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ABSTRACT

Recent advancements in explainable machine learning provide effective and faithful
solutions for interpreting model behaviors. However, most explanation methods
encounter efficiency issues, which largely limits their deployments in practical
scenarios. Real-time explainer (RTX) frameworks have thus been proposed to ac-
celerate the model explanation process by learning an one-feed-forward explainer.
Existing RTX frameworks typically build the explainer under the supervised learn-
ing paradigm, which require large amounts of explanation labels as ground truth.
Considering that accurate explanation labels are usually hard to obtained, due
to the constrained computational resources and limited human efforts, effective
explainer training is still challenging in practice. In this work, we propose a
COntrastive Real-Time eXplanation (CoRTX) framework that adopts contrastive
learning to relieve the intensive dependence of explainer training on explanation
labels. Specifically, we design a synthetic strategy to select positive and negative
samples for explanation representation learning. Theoretical analysis show that our
selection strategy can benefit the contrastive learning process on explanation tasks.
Experimental results on three real-world datasets further demonstrate the efficiency
and effectiveness of our proposed CoRTX framework.

1 INTRODUCTION

The remarkable progress in explainable machine learning (ML) significantly improve the model
transparency to human beings (Du et al., 2019). However, applying explainable ML techniques to
real-time scenarios remains to be a challenging task. Real-time systems typically require explanation
methods to be not only human-understandable and faithful, but also efficient (Stankovic et al., 1992).
Due to the requirements from both stakeholders and social regulations (Goodman & Flaxman, 2017;
Floridi, 2019), efficient explanation methods are necessary for the real-time ML systems, such as
the key decisions in controlling systems (Steel & Angwin, 2010), advertisement recommendation
on e-commerce systems (Yang et al., 2018), and denotations in healthcare systems (Esteva et al.,
2019; Gao et al., 2017). Nevertheless, existing work on local explanation methods suffer from high
explanation latency, including LIME (Ribeiro et al., 2016), KernelSHAP (Lundberg & Lee, 2017),
GradCAM (Selvaraju et al., 2017), Integrated Gradient (Sundararajan et al., 2017) and RISE (Petsiuk
et al., 2018). These methods rely on either multiple perturbations or backward propagation in deep
neural networks (DNNs) for explanation (Covert & Lee, 2021; Liu et al., 2021), which can be
time-consuming and limited in deployment on the real-time scenarios.

Real-time explainer (RTX) frameworks have thus been proposed to address such efficiency issue and
provide faithful explanations for real-time systems (Dabkowski & Gal, 2017; Jethani et al., 2021b).
Specifically, RTX learns a global explainer on the training set by using the ground-truth explanation
labels which obtained from exact calculation or approximation. RTX then provides explanations for
each testing instance via a single feed-forward process. Existing efforts on RTX can be categorized
into two lines of work. The first line (Jethani et al., 2021b; Covert et al., 2022) explicitly learns
an explainer to minimize the estimation error from the ground-truth explanation label. The second
line (Dabkowski & Gal, 2017; Chen et al., 2018; Kanehira & Harada, 2019) trains the feature mask
generators based on certain constraints on predefined label distribution for feature selection. Despite
the effectiveness of existing RTX frameworks, recent advancements still rely on the large amounts
of explanation label under the supervised learning paradigm. The computational cost of deriving
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explanation labels is extremely high (Roth, 1988; Winter, 2002), indicating that existing supervised
RTXs thereby limit the wide deployment in real-world scenarios.

To tackle the aforementioned challenges, we propose a COntrastive Real-Time eXplanation (CoRTX)
framework based on the contrastive learning techniques. CoRTX aims to learn the explanation
representation of each data instance without any ground-truth explanation label. Contrastive learning
has been widely exploited for improving the learning processes of downstream tasks by providing
well pre-trained representative embeddings (Arora et al., 2019; He et al., 2020). In particular, a
task-oriented selection strategy of positive and negative pairs (Chen et al., 2020a; Khosla et al., 2020)
can shape the representation properties through contrastive learning. Motivated by this existing
contrastive schemes, CoRTX develops an explanation-oriented contrastive learning framework to
generate well pre-trained explanation representation, with the goal of further fine-tuning in the
downstream explanation tasks.

CoRTX learns the explanation representation to deal with explanation tasks by minimizing the
contrastive loss function (Van den Oord et al., 2018), Specifically, CoRTX framework designs a
synthetic positive and negative sampling strategy to learn the explanation representation. The pre-
trained explanation representation can then be transformed to feature attribution by fine-tuning an
explanation head using a tiny amount of explanation label. The theoretical analysis and experimental
results demonstrate that CoRTX can successfully provides effective explanation representation for
different explanation tasks. Overall, the contributions can be summarized as follows:

• CoRTX provides a contrastive learning framework for generating explanation representation,
which can effectively reduce the required amount of explanation labels.

• Theoretical analysis indicates our proposed CoRTX framework is able to generate effective
explanation representation and bounds the explanation error.

• Empirical results demonstrate our proposed CoRTX can efficiently provide faithful explanation
on both tabular and image datasets.

2 PRELIMINARY

2.1 NOTATIONS

We consider an arbitrary DNN f(·) as the target model to interpret. Let input feature be x =
[x1, · · · , xM ] ∈ X , where x1, · · · , xM denote the value of input feature 1, · · · ,M , respectively.
The contribution of each feature to the model output can be treated as a cooperative game on the
feature set X (Shapley, 1953). Specifically, the preceding difference f(x̃S∪{i})−f(x̃S) indicates
the contribution of feature i under feature subset S ⊆ U \ {i}, where U is the entire feature set. The
overall contribution of feature i is formalized as the average preceding difference considering all
possible feature subsets S, which can be formally given by

ϕi(x) := ES⊆U\{i}
[
f(x̃S∪{i})− f(x̃S)

]
. (1)

where x̃S=S⊙x+(1−S)⊙xr denotes the perturbed sample, S=1S ∈ {0, 1}M is a masking vector
of S, and xr=E[x |x ∼ P (x)] denotes the reference values1 of each feature. The computational
complexity of Equation 1 grows exponentially with the feature number M , which prevents its
application to real-time explanation. To this end, we propose an efficient and faithful framework for
the real-time explanation in this work.

2.2 REAL-TIME EXPLAINER

The Real-Time explainer framework (RTX) maintains a global model to provide a fast explanation for
each data instance via one feed-forward process. Generally, RTX attempts to learn the global explana-
tion distribution under two different methodologies, Shapley-sampling-based approaches (Wang et al.,
2021; Jethani et al., 2021b; Covert et al., 2022) and feature-selection-based approaches (Chen et al.,
2018; Dabkowski & Gal, 2017; Kanehira & Harada, 2019). The first line of approaches enforces a
DNN explainer to simulate the given approximated Shapley distribution for generating explanation
results. The second line of approaches assumes the specific predefined feature patterns or distributions,
and formulates the explainer learning strategy based on the given hypothesis. As Shapley value is
well supported with solid theoretical backbones, Shapley-sampling-based approaches are typically
more faithful for training RTX frameworks.

Different from the local explanation frameworks (Lundberg & Lee, 2017; Lomeli et al., 2019) that
require multiple explaining models for each data instance, RTX frameworks only require one global

1Other statistic probability families can also be adopted for generating the reference value.
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Figure 2: Pre-training explanation representation from the explanation encoder in CoRTX and fine-
tuning on explanation head.

model for explanation. Compared to the local explanation frameworks, the advantages of RTX are
as follows: (1) obtaining faster inference utility and (2) ensuring similar data instances with similar
explanations. One of the work (Chen et al., 2018) provides a feature masking generator for real-time
feature selection. The training process of mask generator is under the constraint of the given ground-
truth label distribution. Another work, FastSHAP (Jethani et al., 2021b), proposes a state-of-the-art
Shapley-sampling-based framework for learning RTX to derive feature attribution. With sufficient
amounts of masking sampling, FastSHAP exploits a DNN model to imitate the Shapley distribution
among the training data instances to yield an efficient RTX. In general, Shapley-sampling-based
approaches are more faithful but suffered from high computational costs when examining larger
feature subsets, while feature-selection-based approaches are easy-to-train but constrained under the
specific distributions. In this work, we propose an unsupervised framework, CoRTX, to benefit with
the advantages of both works. This makes CoRTX to be more efficient and faithful.

2.3 LIMITATION OF SUPERVISED FRAMEWORK
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Figure 1: The explanation ranking
versus the ratio of explanation an-
notations on supervised training.

Supervised RTX relies on enormous quantities of ground-truth
explanation annotations, which limits its application to real-
world scenarios. It is experimentally proved that supervised
RTX suffers from performance degradation without sufficient
explanation annotations. Specifically, taking the Shapley values
as the ground-truth explanation, the supervised RTX is learned
to minimize the mean square error on the training dataset, and
then estimates explanations on the testing dataset for evaluation.
Preliminary experiments are conducted on the Census Income
dataset Dua & Graff (2017) which demonstrates the necessity of
supervised RTX to use enormous quantities of explanation an-
notations. The explanation ranking performance versus the ex-
ploitation ratio of explanation annotations for training is given
in Figure 1. Implementation details are given Appendix B.

According to Figure 1, we observe that the performance of ex-
planation ranking significantly grows as the ratio of annotations
increases. However, the complexity of estimating the ground-truth explanation is extremely high (i.e.,
the computational complexity of the Shapley values grows exponentially with the feature number). It
is challenging to have a well-trained RTX considering the limited computational resources in real-
world scenarios. To tackle this problem, we propose a CoRTX framework to pre-train the explaners
without any explanation labels on the training dataset. As shown in left-hand side of Figure 2, CoRTX
first propose a explanation encoder to generate explanation representation without any supervision
for downstream explanation task. After the explanation encoder has been well-trained, as shown in
right-hand side of Figure 2, a explanation head can converge to optimal even very limited explanation
labels are available to exploit.

3 CONTRASTIVE REAL-TIME EXPLANATION

We systematically introduce our CoRTX framework in this section. Figure 2 demonstrates the
overall pipeline of our proposed CoRTX. CoRTX is built under a constrastive learning paradigm with
positive data augmentation and negative data sampling (Kim et al., 2016; Dhurandhar et al., 2018) for
providing a real-time explanation.
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3.1 POSITIVE DATA AUGMENTATIONS TOWARD SIMILAR EXPLANATION

Different from conventional data augmentation (Liu et al., 2021) for representation learning, CoRTX
develops an explanation-oriented data augmenting strategy for training RTX. Consider an anchor dat-
apoint x ∈ X , the synthetic positive data collection is randomly sampled by m times of perturbation
of x, which is formally defined as:

X+ = {Si ⊙ x+ (1 − Si)⊙ xr | Si ∼ B(M, 0.5)}, (2)
where B(M, 0.5) denotes M -dimensional binomial distribution. An optimal compact positive dat-
apoint is ideally composed of similar important features to the anchor data point, which leads to
a slight variation in prediction scores between the two datapoints. Thus, CoRTX determines an
compact positive datapoint x̃+ by holding the minimum difference gap between the prediction scores
of x and x̃+. Formally, we make the selection strategy as follows:

x̃+ = arg min
x̃i∈X+

|f(x)− f(x̃i)|. (3)

We further propose Theorem 1 to provide a theoretical analysis to support the proposed positive
data augmentation in CoRTX. Theorem 1 basically shows that the ideal greedy selection strategy in
CoRTX can degrade the error difference of explanation values between the anchor point x and the
positive sample x̃+. This demonstrates the compact positive sample x̃+ has similar explanation to
anchor point x. The proof of Theorems 1 is provided in Appendix A.

Theorem 1 (Compact Alignment). Let f(x) be a K-Lipschitz continuous function for the given input
sample x and Φ(x) = [ϕ1(x), · · · , ϕM (x)] be the importance score of each feature, where ϕi(x) :=
ES⊆U\{i}

[
f(x̃S∪{i})−f(x̃S)

]
. Given a perturbed sample x̃∈X+ satisfying min1≤i≤M ϕi(x̃)≥ 0,

the explanation difference ||ϕ(x)− ϕ(x̃)||2 is bounded by the prediction difference |f(x)− f(x̃)| as

||ϕ(x)− ϕ(x̃)||2 ≤ (1 +
√
2γ0)|f(x)− f(x̃)|+

√
Mγ0, (4)

where γ0 = K||x||2 and K ≥ 0 is the Lipschitz constant of function f(·).

According to Theorem 1, we can obtain an optimal positive sample for the least upper bound of
||ϕ(x)−ϕ(x̃)||2, when CoRTX is able to select an optimal compact positive sample under the selected
mask conditions. The selected masking condition in Theorem 1 ensures that each non-masking feature
obtains positive contributions toward the model prediction f(·), which prevents the ideal candidate
of compact positive samples from being a set of noise sampling. However, hard positive sample
selection has been proved to benefit the contrastive learning (Grill et al., 2020; Kalantidis et al., 2020).
The compact positive data may be a slightly perturbed sample when selecting from the universe
set of perturbed datapoints and aggravate the contrastive learning process of CoRTX. In practice,
considering to generate a hard positive sample, CoRTX receives an compact positive data point x̃+

i
by selecting from the subset of synthetic positive set X+.

3.2 EXPLANATION CONTRASTIVE LOSS

Unlike the downstream tasks focusing by existing contrastive learning approaches (He et al., 2020;
Chen et al., 2020b), CoRTX adopts the contrastive learning with positive data augmentation and
negative sampling to generate the explanation representation of each data instance. Specifically,
a positive pair includes an anchor data instance xi and a compact perturbed augmentation x̃+

i . A
negative pair contains an anchor data instance xi and another data point xj , where j ̸= i.

The proposed explanation encoder g(· | θg) : RM → Rd in CoRTX aims to generate the explanation
representation. Let hi = g(xi | θg) be the encoded explanation representation of xi and h̃+

i =

g(x̃+
i | θg) be the encoded compact positive sampling x̃+

i . CoRTX updates the explanation encoder
g(· | θg) by measuring the similarity through dot product. Given an anchor encoded representation hi,
the explanation encoder g(· | θg) can be optimized with one encoded positive sample pair (hi, h̃

+
i )

and N encoded negative sample pairs (hi,hj), where i ̸= j. We follow the existing work (He et al.,
2020; Chen et al., 2020a) to construct the contrastive loss function of CoRTX and minimize the
contrastive loss function illustrated as follows:

Lg = − log
exp (hi · h̃+

i /τ)∑N
j=1 exp (hi · hj/τ)

, (5)

where τ is a temperature hyper-parameter Wu et al. (2018). Note that the form of contrastive loss
function can be replaced with other implementations (Jaiswal et al., 2020).
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To provide downstream results from pre-train representation, a explanation head η : Rd → RM

is exploited to generate the feature explanation in the downstream tasks. Specifically, η(· | θη) is
learned with pre-trained explanation representation made from g(xi | θg) and very few amount of
explanation labels (e.g., the Shapley Values), which makes the computational cost be affordable in
real-world scenarios. Moreover, η(· | θη) can be designed to adapt different scenarios of model
interpretation. In this work, CoRTX is built under two common explanation scenarios, which are the
feature attribution task and feature importance ranking task.

To ensure the accuracy of generated explanation from CoRTX, We here provide Theorem 2 to reveal
the efficacy of the explanation error of CoRTX is under theoretical support. The proof of Theorems 2
is provided in Appendix A.
Theorem 2 (Explanation Error Bound). Given a training set D, a testing set C, and a well-
trained explainer ϕ̂ = η ◦ g , where g denotes the contrastive explanation encoder to generate low
rank explanation embeddings and η represents explanation head. Assume ϕ̂(·) is a Kh-Lipschitz
continuity. For all xj ∈ D in training set, if there exist E > 0, such that the training error satisfies
||ϕ(xj) − ϕ̂(xj)||2 ≤ E . Then, for any testing datapoint xk ∈ C, the testing explanation error
Err(ϕ̂) = ||ϕ(xk)− ϕ̂(xk)||2 can be bounded as:

||ϕ(xk)− ϕ̂(xk)||2 ≤ (1 +
√
2γ0)|f(x)− f(x̃+

k )|+
√
Mγ0 + E +Kh||hx̃+

k
− hxk

||2 (6)

where x̃+
k is the compact positive sample, hxi

= g(xi), γ0 = K||xk||2, and Kh ≥ 0 is the Lipschitz
constant of prediction model f(·).

With theoretical analysis, we conclude two advantages brought from CoRTX in Remark 1. The
first advantage lies in the explanation representation learning. The second advantage takes from the
compact positive selection strategy.
Remark 1. Within our proposed CoRTX framework, the upper bound of explanation error Err(ϕ̂)
can be reduced due to the following reasons:

• Our proposed CoRTX minimizes the representation distance of ||hx̃k
−hxk

||2 which contributes
to minimize the last item of explanation error bound.

• Our proposed CoRTX framework provides a compact positive selection strategy to get smaller
|f(x)− f(x̃+

k )| than randomly selection.

3.3 ALGORITHM OF CORTX

The outline of CoRTX is given in Algorithm 1. Specifically, CoRTX first follows Equation 3 to
receive compact positive selection (lines 4-5), and then updates the explanation encoder g(· | θg)
according to Equation 5 (line 6). The training iterations stop once the explanation encoder g(· | θg)
converges to the optimal. After CoRTX framework converges, g(· | θg) generates the explanation
representation for each data instance x = [x1, · · · , xM ]∈X . A explanation head η(· | θη) is then
fine-tuned by involving very limited explanation labels and explanation representation for generating
efficient and faithful explanations.

Algorithm 1: Explanation Encoder g(· | θg) in CoRTX

1 Input DNN model f , input values x = [x1, · · · ,xM ].
2 Output Estimation contribution values of each feature [ϕ̂1, ...,ϕ̂M ].
3 while not convergence do
4 Generate the synthetic positive instances X+={Si⊙x+(1−Si)⊙xr |Si∼B(M, 0.5)}.
5 Select the compact positive sampling x̃+ = argminx̃i∈X+ |f(x)− f(x̃i)| and the set of

negative samples {xj | j ̸= i}.
6 Update g(· | θg) with x̃+ and xj to minimize loss function given by Equation 5.
7 end

4 EXPERIMENTS

We conduct the experiments to demonstrate the effectiveness of CoRTX, aiming to answer the
following research questions: RQ1: How does CoRTX perform compared with state-of-the-art
baselines? RQ2: What is the impact brought from pre-trained CoRTX to reduce usage amount
of ground-truth explanation labels? RQ3: How does the explanation representation generated by
CoRTX improve the generalization to the explanation tasks?
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4.1 DATASETS AND BASELINES

Datasets. Our experiments consider two tabular datasets: Census Income (Dua & Graff, 2017)
with 13 features, Bankruptcy (Liang et al., 2016) with 96 features and one image dataset: CIFAR-
10 (Krizhevsky et al., 2009) with 32 × 32 pixels. The preprocessing and statistics details of three
datasets are all provided in Appendix B. Baseline Methods. On the Census Income and Bankruptcy
datasets, CoRTX is compared with two RTX models, which are Supervised RTX, FastSHAP (Jethani
et al., 2021b), and two representative local explanation models, KernelSHAP (KS) (Kokhlikyan
et al., 2020) and Permutation Sampling (PS) (Mitchell et al., 2021). On the CIFAR-10 dataset,
CoRTX is compared with one RTX model, FastSHAP (Jethani et al., 2021b), and several local
explanation models, DeepSHAP (Lundberg & Lee, 2017), Saliency (Simonyan et al., 2013), Integrated
Gradients (Sundararajan et al., 2017), SmoothGrad Smilkov et al. (2017), and GradCAM (Selvaraju
et al., 2017). More details about the baseline methods can be referred to Appendix B.

4.2 EXPERIMENTAL SETTINGS AND EVALUATION METRICS

In this section, we introduce the experimental settings and metrics used for evaluating CoRTX. The
task settings and implementation details are shown as follows.

Feature Attribution Task. The task-specific CoRTX under such training is denoted as CoRTX-
MSE. CoRTX-MSE first provides pre-trained explanation representation hi of input instance xi

from g(xi | θg). After this, feature attribution score is estimated based on a regression-oriented
explanation head η(hi | θη) with tiny amounts of Shapley-based explanation labels. The explanations
are generated by [ϕ̂1, · · · , ϕ̂M ]=η(hi | θη), where ϕ̂i indicates the contribution of feature i. The
explanation head η(hi | θη) learns to minimize the mean-square loss LMSE =

1
M

∑M
i=1(ϕ̂i − ϕi)

2

between estimated scores η(hi | θη) = ϕ̂i and explanation labels ϕi. Since CoRTX-MSE is
evaluated on Shapley-based explanation values, we adjust the predicted explanation scores to fit the
additive property of Shapley values on evaluation stage, following the common additive efficient
normalization (Jethani et al., 2021b; Ruiz et al., 1998). To evaluate the performance of CoRTX, the
estimated feature attribution scores are measured by the ℓ2-error (Jethani et al., 2021b). The mean
ℓ2-error indicates the Euclidean distance error from the explanation labels given by

ℓ2-error =
1

N

N∑
n=1

[ √√√√ M∑
i=1

(ϕi − ϕ̂i)2

]
n

, (7)

where N denotes the cardinality of testing set and M is feature numbers of each data instance.

Feature Importance Ranking Task. In this set of experiments, our explanation head η(hi | θη)
aims to estimate the feature importance ranking index [r̂1, · · · , r̂M ]. The task-specific CoRTX in
this scenario is denoted as CoRTX-CE. Here, the ground-truth ranking annotations are assumed
to be the ranking index from explanation scores. Given the ranking annotations [r1, · · · , rM ] of
each training sample, the explanation head η(hi | θη) learns the feature importance ranking with
pre-trained explanation representation. CoRTX-CE minimize the loss function given by LCE =∑M

i=1 l(r̂i, ri; θh), where l(r̂i, ri; θ) denotes the cross entropy loss. The feature importance ranking
is evaluated by the ranking accuracy (Wang et al., 2022). Specifically, it indicates the ratio of the
correct-ranked features to all features . By considering more significance for the important features
than the trivial features, the accuracy of descending feature ranking is given by:

Rank ACC =

∑M
m=1

1r̂m=rm

m∑M
m=1

1
m

, (8)

where the factor 1
m at the numerator highlights the contributions of important features to the accuracy,

and the factor
∑M

m=1
1
m at the denominator normalizes the accuracy such that 0 ≤ Rank ACC ≤ 1.

Evaluation of Efficiency. To evaluate speed performance of the above explanation scenarios, we
adopt algorithmic throughput to evaluate the efficiency (Wang et al., 2022). The measurement is
calculated by Throughput = Ntest

ttotal
, where Ntest and ttotal denote the testing instance number and the

overall time consumption of generating the explanations, respectively. For the three datasets, the
testing instance number Ntest is given in Appendix B, and ttotal is measured based on the physical
computing infrastructure given in Appendix B.
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Figure 3: Explanation throughput versus ranking accuracy on Census Income (a) and Bankruptcy
dataset (b). Explanation throughput versus ℓ2-error on Census Income (c) and Bankruptcy dataset (d).

Implementation Details. Three different prediction models f(·) are applied for verifying the agnostic
property of proposed CoRTX. AutoInt (Song et al., 2019) is adopted for Census Income dataset,
MLP model is used for Bankruptcy dataset, and ResNet-18 is considered for CIFAR-10. To generate
ground truth explanation labels, we calculate the exact Shapley values for Census Income dataset.
However, due to the high computational resource requirements, we utilize the approximated methods
to generate explanation labels until the convergence Covert & Lee (2021); Jethani et al. (2021b).
Since estimated values from Antithetical Permutation Sampling (APS) (Mitchell et al., 2021; Lomeli
et al., 2019) and KernelSHAP Lundberg & Lee (2017) are proved to approach to exact Shapley values
when it obtains high samples Covert & Lee (2021). Thus, APS is set to generate the explanation
labels for Bankruptcy dataset and KernelSHAP yields the explanation labels for CIFAR-10. More
implementation details are introduced at Appendix B.

4.3 TABULAR EXPERIMENTS

4.3.1 EXPLANATION AND EFFICIENCY PERFORMANCE (RQ1)
We compare CoRTX with the baseline methods on efficacy and generating speed of the predicted
explanations. The results are shown by ℓ2-error versus throughput on feature attribution task and
Rank ACC versus throughput on feature importance ranking task. RTX frameworks, such as CoRTX
and FastSHAP, build on the training set and evaluate on the testing dataset. For other local methods,
such as KernelSHAP and Permutation Sampling, the explanations are generated based on 2n times
of model evaluation, where 3 ≤ n ≤ 11. Larger times of model evaluation given in local methods
indicate a smaller throughput. The reported results of CoRTX adopting 25% of the explanation labels
on fine-tuning stage. The outcomes of explanation throughput versus explanation performance on the
Census Income dataset is illustrated in Figures 3 (a) and (c) and demonstrate Figures 3 (b) and (d) on
the Bankruptcy dataset under feature attribution task and ranking task.
• CoRTX vs. Local Methods: For KernelSHAP and PS, a sharp decrease of ranking accuracy and

an increase of the ℓ2-error can be observed as the growth of throughput. Compared with local
explanation methods obtaining large times of model evaluations, CoRTX achieves competitive
explanation performance. For example, CoRTX is competitive to PS with 28 times of model
evaluation and KernelSHAP with 210 times on Census Income dataset. This indicates KernelSHAP
and PS suffer from an undesirable tradeoff between explanation speed and performance. In contrast,
our proposed CoRTX provides both fast and accurate explanation.

• CoRTX vs. FastSHAP: CoRTX outperforms FastSHAP on Rank ACC and ℓ2-error under the
same level of throughput. This shows that our proposed CoRTX provides accurate and faithful
explanations in the scenario of RTX.

• CoRTX-MSE vs. CoRTX-CE: CoRTX successfully provides accurate solutions for two explana-
tion tasks. CoRTX-CE outperforms CoRTX-MSE in the feature ranking task, while CoRTX-MSE
still remains competitive performance on feature attribution task. The results indicate the necessity
of selecting appropriate downstream loss on fine-tuning stage. To sum up, CoRTX has the potential
capability and flexibility to be applied to different scenarios of model explanation.

4.3.2 IMPACT FROM PRE-TRAINED EXPLANATION REPRESENTATION (RQ2)
In this set of experiments, we investigate the effects of pre-trained explanation representation brought
to the usage amount of explanation labels. Given the fixed pre-trained explanation representation,
Figure 4 demonstrates the explanation performance of the RTX frameworks with different annotation
usage ratios. We compare CoRTX with two baseline RTX frameworks (i.e., FastSHAP and supervised
RTX). For the fair comparison, CoRTX and supervised RTX adopt the same loss function under the
same task. We summarize the key results as follows:
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Figure 4: Explanation performance with different proportion of explanation label usage on two
tabular dataset. CoRTX outperforms SOTA baselines by using only 5% of labels.

• Effectiveness of Pre-training: By providing pre-trained explanation representation, CoRTX-MSE
and CoRTX-CE consistently outperform the supervised RTX on different label proportions. The
results on two explanation tasks shows that CoRTX provides effective explanation representation
hi on fine-tuning the explanation head η(hi | θη).

• Sparsity of Annotations: CoRTX-MSE and CoRTX-CE can both provide faithful explanation
results when explanations labels are very limited. This indicates CoRTX can be potentially
applied to real-world large scale datasets because the computational complexity of generating the
explanation labels is extremely high in practice.

• Effectiveness of Fine-tuning: Both supervised RTX and CoRTX outperform FastSHAP on ranking
accuracy and ℓ2-error under 5% of explanation label usage. CoRTX can significantly reduce the
usage of good quality labels by providing pre-trained explanation representation. For the fast
explanation yielding, FastSHAP synchronously generates the approximated explanation labels
during the explainer training. However, comparing FastSHAP to supervised RTX, the results
indicates that exact explanation labels usage (e.g., exact Shapley values) benefits the explanation
performance than approximated labels. This reveals that CoRTX obtains the advantages from
limited usage of exact labels and leads to fast estimation and accurate explanation.

4.3.3 ABLATION STUDIES ON SYNTHETIC POSITIVE AUGMENTATIONS
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Figure 5: Ablation Study on Posi-
tive Augmentations.

In this section, we conduct an ablation test on the greedy pos-
itive augmenting strategy in Section 3.1 to evaluate the efficacy
on explanation. We perform the ablation experiments under
the Census dataset on the feature ranking and feature attribu-
tion task. First, the greedy positive augmenting strategy is
replaced with a random selection of candidate synthetic posi-
tive data, which is denoted as CoRTX w/o Compact Alignment
(CA). Second, we replace the proposed greedy positive aug-
menting strategy with a maximum positive augmenting strategy
in our ablation studies, which is denoted as CoRTX w/ Maxi-
mum Alignment (MA). The other settings of CoRTX w/o CA and
CoRTX w/ MA follow the traditional contrastive learning, which
uniformly samples the positive data. Figure 5 demonstrates
the results of CoRTX w/o CA and CoRTX w/ MA comparing
to our proposed CoRTX. As shown in the figure, we can ob-
serve that CoRTX outperforms CoRTX w/o CA and CoRTX
w/ MA under different proportions of explanation label usage
on two explanation tasks. The results reveal that the proposed
explanation-oriented sampling strategy in CoRTX can significantly benefit the efficacy of explanation
results. The results in this ablation study demonstrate the necessity of adopting Compact Alignment
in the CoRTX framework instead of positive sampling from conventional contrastive learning.

4.4 IMAGE EXPERIMENTS (RQ3)

Unlike tabular data that obtains relatively few features, image data is composed of high-dimension
pixel features. In this section, we evaluate the performance of explanation representation generated
by CoRTX on the CIFAR-10 dataset. We compare CoRTX with FastSHAP utilizing all explanation
labels and six other local image explaining methods. CoRTX generates the efficient image explanation
through one-feed-forward model prediction process. The explanation results of CoRTX are fine-
tuned using 5% ground-truth explanation labels. CoRTX and FastSHAP output 2×2 superpixel
attribution (Jethani et al., 2021b) for explaining the outcome of image classification.
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Figure 6: Explanations generated on CIFAR-10 Dataset.

Top-1 Accuracy | ∆Log-odds

Exclusion Inclusion Exclusion Inclusion

CoRTX 0.373 ± 0.004 0.764 ± 0.022 2.790 ± 0.060 1.615 ± 0.026

FastSHAP 0.420 ± 0.005 0.782 ± 0.005 2.896 ± 0.045 1.642 ± 0.033

KernelSHAP 0.395 ± 0.005 0.764 ± 0.004 2.449 ± 0.055 1.687 ± 0.031

Saliency 0.497 ± 0.006 0.730 ± 0.004 2.075 ± 0.052 2.055 ± 0.036

IG 0.560 ± 0.005 0.726 ± 0.004 1.818 ± 0.053 2.040 ± 0.039

Smoothgrad 0.472 ± 0.007 0.731 ± 0.005 2.287 ± 0.054 2.111 ± 0.036

Gradcam 0.563 ± 0.006 0.734 ± 0.004 1.824 ± 0.049 2.062 ± 0.037

Deepshap 0.555 ± 0.006 0.730 ± 0.005 1.870 ± 0.054 2.040 ± 0.035

Table 1: Exclusion and Inclusion AUCs and ∆Log-odds. The
evaluation scores of each methods are calculated from the average
scores of five times repetitions. The model performs better when
obtaining lower Exclusion AUC and Inclusion ∆Log-odds; and
encountering higher Inclusion AUC and ∆Log-odds.
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Figure 7: AUC on CIFAR-10

4.4.1 A CASE STUDY OF CORTX
We visualize the predicted explanation results in Figure 6. It shows that CoRTX, FastSHAP, and
GradCAM are able to highlight the relevant objects corresponding to the image labels. Specifically,
CoRTX provides a more faithful explanation result and highlights a precise region which is important
for model prediction. In contrast, we observe that the importance regions localized by FastSHAP
are larger than relevant objects, which reveals to be less accurate to the explanations. Moreover,
GradCAM provides importance regions only on partial relevant objects, which makes the explanations
less faithful. The other baselines are less competitive due to the wrong regions highlighted, or noisy
saliency maps provided. These observations validate that the explanations from CoRTX are more
faithfulness. More case studies are available in Appendix D.

4.4.2 QUANTITATIVE EVALUATION

To investigate the quality of the estimated explanation results on CIFAR-10, we compare CoRTX with
two Shapley-based models and several gradient-based local explainers on exclusion and inclusion
tasks. Following the experimental setting from existing work (Petsiuk et al., 2018; Jethani et al.,
2021b), we utilize Top-1 accuracy and ∆Log-odds from image classification task as the metric. The
evaluated images are orderly masked according to the estimation of feature importance scores. Once
the important pixels are removed from the input images on exclusion, we expect the Top-1 accuracy to
drop drastically and obtain a lower exclusion AUC. On the contrary, we expect to gain higher inclusion
AUC for better performance on the inclusion task. ∆Log-odds reveals the opposite instructions where
higher exclusion AUC and lower inclusion task denotes better explanation performance. Figure 6 and
Table 1 reveal the results of AUC curves for the exclusion and inclusion tasks under a set of 1000
images. We observed that CoRTX outperforms all the other baselines on the two tasks, which obtains
the lowest exclusion AUC with Top-1 Accuracy and lowest inclusion AUC with ∆Log-odds. CoRTX
is also competitive with the state-of-the-art baseline, FastSHAP, on two other remaining tasks and
performs significantly better than other gradient-based explainers since gradient-based methods are
less faithful than perturbation-based methods.

5 CONCLUSION
In this work, we propose a contrastive RTX framework, CoRTX, which significantly reduces the
usage amount of explanation labels. Specifically, CoRTX introduces a synthetic positive samples
selection on contrastive learning for generating pre-trained explanation representation and fine-
tunes on the downstream explanation tasks. We also provide theoretical analysis to support the
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effectiveness of CoRTX in learning explanation representation. The experimental results on three
datasets demonstrate that CoRTX works more effectively and faithfully compared with other RTX
frameworks and local explanation methods. As for the future exploration, we will explore more on
explanation representation and reduce the limited labels requirement into zero label exploitation.
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APPENDIX

A PROOF OF THEOREM

Theorem 1 (Compact Alignment). Let f(x) be a K-Lipschitz continuous function for given input
sample x and Φ(x) = [ϕ1(x), · · · , ϕM (x)] be the importance score of each feature, where ϕi(x) :=
ES⊆U\{i}

[
f(x̃S∪{i})−f(x̃S)

]
. Given a perturbed sample x̃∈X+ satisfying min1≤i≤M ϕi(x̃)≥ 0,

the explanation difference ||ϕ(x)− ϕ(x̃)||2 is bounded by the prediction difference |f(x)− f(x̃)| as

||ϕ(x)− ϕ(x̃)||2 ≤ (1 +
√
2γ0)|f(x)− f(x̃)|+

√
Mγ0,

where γ0 = K||x||2 and K ≥ 0 is the Lipschitz constant of function f(·).

Proof. In order to calculate the importance score ϕi(x) :=ES∼U\{i}
[
f(x̃S∪{i}) − f(x̃S)

]
of the

feature subset S , we recast the formulation under the expression of S=1S ∈ {0, 1}M , which is given
as follows:

ϕi(x) = ES∈{0,1}M−1

[
f(S ∪ [1]i ⊙ x+ (1 − S ∪ [1]i)⊙ xr)− f(S⊙ x+ (1 − S)⊙ xr)

]
Following Equation 9, we can now discuss explanation difference by each feature. Without lost of
generality, we first discuss the score difference of feature i,

|ϕi(x)− ϕi(x̃)| (9)

=
∣∣∣ES

[
f(S ∪ [1]i ⊙ x+ (1 − S ∪ [1]i)⊙ xr)− f(S⊙ x+ (1 − S)⊙ xr)

−
(
f(S ∪ [1]i ⊙ x̃+ (1 − S ∪ [1]i)⊙ xr)− f(S⊙ x̃+ (1 − S)⊙ xr)

)]∣∣∣ (10)

≤ ES

[∣∣∣f(S ∪ [1]i ⊙ x+ (1 − S ∪ [1]i)⊙ xr)− f(S⊙ x+ (1 − S)⊙ xr)

−
(
f(S ∪ [1]i ⊙ x̃+ (1 − S ∪ [1]i)⊙ xr)− f(S⊙ x̃+ (1 − S)⊙ xr)

)∣∣∣] (11)

=
1

2M−1

[∑
S

|f(S ∪ [1]i ⊙ x+ (1 − S ∪ [1]i)⊙ xr)− f(S ∪ [1]i ⊙ x̃+ (1 − S ∪ [1]i)⊙ xr)|

+
∑
S

|f(S⊙ x̃+ (1 − S)⊙ xr)− f(S⊙ x+ (1 − S)⊙ xr)|
]

(12)

We then discuss the case from Equation 16. We have
1

2M−1

[∑
S

|f(S ∪ [1]i ⊙ x+ (1 − S ∪ [1]i)⊙ xr)− f(S ∪ [1]i ⊙ x̃+ (1 − S ∪ [1]i)⊙ xr)|

+
∑
S

|f(S⊙ x̃+ (1 − S)⊙ xr)− f(S⊙ x+ (1 − S)⊙ xr)|
]

(13)

≤ 1

2M−1

[∑
S

(
|f(S ∪ [1]i ⊙ x+ (1 − S ∪ [1]i)⊙ xr)− f(S ∪ [1]i ⊙ x̃+ (1 − S ∪ [1]i)⊙ xr)|

)
+
∑
S

K||S⊙ x̃− S⊙ x||2
]

(14)

=
1

2M−1

[∑
S

|f(S ∪ [1]i ⊙ x+ (1 − S ∪ [1]i)⊙ xr)− f(S ∪ [1]i ⊙ x̃+ (1 − S ∪ [1]i)⊙ xr)|

+
∑
S

K||S⊙ (S̃− 1)⊙ x||2
]

(15)

≤ 1

2M−1

∑
S

(
|f(S ∪ [1]i ⊙ x+ (1 − S ∪ [1]i)⊙ xr)− f(S ∪ [1]i ⊙ x̃+ (1 − S ∪ [1]i)⊙ xr)|

)
︸ ︷︷ ︸

δi

+K||x||2 (16)
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Note that the difference of prediction scores |f(x)− f(x̃)| is equal to the summation of contribution
score among all features, where |f(x)− f(x̃)| = |

∑M
i=1 δi| =

∑M
i=1 |δi|. In this manner, we have

the upper bound of the explanation difference ||ϕ(x)− ϕ(x̃)||2 given by

||ϕ(x)− ϕ(x̃)||2 =

√√√√ M∑
i=1

|ϕi(x)− ϕi(x̃)|2

≤

√√√√ M∑
i=1

(δi +K||x||2)2

≤

√√√√ M∑
i=1

(δi)2 +
√
2 · (K||x||2) ·

√√√√ M∑
i=1

δi +

√√√√ M∑
i=1

(K||x||2)2

=
{
||[δ1, δ2, · · · , δM ]||2 +

√
2γ0|f(x)− f(x̃)|+

√
Mγ0

}
≤

{
||[δ1, δ2, · · · , δM ]||1

}
+

√
2γ0 ·

{
|f(x)− f(x̃)|

}
+
√
Mγ0

= (1 +
√
2γ0)|f(x)− f(x̃)|+

√
Mγ0

where γ0 = K||x||2
Theorem 2 (Explanation Error Bound). Given a training set D, a testing set C, and a well-
trained explainer ϕ̂ = η ◦ g , where g denotes the contrastive explanation encoder to generate
d-dimensional explanation embeddings and η represents explanation head. Assume ϕ̂(·) is a Kh-
Lipschitz continuity. For all xj ∈ D in training set, if there exist E > 0, such that the training error
satisfies ||ϕ(xj)− ϕ̂(xj)||2 ≤ E . Then, for any testing datapoint xk ∈ C, the testing explanation
error Err(ϕ̂) = ||ϕ(xk)− ϕ̂(xk)||2 can be bounded as:

||ϕ(xk)− ϕ̂(xk)||2 ≤ (1 +
√
2γ0)|f(x)− f(x̃+

k )|+
√
Mγ0 + E +Kh||hx̃+

k
− hxk

||2

where x̃+
k is the compact positive sample, hxi = g(xi), γ0 = K||xk||2, and Kh ≥ 0 is the Lipschitz

constant of prediction model f(·).

Proof. Without loss of generality, we consider ℓ2 norm to evaluate the distance between predicted
explanation scores and ground truth explanation scores. For any testing datapoint xk ∈ C, we have

||ϕxk
− ϕ̂xk

||2 = ||ϕxk
− ϕx̃k

+ ϕx̃k
− ϕ̂x̃k

+ ϕ̂x̃k
− ϕ̂xk

||2
≤ ||ϕxk

− ϕx̃k
||2 + ||ϕx̃k

− ϕ̂x̃k
||2 + ||ϕ̂x̃k

− ϕ̂xk
||2

≤ (1 +
√
2γ0)|f(x)− f(x̃+

k )|+
√
Mγ0 + E +Kh||g(x̃k)− g(xk)||2

= (1 +
√
2γ0)|f(x)− f(x̃+

k )|+
√
Mγ0 + E +Kh||hx̃k

− hxk
||2

B DATASETS AND IMPLEMENTATION DETAILS ABOUT EXPERIMENTS

Our experiments are conducted with the following details on two tabular datasets and one image
dataset. The details of the datasets are provided as follows. Census Income: A collection of human
social information with 26048 samples for training and validating; and 6513 samples for testing. Each
sample has five continuous features and eight one-hot encoded categorical features. Bankruptcy:
A dataset contains 5455 samples of various companies training and validating and 1364 instances
for testing. Each sample has 96 features characterizing each company and whether it went bankrupt
or not. CIFAR-10: An image dataset with 60000 images in 10 different classes, where each image
has 32×32 pixels. We follow the original dataset division for training, validating, and testing. For
the tabular datasets, we consider two common explanation tasks: feature attribution estimation and
feature importance ranking. For the image datasets, the explanation results are presented by using
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heatmap for the case study and evaluated by including and excluding the importance pixels for
perturbed image classification.

All baseline algorithms are implemented under the open-source package 2 and the hyper-parameters
are all decided with the optimal model convergence. We here provide some detailed information
about the baselines on tabular dataset. Supervised RTX: A supervised RTX-based MLP model trains
with raw features of data instances and ground-truth explanation labels from scratch. FastSHAP:
A state-of-the-art RTX method which adopts an DNN model to universally learn the approximated
Shapley values (Jethani et al., 2021b). KernelSHAP (KS): The model proposes the weighted linear re-
gressions to estimate the Shapley additive explanations from the prediction model scores (Kokhlikyan
et al., 2020). Permutation Sampling (PS): PS estimates the feature attribution based on calculating
the sensitivity gap of the scores from prediction model while inputting randomly masking data fea-
tures (Mitchell et al., 2021). To evaluate proposed explanation representation, we follow the common
protocol setting (He et al., 2020). First, we freeze the input features (explanation representation).
Second, we train the explanation head η(· | θη) with limited amount of explanation labels. The
input of η(· | θη) is the pre-trained explanation representation generated from explanation encoder
g(· | θg), and the output is the corresponding explanation scores among each feature. In this work, we
adopt a 3-layer MLP model as g(· | θg) in two tabular datasets (Census Income and Bankruptcy) and
utilize a ResNet-18 model replacing the last layer with 1-layer MLP in image dataset (CIFAR-10).
Considering to the two different common explanation task settings, we exploit a 3-layer MLP model
as η(· | θη) with cross-entropy (CE) loss on feature attribution task and with mean-square-error
(MSE) loss on feature importance ranking task.

Tabular Dataset: The experiments details on each tabular dataset follow the pipeline below. We verify
the feature ranking task by using CoRTX-CE and the feature attribution task by exploiting CoRTX-
MSE. As for the Prediction Model, we exploit different prediction models f(·) among three different
datasets to evaluate the model-agnostic property of CoRTX. AutoInt (Song et al., 2019) is adopted
for Census Income dataset and MLP model is for Bankruptcy dataset. The two prediction models are
trained until the convergence and the implementation are based on the DeepCTR 3 package (Shen,
2017). Due to the task given in two datasets, a binary cross entropy loss is given as the loss function of
AutoInt and MLP model for Census Income dataset and Bankruptcy dataset, respectively. All hyper-
parameters are decided by grid search throughout the classification results, including model layers,
hidden units, and etc. Considering to the Explanation Benchmarks, we use brute-force algorithm
to calculate the exact Shapley value for Census Income dataset as the explanation annotations.
However, Bankruptcy dataset contains large amount of features (96 features), it is hard to gain
the exact Shapley value for Bankruptcy dataset due to the extremely high computational cost. We
hereby adopt the proximity of Shapley values as the explanation annotations by using Antithetical
Permutation Sampling(APS) (Mitchell et al., 2021; Lomeli et al., 2019) to convergence. This is
because APS has shown to converge to exact Shapley values when countering high permutation
times on tabular datasets. As for other detailed hyper-parameter setting, the cardinality of synthetic
positive data collection is set to 30 and 300 for Census Income and Bankruptcy dataset, respectively.
The temperature hyper-parameter τ is given as 0.02 for both tabular datasets. While conducting the
feature attribution task, the explanation heads η(· | θη) are set under the Adam optimizer with weight
decay rate from 10−3 to 10−6. Every training processes of CoRTX stop until the convergence.

Image Dataset: Our experiments on the image dataset are conducted under CoRTX-MSE. The
experiments follow the pipeline as follows. Prediction Model: We utilize ResNet-18 as the prediction
models f(·) and train it from scratch until the model convergence. Explanation Benchmarks: We cal-
culate the approximation to Shapley values as the training annotations by adopting KernelSHAP until
the convergence (Covert & Lee, 2021; Jethani et al., 2021b). The estimated values from KernelSHAP
can infinitely approach to exact Shapley values when encountering the optimal convergence (Lund-
berg & Lee, 2017). We observe that the important regions on images are typically consecutive.
FastSAHP is better to meet the property since it adopts pre-trained weight of ResNet for training
a CNN-based explainer, which provides average pooling for smoothing effects. Thus, for the fair
comparison in case studies, the outcomes of CoRTX are processed through the moving average for
smoothing visualization. The adjustment maintains a similar trend of performance in visualization
showcase from original of CoRTX. In other words, the adjusted explanation is not efficacy once the

2https://captum.ai
3https://github.com/shenweichen/deepctr
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original explanation are definitely inaccurate. For quantitative experiments on exclusion and inclusion
tasks, we exploit the original outputs from CoRTX and evaluate the performance on Top-1 Accuracy
and ∆Log-odds. Following the same experiment setting from (Jethani et al., 2021b;a; Frye et al.,
2020), we adopt the supervised surrogate model while performing the explanation tasks on CoRTX
and FastSHAP. For more hyper-parameter settings, the temperature hyper-parameter τ is given as
0.02 and an Adam optimizer is given to train with both explanation encoder g(· | θg) and explanation
head η(· | θη). Every single training processes of CoRTX are guarantee to stop until converge.

Computation Infrastructure All experiments are conducted under the following physical computing
infrastructure. The details of memory footprint and throughput are given in Table 2.

Device Attribute Value
Computing infrastructure GPU
GPU model Nvidia-A40
GPU number 1
GPU Memory 46068 MB

Table 2: Computing infrastructure for the experiments.

C RELATED WORK

Local Methods. The local methods separately generate individual explanations for each data
sample. Existing works of local methods can be categorized into three groups. The first group
of methods adopts linear regressions to fit the local explanation, such as LIME (Ribeiro et al.,
2016) and KernelSHAP (Lundberg & Lee, 2017). Another group of methods adopts the preceding
difference of the value function for the explanation, such as RISE (Petsiuk et al., 2018), Permutation
Sampling (Mitchell et al., 2021) and SHEAR (Wang et al., 2022). The last group estimates the
gradient towards the input data for the explanation, such as the GradCAM (Selvaraju et al., 2017),
Integrated Gradient (Sundararajan et al., 2017) and SmoothGrad (Smilkov et al., 2017). Even though
the local methods can provide faithful explanation for DNN models, these group of methods suffer
from high computational complexity since each data sample requires one local explainer to yield the
explanation.

Real-time Explainer (RTX). We here review the existing RTX framework based on DNN approaches.
Unlike the local methods, RTX framework maintains an unified explainer to generate the explanation
among each data sample. The explanation can be generated via single feed-forward process, which is
much faster than the local methods. One learning strategy of RTX framework formulates the explainer
learning by given strong assumption on prior feature distribution (Chen et al., 2018; Dabkowski &
Gal, 2017; Kanehira & Harada, 2019). One of work (Chen et al., 2018) utilizes the instance-wise
feature selection by maintaining a feature masking generator via maximizing the mutual information
between selected features and corresponding labels. A well-trained feature masking generator is
able to provide real-time explanation under single feed-forward process. Another framework of RTX
is to adopt the exact or approximated Shapley values as the ground-truth annotations to learn the
explainers (Wang et al., 2021; Jethani et al., 2021b; Covert et al., 2022). However, the exploitation of
exact Shapley values suffers from extremely high computational complexity. To address this problem,
FastSHAP (Jethani et al., 2021b) proposes a Monte-Carlo-based method to learn the explainer under
RTX framework. Specifically, FastSHAP generates the approximated Shapley values by randomly
samples batches of feature masks during the training process. Meanwhile, it updates the explainer
to minimize the mean-square error between the overall contribution scores of masked features and
outputs from DNN explainer. FastSHAP enforces the explanation performance without utilizing
ground-truth Shapley value which can be demonstrated by the experiment results.
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D ADDITIONAL RESULTS ON IMAGE DATASET

We demonstrate more explanation results on CIFAR-10 generated by CoRTX compared to other
baselines. The results show that CoRTX can identify more accurate regions as the explanation results
toward the significant object related to the image classes.
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Figure 8: Explanations generated on CIFAR-10 Dataset.
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