) For any finite or periodic set S ⊂ Rn,165

PDD(S; k) from Definition 3.1 is an isometry invariant of the set S for any k ≥ 1. �166

Table 2: Distances from each motif point of S(r) and Q(r) to their closest neighbors in Fig. 3.

S(r) points distance to neighbor 1 distance to neighbor 2 distance to neighbor 3
p1 = 0 |0− r| = r |0− (2 + r)| = 2 + r |0− 4| = 4
p2 = r |r − 0| = r |r − (2 + r)| = 2 |r − 4| = 4− r
p3 = 2 + r |(2 + r)− 4| = 2− r |(2 + r)− r| = 2 |(2 + r)− 0| = 2 + r
p4 = 4 |4− (2 + r)| = 2− r |4− r| = 4− r |4− 0| = 4

Q(r) points distance to neighbor 1 distance to neighbor 2 distance to neighbor 3

p1 = 0 |0− (2 + r)| = 2 + r |0− (r + 4− 8)| = 4− r |0− 4| = 4
p2 = 2 + r |(2 + r)− 4| = 2− r |(2 + r)− (4 + r)| = 2 |(2 + r)− 0| = 2 + r
p3 = 4 |4− (4 + r)| = r |4− (2 + r)| = 2− r |4− 0| = 4
p4 = 4 + r |(4 + r)− 4| = r |(4 + r)− (2 + r)| = 2 |(4 + r)− 8| = 4− r

For the 1D periodic sets S(r) = {0, r, 2 + r, 4}+ 8Z and Q(r) = {0, 2 + r, 4, 4 + r}+ 8Z in Fig. 3,167

Table 2 shows that S(r), Q(r) are not isometric for any parameter 0 < r ≤ 1.168

PDD(S(r); 8) =

 1/4 r 2 + r 4 4 6− r 8− r 8 8
1/4 r 2 4− r 4 + r 6 8− r 8 8
1/4 2− r 2 2 + r 6− r 6 6 + r 8 8
1/4 2− r 4− r 4 4 4 + r 6 + r 8 8

 6=169

PDD(Q(r); 8) =

 1/4 r 2− r 4 4 6 + r 8− r 8 8
1/4 r 2 4− r 4 + r 6 8− r 8 8
1/4 2− r 2 2 + r 6− r 6 6 + r 8 8
1/4 2 + r 4− r 4 4 4 + r 6− r 8 8

 .170

5



Any lattice Λ ⊂ Rn has a 1-point motif M = {p}, hence PDD(S; k) consists of a single row of171

increasing distances from p to all other points Λ−{p}. Fig. 5 (right) shows a honeycomb periodic set172

S whose motif consists of two symmetric points that have the same distances to all their neighbors,173

hence two rows of D(S; k) collapse to a single vector PDD(S; k). Since both sets S(r), Q(r) in174

Fig. 3 (right) have period 8, the matrices PDD(S(r); k) and PDD(Q(r); k) have distance 8 in each175

row for columns 7 and 8 as shown above. All further distances are obtained from the first eight176

by adding a multiple of period 8. The vector AMD(S(r); k) of column averages for any k ≥ 8 is177

determined by AMD(S(r); 8) = (1, 2.5, 3.5, 4.5, 5.5, 7, 8, 8). Since AMDk(S(r)) is independent178

of 0 < r < 1, the sets S(r) are counter-examples to the completeness of AMD, now distinguished179

by PDD(S(r); k) already for k = 1. Hence PDD(S; k) is strictly stronger than AMD(S; k).180

Figure 5: The square lattice (left), hexagonal lattice (middle), and honeycomb periodic set (right)
with a minimum inter-point distance of 1 have PDD(S; k) with a single row of increasing distances.

For a periodic set S, the number k in PDD(S; k) can be considered as a degree of approximation181

(or a count of decimal places), not as a parameter that affects invariant values. If we increase k, we182

extract more distant geometric data from S by adding more columns to PDD(S; k) and keeping all183

previous distances. If some rows are identical in D(S; k − 1) and become different in D(S; k), we184

recompute weights but not distances. The past tools [10], [4] strongly depend on extra parameters.185

Now we compare PDD with the closest past invariant called the Pair Distribution Function (PDF).186

For a periodic point set S ⊂ Rn with a motif M , the exact PDF consists of ordered distances from all187

points p ∈M to all other points q ∈ S − {p}. So the infinite sequence ePDF(S) is obtained from188

PDD by combining all rows into one sequence and losing weights. Additionally, we keep only one189

distance from each pair |p− q| = |q−p|. For any fixed 0 < r ≤ 1, the sets S(r), Q(r) have the same190

sequences starting with ePDF(S(r)) = ePDF(Q(r)) = {r, 2 − r, 2, 2 + r, 4 − r, 4, 4, 4 + r, . . .}.191

This example shows that PDD for k = 1 is strictly stronger than ePDF as an isometry invariant.192

For any lattice Λ ⊂ Rn, the vector ePDF(Λ; k) up to k distances concides with PDD(S; k). For193

the honeycomb set S in Fig. 5 (right), ePDF(S; 2k) is obtained from PDD(S; k) by repeating194

every distance twice. If a periodic set is perturbed and a unit cell doubles as in Fig. 2 (right),195

then every distance in ePDF is replaced by a couple of (near-) duplicate distances, so ePDF(S; k)196

discontinuously changes by including twice as many short distances and losing longer distances.197

This typical discontinuity was roughly repaired by replacing every single distance d with its Gaussian198

distribution exp(−(x− d)2/2σ) with a parameter σ > 0. Then a normalized sum of such ‘blurred’199

distances [45] becomes the smooth Pair Distribution Function PDF(S;σ). Since algorithms can200

compare only finite vectors, this PDF(S;σ) is then uniformly sampled, which creates dependence201

on σ. So PDD provides a straightforward alternative to this counter-intuitive PDF pipeline {discrete202

sequence} → {smooth function} → {discrete sequence}, whose continuity wasn’t formally proved.203

4 Continuity and generic completeness of Pointwise Distance Distributions204

Continuity of PDD(S; k) under perturbations of S in the bottleneck distance dB will be measured by205

the Earth Mover’s Distance [40], which can be applied to any weighted distributions of different sizes.206
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Definition 4.1 is for any vector I(S) = ([w1(S), R1(S)], . . . , [wm(S), Rm(S)(S)]) of pointwise207

invariants of a set S with weights wi(S) ∈ (0, 1] satisfying
m(S)∑
i=1

wi(S) = 1.208

Later we consider only the case when [wi, Ri] is the i-th row of PDD(S; k). Then m(S) is the209

number of rows in PDD(S; k). Each row Ri(S) should have a size independent of S, for example a210

number k of neighbors in PDD(S; k). For any vectors Ri = (ri1, . . . , rik) and Rj = (rj1, . . . , rjk)211

of a length k, we use the L∞-distance |Ri −Rj |∞ = max
l=1,...,k

|ril − rjl|∞.212

Definition 4.1 (EMD) Let finite or periodic sets S,Q ⊂ Rn have weighted vectors I(S), I(Q) as213

discussed above. A flow from I(S) to I(Q) is an m(S)×m(Q) matrix whose element fij ∈ [0, 1]214

represents a partial flow from Ri(S) to Rj(Q). The Earth Mover’s Distance is the minimum cost215

EMD(I(S), I(Q)) =
m(S)∑
i=1

m(Q)∑
j=1

fij |Ri(S) − Rj(Q)| for fij ∈ [0, 1] subject to
m(Q)∑
j=1

fij ≤ wi(S)216

for i = 1, . . . ,m(S),
m(S)∑
i=1

fij ≤ wj(Q) for j = 1, . . . ,m(Q),
m(S)∑
i=1

m(Q)∑
j=1

fij = 1. �217

The first condition
m(Q)∑
j=1

fij ≤ wi(S) means that not more than the weight wi(S) of the component218

Ri(S) ‘flows’ into all components Rj(Q) via ‘flows’ fij , j = 1, . . . ,m(Q). Similarly, the second219

condition
m(S)∑
i=1

fij = wj(Q) means that all ‘flows’ fij from Ri(S) for i = 1, . . . ,m(S) ‘flow’220

into Rj(Q) up to the maximum weight wj(Q). The last condition
m(S)∑
i=1

m(Q)∑
j=1

fij = 1 forces to221

‘flow’ all rows Ri(S) to all rows Rj(Q). The EMD satisfies all metric axioms [40, appendix], needs222

O(m3 logm) time for distributions of a maximum sizem and is approximated inO(m) time [43, 25].223

Theorem 4.2 (lower bound of EMD) For finite or periodic point sets S,Q ⊂ Rn, and k ≥ 1, the224

distances satisfy EMD(PDD(S; k),PDD(Q; k)) ≥ ||AMD(S; k)−AMD(Q; k))||∞. �225

Theorem 4.3 uses the bottleneck distance dB(S,Q) = inf
g:S→Q

sup
p∈S
|p− g(p)| and the packing radius226

r(S), which is the minimum half-distance between any points of S. Equivalently, r(S) is the227

maximum radius r to have disjoint open balls of radius r centered at all points of S.228

Theorem 4.3 (continuity of PDD) For any k ≥ 1, if finite or periodic sets S,Q ⊂ Rn satisfy229

dB(S,Q) < r(S), then EMD(PDD(S; k),PDD(Q; k)) ≤ 2dB(S,Q). �230

Continuity Theorem 4.3 means that any small perturbation of atomic positions in the bottleneck231

distance dB leads to a small change of the Pointwise Distance Distribution in the Earth Mover’s232

Distance. Theorem 4.3 extends the following fact for 2-point sets (k = 1). If we perturb two points233

by at most ε, the distance between them changes by at most 2ε.234

For any set S ⊂ Rn of m points with distinct inter-point distances, completeness of PDD(S;m− 1)235

follows from [20, Theorem 16]. Following the earlier work [17, section 5.1], the supplementary236

materials define a distance-generic set that can approximate any periodic point set S = Λ +M ⊂ Rn.237

The number m of points in a unit cell U is an isometry invariant because any isometry maps U238

to another cell with the same number m of points. In dimensions n = 2, 3, a lattice Λ can be239

reconstructed from its isometry invariants in [11, 33]. Theorem 4.4 assumes that a lattice Λ is given240

and reconstructs a periodic point set S = Λ +M in any dimension n ≥ 2.241

Theorem 4.4 (generic completeness of PDD) Let S = Λ + M ⊂ Rn be a distance-generic peri-242

odic set with m points in a motif M . Let R(Λ) be the smallest radius such that all closed balls with243

centers p ∈ Λ cover Rn. Let 2R(Λ) be smaller than all distances in the last column of PDD(S; k)244

for a big enough k. The set S is uniquely reconstructed up to isometry from Λ, m, PDD(S; k). �245
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5 Polynomial time algorithms and experimental comparisons of PDD246

The algorithm for PDD in Theorem 5.1, found several pairs of unexpected duplicates, which were247

missed by all past tools, through 200B+ pairwise comparisons of 660K+ real periodic crystals over a248

couple of days on AMD Ryzen 5 5600X (6-core) @4.60Ghz, 32GB DDR4 RAM @3600 Mhz.249

The key parameters of PDD(S; k) is the number m of points in a unit cell U and the number k of250

neighbors. So the complexity in Theorem 5.1 is near-linear in both k,m for a fixed dimension n.251

Inputs of the algorithm are a periodic point set S ⊂ Rn and an integer k > 0. The output PDD(S; k)252

is a matrix with at most m rows and exactly k + 1 columns, where m is the number of motif points.253

The first column contains the weights of rows, which sum to 1 and are proportional to the number of254

appearances of the row before collapsing, see the detailed code in the supplementary materials.255

Theorem 5.1 (PDD complexity) Let a periodic set S ⊂ Rn have m points in a unit cell U . For a256

fixed dimension n, PDD(S; k) is computed in a near-linear time O(km(5ν)nVn log(m) log2(k)),257

where Vn is the unit ball volume in Rn, d and ν = d
n
√

Vol[U ]
are the diameter and skewness of U . �258

Section 2 reviewed that all past tools are based on ambiguous non-invariant data or discontinuous259

invariants that miss (near-)duplicates, or the resulting algorithms are too slow for pairwise comparisons260

of millions of crystal structures. The recently discovered continuous invariants with theoretical (not261

exactly computable) metrics [17, section 6] and [2, section 8] require cubic algorithms, which turned262

out to be unrealistic for large data. We tried our best and ran several algorithms below.263

The Cambridge Crystallographic Data Centre (CCDC) is a multi-million company curating the264

world’s largest Cambridge Structural Database (CSD) since 1960s. Now the CSD has more 1.17M265

known periodic structures. A new crystalline material is deposited in the CSD only after a peer-266

reviewed publication. The CCDC checks that a new structure is genuine and not a duplicate of267

an earlier one because their data is trusted by all pharmaceutical giants developing new drugs in a268

crystalline form. The CSD is a huge list of Crystallographic Information Files representing crystals by269

unit cells and motifs of points in coordinates of a cell basis with limited search and slow comparison.270

The Nature paper [18] reported four experimental T2 crystals (based on the same molecule T2)271

that were successfully synthesized after predicting 5679 crystals through 12-week simulations on a272

supercomputer. All initial 2M+ randomly sampled crystals were iteratively optimized to the ‘most273

stable’ approximations of local energy minima. This is a typical ‘embarrassment of over-prediction’274

when many (near-)duplicates are found around the same local minimum but remain undetected.275

One striking example is the pair of crystals 14 and 15 in Fig. 6, see the original files and more details276

in the supplementary materials. When this pair was compared by another free software Platon [44], a277

bug was discovered, which is still not fixed for a couple of months. Such bugs will keep emerging278

because the discontinuity of past invariants and metrics was not addressed as in Problem 1.1.279

Figure 6: Crystals 14 and 15 based on the T2 molecule have very different Crystallographic Informa-
tion Files (with different motifs in unit cells of distinct shapes) but are nearly identical up to isometry.

For example, a rough sampling of the density functions ψk(t) from [17] of 5679 crystals for up to280

k = 8 took more than four days on a comparable machine. This experiment detected the T2-δ crystal281

that was accidentally not deposited in the CSD because of a visual confusion with another structure.282
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The most popular packing similarity [10] algorithm COMPACK is available in the free software283

Mercury. The 4950 comparisons of the 100 lowest energy crystals close to T2-δ in density by packing284

similarity took 3 hours 53 min, 2.825 seconds per comparison. Extrapolating this time for comparing285

any new structure with the whole CSD gives 38 days. In contrast, a typical comparison by PDD takes286

around 10 milliseconds, so comparing 100 crystals pairwise takes less than one minute.287

Table 3: Most comparisons of 100 lowest energy crystals close to the T2-δ by packing similarity [10]
matched small numbers of molecules for the default maximum 15, which means a failure.

molecules 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

comparisons 2784 1150 773 69 85 21 31 6 2 7 12 3 1 0 6

6 Conclusions and a discussion of remaining limitations and societal impact288

Most importantly, more than half of all comparisons in Table 3 matched only one molecule from two289

crystals. Since all crystals consist of the same rigid molecule T2, this output means a complete failure:290

one common molecule, no other conclusions. Since the CCDC deposits hundreds of new structures291

daily, the short-cut approach is to compare the chemical composition of atoms. But even the water292

H2O has at least 15 forms of ice crystals, while other compositions have many more polymorphic293

forms in the CSD. This comparison by composition can miss duplicates where one atom is incorrect.294

Exactly this reliance on past tools allowed PDD to detect five pairs of unexpected duplicate ‘needles in295

the haystack’ of 660K+ periodic crystals. First, the simpler invariants AMD(S; 100) were computed296

for all 660K+ periodic structures in the CSD, without disorder and with full geometric data.297

The 200B+ pairwise comparisons of AMD(S; 100) vectors revealed 6371 pairs S,Q with298

|AMD(S; 100) − AMD(Q; 100)|∞ ≤ 0.01. As an AMD is simpler and faster to compare, up299

to the order of 10−7 seconds per comparison, this step took around 8 hours. This fact and Theo-300

rem 4.2 makes AMD a good filter for comparison before using the stronger invariants PDD.301

Second, computing the L∞-based EMD between the pairs above detected 182 pairs with EMD <302

0.01. Most of these pairs were expected and were the same crystal, or different aliases for the same303

database entry. The five pairs reported in [20, section 7] were unexpected because the underlying304

periodic sets of points at atomic centres were truly isometric (to the last decimal place) but one atom305

had different chemical elements in two crystals. The crystals with the CSD codes HIFCAB and306

JEPLIA are literally isometric but one Cadmium is replaced by Manganese at the same position. All307

past tools taking into account atomic types see these crystals as different. The CCDC agreed that such308

a coincidence is physically impossible because another atom should have slightly different distances309

to neighbors detected by PDD. Hence at least one of the structures in the pairs above cannot be310

correct. The five journals have started investigating the data integrity of the underlying publications.311

This paper reports many more pairs in supplementary materials that were less obvious due to larger312

EMD values up to 0.1. The new pairs were found by comparing periodic sets of points at molecular313

centers instead of atomic centers. The pairs of the resulting sets of centers are exactly identical with314

EMD = 0 but differ by some atomic types as above. The CCDC is now investigating this new batch.315

In conclusion, Theorems 3.2, 4.3, 5.1 , 4.4 fulfilled almost all conditions of Problem 1.1, while all316

past tools remained discontinuous or too slow for billions of real comparisons. The only limitation is317

a hypothetical existence of singular sets S 6∼= Q with PDD(S; k) = PDD(Q; k) for all k ≥ 1. The318

PDD distinguished all known 660K+ periodic crystals in the CSD through 200B+ comparisons each319

running in nanoseconds on a modest desktop outperforming all tools by many orders of magnitude.320

As a result, several pairs of potentially fraudulent structures are emerging, which might have some321

negative impact on past publications that could be retracted. More importantly, the experiments con-322

firmed the Crystal Isometry Principle [20, section 7]: the map {periodic crystals} → {periodic point323

sets} is injective (doesn’t lose information) modulo isometry. Hence all existing and undiscovered324

crystals live in the common space parameterized by complete isometry invariants. Its first continuous325

maps for 2D lattices appeared in [9]. We thank all reviewers for their valuable time and suggestions.326
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1. For all authors...415

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-416

per’s contributions and scope? [Yes] The main theoretical results are stated The-417

orems 3.2, 4.3, 5.1 , 4.4 and are proved in the supplementary materials. The key418

experiments are described in sections 5 and 6 with more details in the supplementary419

materials.420

(b) Did you describe the limitations of your work? [Yes] Yes, discussed in section 6.421

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Potential422

fraud and possible retractions of several papers are discussed in section 6.423

(d) Have you read the ethics review guidelines and ensured that your paper conforms to424

them? [Yes] In particular, the paper was properyl anonymized.425

2. If you are including theoretical results...426

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Yes, all formal427

theorems are completely stated. For Theorem 4.4, the definition of a distance-generic428

periodic point set couldn’t fit the page limit and is now in the supplementary materials.429

(b) Did you include complete proofs of all theoretical results? [Yes] Yes, in the supple-430

mentary materials.431

3. If you ran experiments...432

(a) Did you include the code, data, and instructions needed to reproduce the main exper-433

imental results (either in the supplemental material or as a URL)? [Yes] Yes, in the434

supplementary materials.435

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were436

chosen)? [Yes] The PDD algorithm used only one parameter k = 100 (the number of437

atomic neighbors) in addition to a typical input (Crystallographic Information File).438

However, increasing k only adds more invariants to PDD(S; k) without changing the439

previous values.440

(c) Did you report error bars (e.g., with respect to the random seed after running experi-441

ments multiple times)? [Yes] Yes, the threshold of 10−12meters (atomic scale) was442

used to identify and further investigate (near-)duplicates, however exact duplicates443

were reported at distance 0.444

(d) Did you include the total amount of compute and the type of resources used (e.g.,445

type of GPUs, internal cluster, or cloud provider)? [Yes] Yes, the specifications of the446

modest desktop computer appear at the beginning of section 5.447

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...448

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, the Cambridge449

Structural Database [19] and the database of T2 crystals reported in [18].450

(b) Did you mention the license of the assets? [Yes] Individual structures can be freely451

downloaded from the Cambridge Structural Database (CSD) by their 6-letter codes452

given in the paper and supplementary materials.453

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]454

For convenience, the supplementary materials include the pairs of duplicate structures455

and other important crystals mentioned in the paper.456

(d) Did you discuss whether and how consent was obtained from people whose data you’re457

using/curating? [Yes] All used data is freely available.458

(e) Did you discuss whether the data you are using/curating contains personally identifiable459

information or offensive content? [N/A] All data is non-personal.460

5. If you used crowdsourcing or conducted research with human subjects...461

(a) Did you include the full text of instructions given to participants and screenshots, if462

applicable? [N/A] No crowdsourcing, no research with human subjects.463

(b) Did you describe any potential participant risks, with links to Institutional Review464

Board (IRB) approvals, if applicable? [N/A] No crowdsourcing, no human subjects.465

(c) Did you include the estimated hourly wage paid to participants and the total amount466

spent on participant compensation? [N/A] No crowdsourcing, no human subjects.467
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