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Abstract

In medical image analysis, we often need to build an image recognition system for1

a target scenario with the access to small labeled data and abundant unlabeled data,2

as well as multiple related models pretrained on different source scenarios. This3

presents the combined challenges of multi-source-free domain adaptation and semi-4

supervised learning simultaneously. However, both problems are typically studied5

independently in the literature, and how to effectively combine existing methods is6

non-trivial in design. In this work, we introduce a novel MetaTeacher framework7

with three key components: (1) A learnable coordinating scheme for adaptive8

domain adaptation of individual source models, (2) A mutual feedback mechanism9

between the target model and source models for more coherent learning, and (3)10

A semi-supervised bilevel optimization algorithm for consistently organizing the11

adaption of source models and the learning of target model. It aims to leverage12

the knowledge of source models adaptively whilst maximize their complementary13

benefits collectively to counter the challenge of limited supervision. Extensive14

experiments on five chest x-ray image datasets show that our method outperforms15

clearly all the state-of-the-art alternatives.16

1 Introduction17

Despite great stride made by existing deep learning methods on medical image classification re-18

sults [28, 46, 58], their performance often degrade drastically when applied to a new scenario. This19

is mainly due to the domain shift challenge between the training and test data, caused by different20

environments, different instruments, and different acquisition protocols. Unlike natural images,21

annotating medical images requires special clinical expertise. It is hence more difficult to obtain22

large-scale medical image datasets with high-quality labels at every single scenario. Domain adap-23

tation is a feasible solution, but comes with several limitations. Firstly, medical data is often under24

strict privacy and license constraints. That means the source domain data is usually inaccessible25

during domain adaptation. Secondly, medical data is typically multi-labeled which means that there26

are multiple labels for a sample, and the multiple categories are not mutually exclusive. It has27

more prominent different characteristics in different scenarios. Secondly, medical data is typically28

multi-labeled which has more prominent different characteristics in different scenarios. Considering29

these practical constraints, we propose a new Semi-supervised Multi-source-free Domain Adaptation30

(SMDA) problem setting in the context of medical image classification. Our proposed setting has31

three key conditions: (1) There are multiple source domain models trained on respective multi-label32

medical image datasets, (2) All the source domain data is inaccessible for adaptation, and (3) The33

target domain data has only a small number of labelled samples along with abundant unlabeled data.34
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In medical image classification, there are limited domain adaptation works, with a need of accessing35

the source domain data [4, 15, 20, 30, 38, 47, 49, 53]. Further, they usually consider a single source36

domain. On the other hand, for employing multiple source domains, existing Multi-Source Domain37

Adaptation (MSDA) methods typically learn a common feature space for all source and target38

domains [50] or use ensemble methods combined with source classifiers [6]. However, all of these39

MSDA methods require access to the source domain data. Regarding multi-label medical image40

classification, there exists a solution which extends the standard classifier network by conditional41

adversarial discriminator networks [39]. But it is still not source-free. Indeed, there have been42

extensive study on Source-Free Domain Adaptation (SFDA) [31, 55]. However, they are not directly43

applicable to our problem. Firstly, most of them assume a single source domain [31, 55]. Using the44

SFDA method to transfer each source domain model to the target domain separately and average45

their predictions, this strategy cannot reveal the complementary information between different source46

domains. Secondly, the source model is often domain biased. Different hospitals are featured with47

different populations, leading to a situation that the source datasets focus on a specific set of class48

labels. The existing SFDA methods can not assess the credibility of a source domain model with49

different labels.50

To address the above SMDA’s limitations, employing knowledge distillation from multi-source51

models to the target domain can be considered [14, 35, 56, 60, 61]. This forms a multi-teacher and52

one-student scheme. In our problem setting, a few labels of the target domain are provided to judge53

the credibility of multi-source models in different labels. In reality, it is common to exploit a few54

labeled data in the target domain. Recent works [21, 25, 43, 44] have shown that a few labeled55

data from the target domain can significantly improve the performance of the model. Inspired by56

meta-learning approaches [33, 40, 42], we consider a bilevel optimization strategy to update both57

the teachers and students. This is because different models vary in reliability and there is a need for58

optimizing the update direction for each source model. This offers an opportunity of leveraging the59

complementary and collaboration of different source models during model optimization, critical for60

solving the low-supervision challenge.61

Based on the above analysis, we propose a novel framework termed as MetaTeacher. It is based62

on multi-teacher and one-student model. Each teacher model is pre-trained on a specific labeled63

source data. The student model is initialized by a randomly chosen teacher. In order to provide64

different update directions for multiple teachers, a coordinating weight learning method is proposed65

to determine the contribution of each teacher for each target sample. In addition to knowledge transfer66

from multiple teachers, when adapting a specific teacher model, we also explore the feedback from67

student and other teachers in a semi-supervised meta learning manner [13, 40]. Unlike the previous68

MSDA approaches, MetaTeacher can adapt each teacher in different directions according to the69

learned coordinating weight. This enable us to fully use different characteristics of source models,70

whilst avoiding the problem of insufficient training samples for multi-label classification to some71

extent.72

Our contributions are summarized as follows: (1) We propose a new problem setting, i.e., semi-73

supervised multi-source-free domain adaptation for multi-label medical image classification. To our74

best knowledge, our work is the first exploration of multi-source-free and semi-supervised domain75

adaptation in the field of transfer learning. (2) A novel framework MetaTeacher based on a multi-76

teacher and one-student scheme is introduced to solve the proposed SMDA problem. A mutual77

feedback mechanism is designed based on meta-learning between the target model and the source78

models for more coherent learning and adaptation. The knowledge from multiple source models79

are sufficiently leveraged. (3) A coordinating weight learning method is derived for dynamically80

revealing the performance differences of different source models over different classes. It is integrated81

with the semi-supervised bilevel optimization algorithm for consistently updating the teacher and82

student models. Extensive experiments on five well-known chest radiography datasets show that our83

approach outperforms state-of-the-art alternatives clearly, along with in-detail ablation studies for84

verifying the design choices of our model components.85
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2 Relate Works86

Source-free domain adaptation. Source-free domain adaptation methods can be roughly divided87

into two routes, i.e., generative approach [23, 24, 29, 54] and pseudo-label approach [3, 22, 31, 48].88

The generation approach generates target-style training samples to train the prediction model. Since89

learning to generate features is difficult, this approach is extremely limited. The pseudo-label90

approach generates pseudo-labels through the source domain model, which is simple and general and91

has recently achieved good results in the machine learning community. The research of source-free92

domain adaptation in the medical image analysis field mainly focuses on image segmentation. Bateson93

et al. [3] maximized the mutual information between the target images and their label predictions94

to perform spine, prostate and cardiac segmentation. Vibashan et al. [48] implemented source-free95

domain adaptive image segmentation by generating pseudo-labels and applied self-training methods96

for task-specific representation. These works are all conducted in the single-source domain case.97

Currently, the research on multi-source-free domain adaptation is extremely limited, and most of the98

works adapt the method of generating trusted pseudo-labels [1, 11].99

Multi-source domain adaptation for medical image classification. In machine learning commu-100

nity, MSDA works mainly have two strategies, i.e. distribution alignment [36, 64] and adversarial101

learning [52, 62, 63]. The first strategy computes the statistical discrepancy between multi-source102

domains and target domain, and then combines all predictions. The second strategy trains a domain103

discriminator and forces the feature extraction network to learn domain-invariant features to confuse104

the domain discriminator. For medical image classification, there only exist several shallow DA105

models. Wang et al. [50] proposed to map multiple source and target data to a common latent space106

for autism spectrum disorder classification. Cheng et al. [6] constructed a multi-domain transfer107

classifier for the early diagnosis of Alzheimer’s disease. All of these strategies require to access108

source domain data and are not suitable for solving the proposed SMDA problem. To the best of our109

knowledge, current teacher-student domain adaptation methods in the medical and machine learning110

communities only consider the single-source domain case. When extending it to the multi-source111

domain, it will face a challenging multi-objective optimization problem [8, 34].112

Semi-supervised domain adaptation (SSDA). Our problem is also related to SSDA which assumes113

a small number of labeled samples in the target domain. Compared to UDA, using a few labeled114

samples of the target domain allows to further achieve better domain alignment [27, 37, 57]. Due115

to the shift of domain distribution, directly applying classical semi-supervised learning methods to116

the SSDA problem will lead to sub-optimal performance. Representative SSDA works are based117

on subspace learning [37, 57], entropy minimization [16, 43], label smoothing [10, 41] and active118

learning [41, 45]. However, all of these methods assume a single source domain with the source119

domain data accessible. Unlike these works, our method incorporates meta-learning and uses the120

performance on the labeled target data as a feedback signal.121

3 The Proposed Method122

Problem statements. Suppose DT = {(Xt
L, Y

t
L) , X

t
U} where Y t

L denotes label annotations for a123

small amount of target domain samples Xt
L and Xt

U for target domain samples without any label124

annotations. The dimension of label vector is m. DSi
=

{(
Xi

L, Y
i
L

)}
where Y i

L denotes label125

annotations for i-th source domain samples Xi
L. For semi-supervised multi-source-free domain126

adaptation problem, when the pretrained source classifiers fTi
is applied to the target domain, the127

source dataset DSi is not accessible for i = 1, · · · , n. Given source classifiers fTi for i = 1, · · · , n128

and the target data DT , the task is to find a mapping fS : Xt
U → Y t

U where Y t
U denotes the predicted129

labels for target domain sample Xt
U that can work well in the target domain.130

Overview. As shown in Fig.1, our framework is based on multi-teacher and one-student scheme. First,131

multiple teacher models are pretrained according to each source domain, and then the student model132

is initialed using a randomly chosen teacher model. They are all composed of a feature extractor133

based on Resnet50 [17] and a multi-label classifier. The classifier consists of a fully connected layer,134
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Figure 1: Overview of MetaTeacher. (a) learns coordinating weight mapping which will be used
later to provide guidance for updating teacher model. (b) alternately updates the teacher and student
models. Each teacher is updated with feedback signals from student and other teachers.

where the input is an one-dimensional expanded feature, and the output is the probability of each135

label. The objective function is the error loss between the predicted output and the ground truth.136

Compared with traditional teacher-student model, our method has two differences: (1) coordinating137

weight learning; (2) bilevel optimization. For the first part, a mapping is trained based on labeled138

target domain samples, which fuses the multi-teacher predictions adaptively for each target sample.139

This mapping will be used in the another part. In the initial iteration, the mapping and student model140

are trained based on labeled target samples. In subsequent iterations, this part will only optimize the141

mapping while the student model will be updated based on bilevel optimization. Then, in the bilevel142

optimization part, the student and teacher models are updated alternately based on meta-learning.143

Specifically, for an unlabeled target sample, a coordinating weight is generated, which provides144

optimization direction for each teacher model. Finally, these two parts will be iteratively undated145

until convergence.146

3.1 Coordinating Weight Learning147

As mentioned earlier, the teacher models are trained on different source domain data. Due to148

different distributions, they have different characteristics. Therefore, for a target domain sample, the149

classification probability of each teacher model is inconsistent. When we want to optimize a teacher150

model based on the target domain samples, the optimization direction of each teacher model should151

be different. So it is necessary to obtain the contribution weight of each teacher model to the final152

classification results. We call it coordinating weight. Fortunately, we can obtain the weight mapping153

with the labeled samples in the target domain.154

As shown in Fig.1(a), for obtaining the coordinating weight, we first input the labeled target sample155

xtl into the student network, and get the output B = g(xtl) from feature extraction network g, where156

B ∈ Rc×h×w. c, h, and w are the number of channels, height, and width respectively. Then, we157

perform a maximum pool operation on the feature map B to get ψ ∈ R1×c which retains the most158

important information of each channel. Our mapping consists of two learnable variables µ and ν,159

where µ ∈ Rn×1, ν ∈ Rc×m. Then, we define a mapping ϕ = µψν ∈ Rn×m for the target sample160

xtl . After normalizing, we get the coordinating weight matrix W where161

Wj,k =
exp(ϕj,k)∑n
z=1 exp(ϕz,k)

. (1)

Suppose for the sample xtl , the predictions of all teachers are formed as a matrix P ∈ Rn×m, by162

taking the Hadamard product between the teacher predictions and the coordinating weight matrix, we163

can get the fused prediction as the following,164

ȳtl = Sum(P ◦W ) (2)
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where Sum(·) means adding by rows. Denoting ȳsl = fS(x
t
l ; θS) as the student prediction on the165

target sample xtl , we train the weight mapping and initialize student network using the following loss,166

LW = L (ȳsl , yl) + αLKL

(
ȳtl , ȳ

s
l

)
+ β (∥µ∥+ ∥ν∥) (3)

where L (ȳsl , yl) = 1
m

∑m
i=1[yl,ilog(ȳ

s
l,i) + (1 − yl,i)log(1 − ȳsl,i)] represent the BCE (Binary167

Cross Entropy) loss, yl is the groud truth, θS is the parameter of student network. LKL (ȳtl , ȳ
s
l ) =168 ∑m

i=1 ȳ
t
l,i log(ȳ

t
l,i/ȳ

s
l,i) represents the KL (Kullback-Leibler divergence) loss which measures the169

distribution difference between the fused teacher prediction and student prediction. α and β are two170

balance parameters.171

Remark. The mapping generates coordinating weight by Eq.(1), which not only reveals the com-172

plementarity of different teachers on different instances, but also, more interestingly, participates in173

the derivation of the update formula of teacher in the bilevel optimization process (see Appendix),174

providing a reference for the update direction of different teachers.175

3.2 Bilevel Optimization176

The bilevel optimization problem [5, 7] was first proposed in the field of game theory. It includes an177

upper-level optimization task and a lower-level optimization task, where upper-level optimization task178

contains lower-level optimization task as a constraint. Here, the upper-level optimization task (student)179

provides feedback signals to the lower-level optimization tasks (teachers) through the performance on180

labeled data and the coordinating weight mapping. For an unlabeled target sample xtu, suppose the181

pseudo-label based on the learned coordinating weight mapping ϕ from multi-teachers Eq.(2) is ȳtu182

and the corresponding coordinating weight matrix is Wu, we can define a loss function Γu as follows,183

Γu(θT1 , · · · , θTn , θS) = L(ȳtu, ȳsu) (4)

where ȳsu = fT (x
t
u; θS), θTi

is the parameter of the i-th teacher network. Similarly, a loss function184

Γl (θT1
, · · · , θTn

, θS) = L (yl, ȳ
s
l ) is defined for a labeled target samples xtl . In the bilevel optimiza-185

tion task, updating θS is the upper-level optimization task objective, while updating θT1 , · · · , θTn is186

the lower-level optimization task objective. The upper-level optimization task and the lower-level187

optimization task are mutually constrained. To reach the lower-level optimization task objective, the188

performance of the upper-level optimization task objective on the labeled target data is utilized as189

feedback signal. So we get the objective function in lower-level optimization task as the following,190

argmin
θT1

,··· ,θTn

Γl

(
θT1

, · · · , θTn
, θOP

S

)
s. t. θOP

S = argmin
θS

Γu (θT1
, · · · , θTn

, θS) . (5)

Obviously, Eq.(5) cannot be optimized simply by gradient descent method, because the teacher191

models parameters can not be updated until θS reaches the optimum. We refer to the idea of192

meta-learning [13, 32, 40] and make a one-step approximation of the problem,193

θOP
S ≈ θS − ηS · ∇θsΓu (θT1

, θT2
, · · · , θTn

, θS) (6)

where ηS is the learning rate of the student network. Substitute Eq. (6) into Eq. (5) to obtain a new194

optimization objective function195

Γl (θT1
, · · · , θTn

, θS − ηS · ∇θsΓu (θT1
, θT2

, · · · , θTn
, θS)) . (7)

By optimizing Eq. (7) (see Appendix), we get the following update rules,196

θ′S = θS − ηS · ∇θsΓu, (8)

θ′Ti
= θTi

− ηTi
·
[
(∇θ′

S
Γl)

T · ∇θSΓu

]T · ∇θTi
L
(
ȳiu, ỹ

i
u

)
(9)

for i = 1, · · · , n, where θ′S and θ′Ti
are the updated parameters corresponding to the student and197

teachers respectively. ȳiu = fTi (x
t
u; θTi) ·W i

u and W i
u is the ith-row coordinating weight vector of198

Wu respect to the i-th teacher. ỹiu is the pseudo labels after normalizing the values of ȳiu to 0 or 1,199

i.e., ỹiu,j = 0 when ȳiu,j < 0.5 and ỹiu,j = 1 for other cases.200

5



Additionally, in order to prevent optimizing teachers in the same direction, the predictions of the201

updated multiple teachers should be as far away from each other as possible. So, we define a202

divergence loss as follows,203

LD = −ln
n∑

j=1,j ̸=i

L2

(
BTi

(
xtu; θTi

)
, BTj

(
xtu; θTj

))
(10)

where BTi
(xu; θTi

) represents the max-pooled results of the output feature map of the i-th teacher204

network. Here, we apply a max-pooling operation to the output features of multiple teachers and205

calculate the distance with L2 norm. By requiring these feature maps to be far away each other, the206

optimization direction of teachers will be effectively adjusted. Finally, we update the i-th teacher207

network by the following rule,208

θ′Ti
= θTi

− ηTi
·
([

(∇θS′Γl)
T · ∇θSΓu

]T · ∇θTi
L
(
ȳiu, ỹ

i
u

)
+ γ∇θTi

LD

)
(11)

where γ is a hyperparameter.209

Remark. Eq.(11) reveals that the update direction of θTi
is determined by three factors: (1) coor-210

dinating weight confuses feedback signals from different teachers; (2) student network parameters211

provide feedback signals and generate coordinating weight; (3) diversity constraint emphasizes the212

characteristic of different teacher networks. Interestingly, these three factors change over time during213

the meta-learning process. In addition to alternating updates of the student and teacher models, we214

also update the mapping periodically.215

4 Experiments216

Datasets. Five publicly available chest x-ray datasets are used to construct our multi-domain217

adaptation scenarios. NIH-CXR14 [51] is a large public dataset of chest x-ray, which contains 108,948218

front view x-ray images of 32,717 patients collected from NIH Clinical Center, with a total of 14219

disease labels. MIMIC-CXR [19] contains 377,110 images and text reports, corresponding to 227,835220

radiological studies conducted by Beth Israel Deaconess Medical Center in Boston, Massachusetts.221

CheXpert [18] consists of 224,316 chest x-ray of 65,240 patients. The dataset collected chest x-ray222

examinations and related radiology reports performed at inpatient and outpatient centers at Stanford223

Hospital from October 2002 to July 2017. Open-i [9] is collected by Indiana University Hospital224

through the network from open source literature and biomedical image collection. It contains 3955225

radiology reports, corresponding to 7470 frontal and lateral chest films. To be consistent with other226

datasets, we filter out the side chest x-ray in Open-I, leaving only 3955 frontal images. Google-Health-227

CXR [2] is manually labeled by medical experts for CXR images with high accuracy and contains228

about 4000 images. We follow the traditional UDA setting, and choose the disease closed set in these229

five datasets as multi classification labels, i.e., Atelectasis, Cardiomegaly, Effusion, Consolidation,230

Edema and Pneumonia. Four transfer scenarios are constructed, which are NIH-CXR14, CheXpert,231

MIMIC-CXR to Open-i; NIH-CXR14, CheXpert, MIMIC-CXR to Google-Health-CXR; CheXpert,232

MIMIC-CXR to NIH-CXR14 and NIH-CXR14, CheXpert to Open-i.233

Implementation details. In order to make a compromise between images in different datasets, we234

scale the images to 128*128 before feeding them into the network. To expand the training set, several235

data augmentation techniques are used, including random cropping and horizontal flipping. SGD with236

momentum of 0.9 is used as the optimizer. For the student model, the initial learning rate is 0.01 and237

the weight decay is 5e-4. The learning rate for coordinating weight mapping is 0.001; For the teacher238

models, the initial learning rate is 0.001 and the weight decay is 5e-6. The values of α, β and γ are239

set as 0.5, 0.01 and 0.01 respectively. For the case when the target domains datasets are small-scale,240

such as Open-i and Google-Health-CXR, we assume that there are 200 labeled data in the target241

domains, and in order to give a good initial condition for training, we randomly select a source model242

to initialize the target model. For the case when the target domains datasets are large-scale, such243

as NIH-CXR14, we assume that there are 500 labeled data in the target domains. Unless otherwise244

specified, the interval for updating coordinating weight mapping is set as 100 iterations. Following245
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Table 1: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Open-i. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 83.27 91.55 96.18 97.02 92.74 89.24 91.67
CAiDA [11] 82.45 92.16 95.12 95.92 89.89 90.37 90.99

SHOT-best [31] 81.48 91.22 94.19 95.10 88.96 89.58 90.09

MME [43] 82.44 90.82 95.46 96.07 90.26 87.20 90.38
ECACL [26] 82.60 92.18 96.32 95.97 90.70 89.61 91.23

Source Only(N) 83.09 87.20 96.11 95.10 86.87 77.40 87.63
Source Only(C) 82.26 87.64 94.71 96.61 90.22 75.12 87.76
Source Only(M) 80.63 91.31 94.87 94.53 84.91 82.78 88.05

Fine-tune(average) 82.14 88.71 95.32 95.52 88.77 78.48 88.16

Ours(w/o mapping) 79.99 92.64 98.22 93.64 95.50 84.54 90.76
Ours(w/o update) 81.98 90.72 95.76 95.51 89.40 82.53 89.32

Ours(all ) 81.72 92.59 96.25 97.64 94.52 94.33 92.84

Table 2: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Google-Health-CXR. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 77.24 81.71 85.94 79.03 83.48 83.68 81.85
CAiDA [11] 76.90 81.82 87.55 79.62 85.10 82.72 82.29

SHOT-best [31] 75.43 80.28 86.63 77.88 82.37 81.22 80.64

MME [43] 77.34 84.93 86.17 78.65 85.33 71.28 80.62
ECACL [26] 76.27 84.54 87.06 79.95 85.82 72.66 81.05

Source Only(N) 76.54 84.48 86.36 75.66 83.94 62.59 78.26
Source Only(C) 72.09 76.45 84.55 79.07 68.25 58.39 73.13
Source Only(M) 68.04 79.38 84.17 72.41 68.71 52.60 70.88

Fine-tune(average) 73.48 80.14 85.96 74.17 74.74 60.20 74.78

Ours(w/o mapping) 75.62 83.91 85.40 80.27 75.13 81.77 80.35
Ours(w/o update) 76.75 84.30 86.67 78.59 82.31 65.84 79.08

Ours(all) 77.65 79.52 88.73 78.74 86.73 84.78 82.69

the setting of multi-label medical image classification problems, the evaluation criterion is Area246

Under the Receiver Operating Characteristic (AUROC) [12] curve score.247

4.1 Comparisons to State-of-the-Art248

At present, there does not exist any experimental report on our problem setting. So we choose249

four category of methods for compare. The first category is Source only which means directly250

applying a teacher model to the target domain. The second category is Fine-tune(average) which251

fine-tune each teacher network using labeled target domain data, then average their predicted values.252

The third category is the state-of-the-art multi-source-free domain adaptation methods, which are253

DECISION [1], CAiDA [11], and SHOT-best. The SHOT-best refers to adapting each source domain254

separately through the SHOT [31] method. The model with the best performance on the validation set255

is selected. The final category is semi-supervised domain adaptation methods, which are MME [43]256

and ECACL [26]. For the semi-supervised domain adaptation methods, we assume that the labeled257

target data are the same as our method. Since they are single-source based methods, we perform258

domain adaptation for each source model and take the best result.259

Tables 1-4 show the comparison results on four transfer scenarios. Ours(all) is our proposed method.260

Source Only(N), Source Only(C) and Source Only(M) are the teacher models respect to the NIH-261

CXR14, CheXpert and MIMIC-CXR datasets respectively. For the scenario from CheXpert, MIMIC-262

CXR to NIH-CXR14, since the dataset NIH-CXR14 contains 108,948 x-ray images, different from263
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Table 3: Comparing the state-of-the-art methods on the transfer from CheXpert, MIMIC-CXR to NIH-CXR14.
Metric: AUROC .

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 72.99 80.73 79.37 75.52 82.30 71.38 77.05
CAiDA [11] 72.64 81.12 80.25 74.73 81.02 70.44 76.70
SHOT-best [31] 70.79 79.62 79.24 72.25 80.79 69.65 75.39

MME [43] 72.90 81.73 81.01 73.11 81.03 71.52 76.88
ECACL [26] 72.41 81.98 82.07 72.92 80.82 71.65 76.98

Source Only(N) 72.31 80.52 79.42 69.66 77.95 67.37 74.54
Source Only(C) 70.45 79.66 79.98 68.26 78.01 70.82 73.86

Fine-tune(average) 71.52 80.29 80.08 68.97 78.02 69.05 74.66

Ours(w/o mapping) 72.05 81.58 78.36 72.94 82.19 69.82 76.16
Ours(w/o update) 72.24 80.69 79.56 69.80 78.13 70.55 75.16
Ours(all) 73.63 86.64 80.86 72.24 86.68 66.37 77.74

Table 4: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert to
Open-i. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 83.15 90.86 96.12 96.32 92.33 88.79 91.26
CAiDA [11] 82.38 91.97 94.89 95.30 89.81 90.44 90.80
SHOT-best [31] 81.48 91.22 94.19 95.10 88.96 89.58 90.09

MME [43] 81.46 90.40 94.86 97.73 89.79 87.31 90.26
ECACL [26] 82.22 88.76 96.04 96.85 92.43 87.90 90.70

Source Only(N) 83.09 87.20 96.11 95.10 86.87 77.40 87.63
Source Only(C) 82.26 87.64 94.71 96.61 90.22 75.12 87.76

Fine-tune(average) 82.66 87.98 95.85 95.67 88.58 77.02 87.96

Ours(w/o mapping) 83.73 93.37 96.04 97.30 91.51 82.34 90.72
Ours(w/o update) 82.70 88.91 95.47 95.48 88.96 78.85 88.40
Ours(all) 82.11 92.42 96.80 97.07 92.20 91.27 91.98

other scenarios, this time we do not need to initialize the target model with the source models. It264

can be observed that our method achieves the best performance. The extensive experiments on four265

different transfer scenarios verify the adaptability of our method under multi-label chest x-ray dataset266

transfer cases. For the scenario from NIH-CXR14, CheXpert to Open-i, as show in Table 4, the267

performance of two source domains is 0.86% lower than that of three source domains. Furthermore,268

MetaTeacher also has moderate training time and more clearer background (see Appendix).269

4.2 Ablation Analysis and Discussion270

Component analysis. In Tables 1-4, Ours(w/o mapping) represents that our proposed method271

removes the part of coordinating weight learning and optimization substituted by average. Ours(w/o272

update) means to remove the bilevel optimization process. In this situation, the weighted output273

of teachers is used to supervise the learning of student network. The results in the last three rows274

of Tables 1-4 show that these two parts are indispensable. It is worth mentioning that Ours(w/o275

mapping) still obtains promising performance due to the following reasons. First, for student updating,276

averaging predictions from multiple teachers is beneficial for student performance, consistent with277

the finding by [59]. Second, the fixed W is also involved in the teacher optimization. It means bilevel278

optimization contributes more gain to the overall performance than the coordinating weight learning.279

However, the coordinating weight learning can judge which disease category the teacher is good at280

by weight, knowledge with different weights can be learned from different teachers. Therefore, the281

results in each disease category are close to the predictions of the best teachers, such as Pneumonia in282

Table 1 and Atelectasis in Table 2 (also see Appendix).283
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Table 5: Effect of the size of labeled target data on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Open-i. Metric: AUROC.

Number(propotion) Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

50(1.4%) 82.48 92.22 95.19 96.10 89.96 90.58 91.09
100(2.8%) 82.19 92.50 96.83 97.02 92.43 91.20 92.03
200(5.6%) 81.72 92.59 96.25 97.64 94.52 94.33 92.84
300(8.4%) 82.21 92.97 96.83 97.42 94.07 94.33 92.97
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Figure 2: Effect of different hyperparameters on the transfer from NIH-CXR14, CheXpert, MIMIC-
CXR to Open-i. Baseline: source only(M).

Effects of proportion of labeled target data. Table 5 shows the influence of the amount of labeled284

data in the target domain on the transfer scenario of NIH-CXR14, CheXpert, MIMIC-CXR to Open-i.285

The experimental results show that the performance slowly improves as the amount of labeled data286

increases; a small number of labeled target domain samples can achieve good results.287

Parameter analysis. We conduct parameter analysis experiment on the transfer scenario of NIH-288

CXR14, CheXpert, MIMIC-CXR to Open-i. The basic strategy is to change a parameter while other289

parameters are fixed. Our method MetaTeacher has three hyperparameters, i.e., α and β in Eq. (3),290

and γ in Eq.(11). Fig.(2)(a) shows performance changing with the parameter α. When α = 0, the291

coordinating weight mapping is not trained effectively resulting in the inability to determine the292

optimization direction of each teacher. When α gradually increases to around 0.5, the result achieve293

optimal performance. Fig.(2)(b) shows the influences of the parameters β. When the β is too large, it294

means that the coordinating weight learning part is ineffective and cannot express the relationship295

between the source domains. When β is set to 0, coordinating weight learning may overfit, which296

may cause coordinating weights to work well on some instances but poorly on other instances; for297

this case, the performance is 92.49% about 0.35% lower than the result 92.84% in Table 1. Fig.(2)(c)298

shows the influences of the parameter γ on divergence loss. When γ is set to 0.01, the performance299

reaches the best, but with the continuous increase of γ, the performance decreases obviously. When300

γ = 0, the result is 92.29%, which is 0.55% lower. We can also see that our method is also quite301

stable for the parameters α, β and γ in a large interval.302

5 Conclusion303

In this paper, we proposed a new framework, termed as MetaTeacher, for semi-supervised multi-304

source-free domain adaptation of medical image classification. The transfer learning process is305

modeled as a multi-teacher and one-student scheme. We not only optimize student, but also optimize306

teachers through student’s feedback in the target domain. The optimization is based on meta-learning,307

which consists of two main part: coordinating weight learning, and bilevel optimization. The first308

part obtains the coordinating weight mapping which is used to coordinate the teacher outputs and309

updates. Bilevel optimization updates the student base on the pseudo-labeled data produced by310

teachers and updates each teacher base on the feedback signal generated by student and other teachers.311

Extensive experiments on multi-label chest x-ray datasets empirically demonstrated the superiority of312

our method over many state-of-the-art approaches.313

9



References314

[1] AHMED, S. M., RAYCHAUDHURI, D. S., PAUL, S., OYMAK, S., AND ROY-CHOWDHURY, A. K.315

Unsupervised multi-source domain adaptation without access to source data. In Proceedings of the316

IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 10103–10112.317

[2] BALTRUSCHAT, I. M., NICKISCH, H., GRASS, M., KNOPP, T., AND SAALBACH, A. Comparison of318

deep learning approaches for multi-label chest x-ray classification. Scientific reports 9, 1 (2019), 1–10.319

[3] BATESON, M., DOLZ, J., KERVADEC, H., LOMBAERT, H., AND AYED, I. B. Source-free domain320

adaptation for image segmentation. arXiv preprint arXiv:2108.03152 (2021).321

[4] BERMÚDEZ-CHACÓN, R., MÁRQUEZ-NEILA, P., SALZMANN, M., AND FUA, P. A domain-adaptive322

two-stream u-net for electron microscopy image segmentation. In 2018 IEEE 15th International Symposium323

on Biomedical Imaging (ISBI 2018) (2018), IEEE, pp. 400–404.324

[5] BRACKEN, J., AND MCGILL, J. T. Mathematical programs with optimization problems in the constraints.325

Operations Research 21, 1 (1973), 37–44.326

[6] CHENG, B., LIU, M., SHEN, D., LI, Z., AND ZHANG, D. Multi-domain transfer learning for early327

diagnosis of alzheimer’s disease. Neuroinformatics 15, 2 (2017), 115–132.328

[7] COLSON, B., MARCOTTE, P., AND SAVARD, G. An overview of bilevel optimization. Annals of329

operations research 153, 1 (2007), 235–256.330

[8] DEB, K. Multi-objective optimization. In Search methodologies. Springer, 2014, pp. 403–449.331

[9] DEMNER-FUSHMAN, D., KOHLI, M. D., ROSENMAN, M. B., SHOOSHAN, S. E., RODRIGUEZ, L.,332

ANTANI, S., THOMA, G. R., AND MCDONALD, C. J. Preparing a collection of radiology examinations333

for distribution and retrieval. Journal of the American Medical Informatics Association 23, 2 (2016),334

304–310.335

[10] DONAHUE, J., HOFFMAN, J., RODNER, E., SAENKO, K., AND DARRELL, T. Semi-supervised domain336

adaptation with instance constraints. In Proceedings of the IEEE conference on computer vision and337

pattern recognition (2013), pp. 668–675.338

[11] DONG, J., FANG, Z., LIU, A., SUN, G., AND LIU, T. Confident anchor-induced multi-source free domain339

adaptation. Advances in Neural Information Processing Systems 34 (2021).340

[12] FAWCETT, T. An introduction to roc analysis. Pattern recognition letters 27, 8 (2006), 861–874.341

[13] FINN, C., ABBEEL, P., AND LEVINE, S. Model-agnostic meta-learning for fast adaptation of deep342

networks. In International conference on machine learning (2017), PMLR, pp. 1126–1135.343

[14] FURLANELLO, T., LIPTON, Z., TSCHANNEN, M., ITTI, L., AND ANANDKUMAR, A. Born again neural344

networks. In International Conference on Machine Learning (2018), PMLR, pp. 1607–1616.345

[15] GAO, Y., ZHANG, Y., CAO, Z., GUO, X., AND ZHANG, J. Decoding brain states from fmri signals by346

using unsupervised domain adaptation. IEEE Journal of Biomedical and Health Informatics 24, 6 (2019),347

1677–1685.348

[16] GRANDVALET, Y., AND BENGIO, Y. Semi-supervised learning by entropy minimization. Advances in349

neural information processing systems 17 (2004).350

[17] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for image recognition. In Proceedings351

of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778.352

[18] IRVIN, J., RAJPURKAR, P., KO, M., YU, Y., CIUREA-ILCUS, S., CHUTE, C., MARKLUND, H.,353

HAGHGOO, B., BALL, R., SHPANSKAYA, K., ET AL. Chexpert: A large chest radiograph dataset with354

uncertainty labels and expert comparison. In Proceedings of the AAAI conference on artificial intelligence355

(2019), vol. 33, pp. 590–597.356

[19] JOHNSON, A. E., POLLARD, T. J., GREENBAUM, N. R., LUNGREN, M. P., DENG, C.-Y., PENG, Y.,357

LU, Z., MARK, R. G., BERKOWITZ, S. J., AND HORNG, S. Mimic-cxr-jpg, a large publicly available358

database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019).359

[20] KAMPHENKEL, J., JÄGER, P. F., BICKELHAUPT, S., LAUN, F. B., LEDERER, W., DANIEL, H.,360

KUDER, T. A., DELORME, S., SCHLEMMER, H.-P., KÖNIG, F., ET AL. Domain adaptation for deviating361

acquisition protocols in cnn-based lesion classification on diffusion-weighted mr images. In Image Analysis362

for Moving Organ, Breast, and Thoracic Images. Springer, 2018, pp. 73–80.363

[21] KIM, T., AND KIM, C. Attract, perturb, and explore: Learning a feature alignment network for semi-364

supervised domain adaptation. In European conference on computer vision (2020), Springer, pp. 591–607.365

[22] KIM, Y., CHO, D., HAN, K., PANDA, P., AND HONG, S. Domain adaptation without source data. arXiv366

preprint arXiv:2007.01524 (2020).367

10



[23] KUNDU, J. N., VENKAT, N., BABU, R. V., ET AL. Universal source-free domain adaptation. In368

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 4544–369

4553.370

[24] KURMI, V. K., SUBRAMANIAN, V. K., AND NAMBOODIRI, V. P. Domain impression: A source data371

free domain adaptation method. In Proceedings of the IEEE/CVF Winter Conference on Applications of372

Computer Vision (2021), pp. 615–625.373

[25] LI, B., WANG, Y., ZHANG, S., LI, D., KEUTZER, K., DARRELL, T., AND ZHAO, H. Learning invariant374

representations and risks for semi-supervised domain adaptation. In Proceedings of the IEEE/CVF375

Conference on Computer Vision and Pattern Recognition (2021), pp. 1104–1113.376

[26] LI, K., LIU, C., ZHAO, H., ZHANG, Y., AND FU, Y. Ecacl: A holistic framework for semi-supervised377

domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (2021),378

pp. 8578–8587.379

[27] LI, L., AND ZHANG, Z. Semi-supervised domain adaptation by covariance matching. IEEE transactions380

on pattern analysis and machine intelligence 41, 11 (2018), 2724–2739.381

[28] LI, Q., CAI, W., WANG, X., ZHOU, Y., FENG, D. D., AND CHEN, M. Medical image classification with382

convolutional neural network. In 2014 13th international conference on control automation robotics &383

vision (ICARCV) (2014), IEEE, pp. 844–848.384

[29] LI, R., JIAO, Q., CAO, W., WONG, H.-S., AND WU, S. Model adaptation: Unsupervised domain385

adaptation without source data. In Proceedings of the IEEE/CVF Conference on Computer Vision and386

Pattern Recognition (2020), pp. 9641–9650.387

[30] LI, W., ZHAO, Y., CHEN, X., XIAO, Y., AND QIN, Y. Detecting alzheimer’s disease on small dataset:388

A knowledge transfer perspective. IEEE journal of biomedical and health informatics 23, 3 (2018),389

1234–1242.390

[31] LIANG, J., HU, D., AND FENG, J. Do we really need to access the source data? source hypothesis transfer391

for unsupervised domain adaptation. In International Conference on Machine Learning (2020), PMLR,392

pp. 6028–6039.393

[32] LIU, H., SIMONYAN, K., AND YANG, Y. Darts: Differentiable architecture search. arXiv preprint394

arXiv:1806.09055 (2018).395

[33] MADHAWA, K., AND MURATA, T. Metal: Active semi-supervised learning on graphs via meta-learning.396

In Asian Conference on Machine Learning (2020), PMLR, pp. 561–576.397

[34] MARLER, R. T., AND ARORA, J. S. Survey of multi-objective optimization methods for engineering.398

Structural and multidisciplinary optimization 26, 6 (2004), 369–395.399

[35] PARK, S., AND KWAK, N. Feature-level ensemble knowledge distillation for aggregating knowledge from400

multiple networks. In ECAI 2020. IOS Press, 2020, pp. 1411–1418.401

[36] PENG, X., BAI, Q., XIA, X., HUANG, Z., SAENKO, K., AND WANG, B. Moment matching for multi-402

source domain adaptation. In Proceedings of the IEEE/CVF international conference on computer vision403

(2019), pp. 1406–1415.404

[37] PEREIRA, L. A., AND DA SILVA TORRES, R. Semi-supervised transfer subspace for domain adaptation.405

Pattern Recognition 75 (2018), 235–249.406

[38] PERONE, C. S., BALLESTER, P., BARROS, R. C., AND COHEN-ADAD, J. Unsupervised domain407

adaptation for medical imaging segmentation with self-ensembling. NeuroImage 194 (2019), 1–11.408

[39] PHAM, D., KOESNADI, S., DOVLETOV, G., AND PAULI, J. Unsupervised adversarial domain adaptation409

for multi-label classification of chest x-ray. In 2021 IEEE 18th International Symposium on Biomedical410

Imaging (ISBI) (2021), IEEE, pp. 1236–1240.411

[40] PHAM, H., DAI, Z., XIE, Q., AND LE, Q. V. Meta pseudo labels. In Proceedings of the IEEE/CVF412

Conference on Computer Vision and Pattern Recognition (2021), pp. 11557–11568.413

[41] PRABHU, V., CHANDRASEKARAN, A., SAENKO, K., AND HOFFMAN, J. Active domain adaptation via414

clustering uncertainty-weighted embeddings. In Proceedings of the IEEE/CVF International Conference415

on Computer Vision (2021), pp. 8505–8514.416

[42] REN, M., TRIANTAFILLOU, E., RAVI, S., SNELL, J., SWERSKY, K., TENENBAUM, J. B., LAROCHELLE,417

H., AND ZEMEL, R. S. Meta-learning for semi-supervised few-shot classification. arXiv preprint418

arXiv:1803.00676 (2018).419

[43] SAITO, K., KIM, D., SCLAROFF, S., DARRELL, T., AND SAENKO, K. Semi-supervised domain420

adaptation via minimax entropy. In Proceedings of the IEEE/CVF International Conference on Computer421

Vision (2019), pp. 8050–8058.422

[44] SINGH, A. Clda: Contrastive learning for semi-supervised domain adaptation. Advances in Neural423

Information Processing Systems 34 (2021).424

11



[45] SU, J.-C., TSAI, Y.-H., SOHN, K., LIU, B., MAJI, S., AND CHANDRAKER, M. Active adversarial425

domain adaptation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer426

Vision (2020), pp. 739–748.427

[46] TALEB, A., LOETZSCH, W., DANZ, N., SEVERIN, J., GAERTNER, T., BERGNER, B., AND LIPPERT, C.428

3d self-supervised methods for medical imaging. Advances in Neural Information Processing Systems 33429

(2020), 18158–18172.430

[47] VAN OPBROEK, A., VERNOOIJ, M. W., IKRAM, M. A., AND DE BRUIJNE, M. Weighting training431

images by maximizing distribution similarity for supervised segmentation across scanners. Medical image432

analysis 24, 1 (2015), 245–254.433

[48] VS, V., VALANARASU, J. M. J., AND PATEL, V. M. Target and task specific source-free domain adaptive434

image segmentation. arXiv preprint arXiv:2203.15792 (2022).435

[49] WACHINGER, C., REUTER, M., INITIATIVE, A. D. N., ET AL. Domain adaptation for alzheimer’s disease436

diagnostics. Neuroimage 139 (2016), 470–479.437

[50] WANG, J., ZHANG, L., WANG, Q., CHEN, L., SHI, J., CHEN, X., LI, Z., AND SHEN, D. Multi-class asd438

classification based on functional connectivity and functional correlation tensor via multi-source domain439

adaptation and multi-view sparse representation. IEEE transactions on medical imaging 39, 10 (2020),440

3137–3147.441

[51] WANG, X., PENG, Y., LU, L., LU, Z., BAGHERI, M., AND SUMMERS, R. M. Chestx-ray8: Hospital-442

scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common443

thorax diseases. In Proceedings of the IEEE conference on computer vision and pattern recognition (2017),444

pp. 2097–2106.445

[52] XU, R., CHEN, Z., ZUO, W., YAN, J., AND LIN, L. Deep cocktail network: Multi-source unsupervised446

domain adaptation with category shift. In Proceedings of the IEEE Conference on Computer Vision and447

Pattern Recognition (2018), pp. 3964–3973.448

[53] YAN, W., WANG, Y., GU, S., HUANG, L., YAN, F., XIA, L., AND TAO, Q. The domain shift problem of449

medical image segmentation and vendor-adaptation by unet-gan. In International Conference on Medical450

Image Computing and Computer-Assisted Intervention (2019), Springer, pp. 623–631.451

[54] YANG, C., GUO, X., CHEN, Z., AND YUAN, Y. Source free domain adaptation for medical image452

segmentation with fourier style mining. Medical Image Analysis (2022), 102457.453

[55] YANG, S., WANG, Y., VAN DE WEIJER, J., HERRANZ, L., AND JUI, S. Unsupervised domain adaptation454

without source data by casting a bait. arXiv e-prints (2020), arXiv–2010.455

[56] YANG, Z., SHOU, L., GONG, M., LIN, W., AND JIANG, D. Model compression with two-stage multi-456

teacher knowledge distillation for web question answering system. In Proceedings of the 13th International457

Conference on Web Search and Data Mining (2020), pp. 690–698.458

[57] YAO, T., PAN, Y., NGO, C.-W., LI, H., AND MEI, T. Semi-supervised domain adaptation with subspace459

learning for visual recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern460

Recognition (2015), pp. 2142–2150.461

[58] YOSINSKI, J., CLUNE, J., BENGIO, Y., AND LIPSON, H. How transferable are features in deep neural462

networks? Advances in neural information processing systems 27 (2014).463

[59] YOU, S., XU, C., XU, C., AND TAO, D. Learning from multiple teacher networks. In Proceedings464

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017),465

pp. 1285–1294.466

[60] YUAN, F., SHOU, L., PEI, J., LIN, W., GONG, M., FU, Y., AND JIANG, D. Reinforced multi-teacher467

selection for knowledge distillation. In Proceedings of the AAAI Conference on Artificial Intelligence468

(AAAI’21) (2021).469

[61] ZHAO, H., SUN, X., DONG, J., CHEN, C., AND DONG, Z. Highlight every step: Knowledge distillation470

via collaborative teaching. IEEE Transactions on Cybernetics (2020).471

[62] ZHAO, H., ZHANG, S., WU, G., MOURA, J. M., COSTEIRA, J. P., AND GORDON, G. J. Adversarial472

multiple source domain adaptation. Advances in neural information processing systems 31 (2018).473

[63] ZHAO, S., WANG, G., ZHANG, S., GU, Y., LI, Y., SONG, Z., XU, P., HU, R., CHAI, H., AND474

KEUTZER, K. Multi-source distilling domain adaptation. In Proceedings of the AAAI Conference on475

Artificial Intelligence (2020), vol. 34, pp. 12975–12983.476

[64] ZHU, Y., ZHUANG, F., AND WANG, D. Aligning domain-specific distribution and classifier for cross-477

domain classification from multiple sources. In Proceedings of the AAAI Conference on Artificial Intelli-478

gence (2019), vol. 33, pp. 5989–5996.479

12



Checklist480

1. For all authors...481

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s482

contributions and scope? [Yes]483

(b) Did you describe the limitations of your work? [No]484

(c) Did you discuss any potential negative societal impacts of your work? [No]485

(d) Have you read the ethics review guidelines and ensured that your paper conforms to486

them? [Yes]487

2. If you are including theoretical results...488

(a) Did you state the full set of assumptions of all theoretical results? [Yes]489

(b) Did you include complete proofs of all theoretical results? [Yes]490

3. If you ran experiments...491

(a) Did you include the code, data, and instructions needed to reproduce the main experi-492

mental results (either in the supplemental material or as a URL)? [Yes]493

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they494

were chosen)? [Yes] See the Implementation details.495

(c) Did you report error bars (e.g., with respect to the random seed after running experi-496

ments multiple times)? [Yes]497

(d) Did you include the total amount of compute and the type of resources used (e.g., type498

of GPUs, internal cluster, or cloud provider)? [Yes] See the Implementation details.499

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...500

(a) If your work uses existing assets, did you cite the creators? [Yes]501

(b) Did you mention the license of the assets? [No]502

(c) Did you include any new assets either in the supplemental material or as a URL? [No]503

(d) Did you discuss whether and how consent was obtained from people whose data you’re504

using/curating? [No]505

(e) Did you discuss whether the data you are using/curating contains personally identifiable506

information or offensive content? [No]507

5. If you used crowdsourcing or conducted research with human subjects...508

(a) Did you include the full text of instructions given to participants and screenshots, if509

applicable? [N/A]510

(b) Did you describe any potential participant risks, with links to Institutional Review511

Board (IRB) approvals, if applicable? [N/A]512

(c) Did you include the estimated hourly wage paid to participants and the total amount513

spent on participant compensation? [N/A]514

13


	Introduction 
	Relate Works
	The Proposed Method
	Coordinating Weight Learning
	Bilevel Optimization

	Experiments
	Comparisons to State-of-the-Art
	Ablation Analysis and Discussion

	Conclusion

