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ABSTRACT

For self-supervised contrastive learning, models can easily collapse and generate
trivial constant solutions. The issue has been mitigated by recent improvement
on objective design, which however often requires square complexity either for
the size of instances (O(N2)) or feature dimensions (O(d)2). To prevent such
collapse, we develop two novel methods by decorrelating on different dimensions
on the instance embedding stacking matrix, i.e., Instance-wise (ICL) and Feature-
wise (FCL) Contrastive Learning. The proposed two methods (FCL, ICL) can be
combined synthetically, called Zero-CL, where “Zero” means negative samples
are zero relevant, which allows Zero-CL to completely discard negative pairs i.e.,
with zero negative samples. Compared with previous methods, Zero-CL mainly
enjoys three advantages: 1) Negative free in symmetric architecture. 2) By whiten-
ing transformation, the correlation of the different features is equal to zero, allevi-
ating information redundancy. 3) Zero-CL remains original information to a great
extent after transformation, which improves the accuracy against other whiten-
ing transformation techniques. Extensive experimental results on CIFAR-10/100
and ImageNet show that Zero-CL outperforms or is on par with state-of-the-art
symmetric contrastive learning methods.

1 INTRODUCTION

One of the current main bottlenecks in deep network training is the dependence on heavy anno-
tated training data, and this motivates the recent surge of interests in unsupervised (Donahue &
Simonyan, 2019) and self-supervised (Chen & He, 2021; Chen et al., 2020) methods. Specifically,
in self-supervised representation learning (SSL), a network is pre-trained without any form of man-
ual annotation, thus providing a means to extract information from unlabeled data sources (e.g., text
corpora, videos, images from the Internet, etc.). In self-supervision, label-based information is re-
placed by a prediction problem using a certain context or using a pretext task. Pretext task in SSL can
mainly be divided into three categories: 1) Generative based approaches (Donahue & Simonyan,
2019) learn to generate or otherwise model pixels in the input space. However, pixel-level generation
is computationally expensive and may not be necessary for representation learning. 2) Contextual
based methods (Vincent et al., 2008; Pathak et al., 2016; Ye et al., 2019) design pretext tasks (de-
noising auto-encoders (Vincent et al., 2008), context auto encoders (Zhang et al., 2016; 2017), etc).
3) Contrastive based methods (Chen et al., 2020; Grill et al., 2020; Caron et al., 2020; Asano et al.,
2019) take augmented views of the same image as positive pair and others as negative pairs. Gener-
ally, one positive sample corresponds to lots of negative samples. In recent works, contrastive based
methods have shown great promise, achieving state-of-the-art results in image classification (Chen
et al., 2020), video classification (Han et al., 2020) and other downstream tasks (Chen & He, 2021).

However, trivial constant solutions (different samples get the same representation) is easily happen-
ing without the proper design of architecture and objective function. The well-known solutions to
avoid this problem can be summarized into two parts: asymmetric model architecture and proper
objective function. 1) Model architecture: MoCo (He et al., 2020), BYOL (Grill et al., 2020) up-
date encoders separately and stopping gradient operation is adopted to avoid such problem. Then,
BYOL and SimSiam (Chen & He, 2021) introduce a predictor module to avoid collapse, which is
composed by MLP (Goodfellow et al., 2016). Current mainstream interpretation is using the predic-
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tor to construct an asymmetric structure, which is useful to alleviate trivial solutions. 2) Objective
function: SimCLR uses symmetric framework in contrastive learning. They prevent trivial solutions
by using negative pairs and InfoNCE, where InfoNCE can be divided into an alignment term and a
uniformity term (Arora et al., 2019). The uniformity term pulls different samples to a hyper-sphere
uniformly, forcing obtaining different representations and avoiding trivial solutions. Recently, Bar-
low Twins (Zbontar et al., 2021) designs a new objective function from the information redundancy
perspective, which also has two terms (an invariance term and a redundancy reduction term). The
invariance term maximizes the correlation of the same feature across different views, and the redun-
dancy term reduces information redundancy. However, for the symmetric framework, both SimCLR
and Barlow Twins require square order complexity in objective functions, and the main complexity
comes from the uniformity and redundancy term. In this paper, we propose two methods, named
Zero-ICL and Zero-FCL, where Zero-ICL discards the uniformity term and only requires O(N)
complexity by instance-wise whitening. Correspondingly, Zero-FCL discards the redundancy term
by feature-wise whitening and only requires O(d) complexity. Our contributions are:

1) We propose a new contrastive learning framework to prevent trivial solutions, Zero-CL, which
includes two parts, i.e., Zero-ICL (instance-wise) and Zero-FCL (feature-wise), either of which can
work independently and only requires linear order complexity (objective function).

2) To our best knowledge, Zero-ICL is the first attempt of instance-wise whitening, which is con-
ceptually comprehensible for preventing collapses in contrastive learning. Note that most previous
methods (including other domains beyond vision) e.g. (Eldar & Oppenheim, 2003; Kessy et al.,
2018) only use whitening transformation to reduce the information redundancy on feature-wise.

3) We give empirical analysis on the relationship between previous methods and our Zero-CL, where
previous negative sample consuming methods (Zbontar et al., 2021; Chen et al., 2020) can be re-
garded as our method with Lagrangian transformation. Then, we theoretically introduce ZCA-based
whitening from the maximal correlation (Kessy et al., 2018) perspective.

4) Experimental results on standard image benchmarks (CIFAR-10/100 and ImageNet-100/1k)
show our method achieves new state-of-the-art results for symmetric contrastive learning compared
with (Chen et al., 2020; Zbontar et al., 2021), especially for small hidden dimension and batch size.

2 RELATED WORK

We review recent contrastive learning works. We mainly divide the previous contrastive methods
into feature-wise and instance-wise according to different contrastive dimensions. We particularly
discuss the similarity and differences of some most related methods in Section 5 in detail.

instance-wise contrastive learning. instance-wise contrastive learning aims to attract positive pairs
and repulse negative pairs (Chen et al., 2020; He et al., 2020), where each pair is composed of two
instance views. One of the widely used objective functions in instance-wise learning is InfoNCE,
and extensive experiments in (Oord et al., 2018) show that InfoNCE requires negative pairs to avoid
trivial solutions. SimCLR (Chen et al., 2020) regards views augmented from different images in a
mini-batch as negative pairs. However, SimCLR requires a large batch size to improve the accuracy,
which is GPU intensive. To address this issue, MoCo (He et al., 2020) proposes storing negative
samples in the memory bank and updates the bank by the first-in-first-out principle. MoCo further
proposes two operations to prevent trivial solutions, i.e., momentum update key encoder and stop
gradient. In recent works (Chen et al., 2020; Grill et al., 2020), the mainstream explanation of the two
operations is they construct an asymmetric framework, which can avoid trivial solutions. Inspired by
this, BYOL (Grill et al., 2020) adopts stop gradient operation and EMA algorithm to update target
encoder. Further, BYOL introduces a predictor module to build a more asymmetric framework.
Then, SimSiam (Chen & He, 2021) empirically shows that stop gradient and the predictor is the key
component to avoid trivial solutions. Another approach to preventing such solutions is introduced in
W-MSE (Ermolov et al., 2021). Different from previous works (Chen et al., 2020; Chen & He, 2021;
He et al., 2020), W-MSE requires multiple augmented views to improve the accuracy. Besides, W-
MSE simply borrows Cholesky-based whitening transformation in SSL and the multi-view objective
requires O(NM2) complexity, where M is the number of views.

feature-wise contrastive learning. Different from instance-wise learning, feature-wise methods
contrast on feature dimension. Barlow Twins (Zbontar et al., 2021) is the first feature-wise method,
which pushes the cross-correlation matrix to identity matrix I. Its objective includes both invariance
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Figure 1: Framework of the proposed Zero-CL. The illustrated embedding Z ∈ R8×6 means there
are eight samples with six features. Zero-CL includes two branches, i.e., feature-wise branch
(Zero-FCL, bottom) and instance-wise branch (Zero-ICL, top). In instance-wise branch, whiten-
ing transformation is conducted on instance dimension. Then, the trace of cross affinity matrix
tr((HA)>HB) is maximized. Note feature-wise branch is similar to instance-wise branch.

term and redundancy reduction term, where the latter term can avoid trivial solutions. Inspired by
Barlow Twins, VICReg (Bardes et al., 2021) proposes a new regularization term named invariance-
covariance on feature dimension, and achieves similar results to Barlow Twins. However, both
Barlow Twins and VICReg require large contrastive dimensions and the covariance regularization
requires O(d2) complexity, which could be also regarded as requiring negative pairs on feature
dimension (each negative pair is composed of features in different dimensions across images).

Whitening transformation. Whitening, or sphering, is a common pre-processing step to transform
random variables to orthogonality. However, due to rotational freedom, there are infinitely many
possible whitening procedures. There is a diverse range of sphering methods, e.g. principal compo-
nent analysis (PCA) (Jégou & Chum, 2012), Cholesky matrix decomposition (Higham, 1990) and
zero-phase component analysis (ZCA) (Bell & Sejnowski, 1997). Compared with other whitening
methods, ZCA remains maximal correlation of original data, which we will clarify in Sec. 3.6.

3 THE PROPOSED ZERO-CL
In this section, we present the framework of Zero-CL in detail, starting with the whitening transfor-
mation procedure, followed by the model’s framework as well as the objective function. At last, we
provide theoretical analysis on whitening from maximal correlation perspective.

3.1 WHITENING TRANSFORMATION

Given a set of images {x}Ni=1, we extract an embedding in contrastive space zi = g(f(xi, θ), γ)
using an encoder network (He et al., 2016) f(·, θ) and a MLP module g(·, γ), where zi ∈ R1×d.
Denote the set of embeddings as Z ∈ RN×d, whitening transformation can be formulated as:

H = (h1,h2, · · · ,hN ) = WZ> (1)

where H ∈ Rd×N is the whitened embedding matrix. The square matrix W ∈ Rd×d is the so-
called whitening matrix. Since var(H) = I, it follows that WΣW = I and thus W(ΣW>W) =
W, which is fulfilled if W satisfies W>W = Σ−1. However, the constraint does not uniquely
determine the whitening matrix W. Specifically, for any Wrot = RW with orthogonal matrix, R
will also be a whitening transformation matrix. Here we present ZCA whitening matrix in detail.

ZCA-based whitening takes E (stacks together eigenvectors of the covariance matrix) as the or-
thogonal matrix R. Then ZCA whitening matrix can be written as:

WZCA = EΛ−1/2E> (2)

By rotation matrix E, the whitened data will be as close as possible to original data (see Theorem 1).
Note that in low-rank conditions, i.e., some eigenvalues equal to 0, a common approach is replacing
Λ−1/2 with (Λ + λI)−1/2 to prevent zero division, where λ = 1e− 4 as default.

3.2 SYMMETRIC OBJECTIVE FUNCTION BACKGROUND

For instance-wise contrastive learning, to avoid trivial solutions in the symmetric framework, the
objective function usually can be divided into alignment and uniformity terms (Arora et al., 2019).
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Figure 2: Frameworks of SimCLR (a), Barlow Twins (b), Zero-ICL (c) and Zero-FCL (d), where
row vector means one embedding of instance, and column vector means vector composed by i-
th dimension feature values among all instance. The solid red line means negative pairs and the
corresponding objective function includes such negative term. The dash red lines mean the two
vectors are orthogonal and thus, there is no need for negative term in objectives.

We now review the loss formulated in SimCLR (Chen et al., 2020) as:

Linfo = E(x,x+)∼ppos [−f(x)
>f(x+)/τ ]︸ ︷︷ ︸

alignment

+E (x,x+)∼ppos
{x−

i
}N
i=1
∼pdata

[
log(ef(x)>f(x

+)/τ +
∑
i

ef(x)
>f(x−i )/τ )

]
︸ ︷︷ ︸

uniformity
(3)

where τ is the temperature hyper-parameter. x+ and x− are positive and negative samples, respec-
tively. The first term is the so-called alignment, which maximizes the similarity between positive
pairs. The second term is the key to prevent trivial solution, pushing all the data points on a unit
hyper-sphere uniformly. Then, we rewrite the feature-wise objective of Barlow Twins as:

LBT =
∑
i

(1−Cii)
2

︸ ︷︷ ︸
invariance

+λ
∑
i

∑
j 6=i

C2
ij︸ ︷︷ ︸

redundancy reduction

(4)

where C ∈ Rd×d is the covariance matrix. The first term encourages correlation of the same fea-
ture across different views, while the second term minimizes correlation of different features. We
can observe that the objective of both instance-wise and feature-wise methods requires square order
calculation complexity, where the first term (alignment, invariance) requires linear order complex-
ity and the second term (uniformity, redundancy reduction) requires square order complexity. We
wonder if we can discard the second term, i.e., completely discard negative pairs.

3.3 INSTANCE-WISE AND FEATURE-WISE WHITENING

Inspired by W-MSE (Ermolov et al., 2021), we propose two efficient methods in SSL, which are
named Zero-ICL and Zero-FCL. Zero-ICL can replace the uniformity term in Eq. 3, while Zero-
FCL can replace the redundancy reduction term in Eq. 4.

Instance-wise whitening. Given a set of centered embeddings Z ∈ RN×d, different from traditional
whitening methods, we calculate the affinity matrix by S = ZZ>, where S ∈ RN×N . Then the
ZCA whitening matrix WI−ZCA can be calculated by:

WI−ZCA = EΛ
−1/2
S E> (5)

where E ∈ RN×N stacks eigenvector of the affinity matrix and ΛS represents the diagonal variance
matrix. One of the questions is how this transformation replaces the uniformity term. We denote the
whitened embedding matrix as H, we have:

E
[
HH>

]
= E

[
(EΛ

−1/2
S ETZ)(EΛ

−1/2
S ETZ)>

]
(6)

where E is a rotation orthogonal matrix, i.e., E>E = EE> = I. Thus, the result of Eq. 6 is
I ∈ RN×N , which means embeddings of different samples are strictly orthogonal. Then, we can
replace the second part in InfoNCE with instance-wise whitening transformation.
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Feature-wise whitening. Similar to instance-wise whitening transformation, it is calculated by:

WF−ZCA = EΛ
−1/2
C E> (7)

where C is the covariance matrix, ΛC and E ∈ Rd×d are the diagonal variance matrix and eigen-
matrix of C, respectively. Denote whitened embedding matrix as H ∈ RN×d, we have E[H>H] =
I, i.e., the correlation of the different features is equal to 0. Hence, redundancy reduction term in
Eq. 4 can be replaced with feature-wise whitening transformation.

3.4 FRAMEWORK AND OBJECTIVE FUNCTION

Like other methods in SSL (Chen et al., 2020; Zbontar et al., 2021; Chen & He, 2021), given a batch
{Xi}Ki=1 sampled from a dataset, we first augment data via a distribution of data augmentation
T . We term the two views as XA and XB . The two batches are then fed to an encoder (He
et al., 2016; Kipf & Welling, 2016) f(·, θ), producing batches of embeddings TA and TB . Then,
a projector module g(·, γ) is used to map representation to contrastive space. The two batches
of embeddings are then fed into projector g, producing ZA ∈ RK×d and ZB ∈ RK×d. Since
whitening transformation requires centered vector, we use standard scaling method to each batch
of embeddings. Note that to calculate instance-wise and feature-wise whitening transformation
matrix, we must center embeddings on feature dimension and instance dimension, respectively.
We denote feature-wise and instance-wise centered embeddings as ZFea and ZIns as follow:

Z
A(B),Ins
i,· =

Z
A(B)
i − µi√
σ2
i + ε

1 ≤ i ≤ d, Z
A(B),Fea
·,i =

Z
A(B)
i − µi√
σ2
i + ε

1 ≤ i ≤ K (8)

where Zi,· is the i-th vector in Z and Z·,i is the vector composed of each value at dimension i in all
embeddings in Z. µ and σ are mean and variance of one vector. ε is set 1e-4 as default.

Instance-wise objective. Now we have two batches of instance-wise centered embeddings ZA,Ins

and ZB,Ins. By Eq. 5, we can obtain instance-wise whitened embeddings HA,Ins and HB,Ins.
Then, the instance-wise objective can be formulated as:

LIns =
K∑
i

(
1−

∑
d

HA,Ins
i,d ·HB,Ins

i,d

)2

(9)

where Hi,d represents the d-th feature value of the i-th instance.

Feature-wise objective. Similar to Eq. 9, we can obtain feature-wise whitened embeddings
HA,C−ZCA and HB,C−ZCA via Eq. 7. Then the feature-wise objective can be formulated as:

LFea =
∑
d

(
1−

K∑
i

HA,Fea
i,d ·HB,Fea

i,d

)2

(10)

where K denotes the batch size. The overall loss can be formulated as:

min
θ,γ
J = LIns + λ · LFea (11)

We set the hyper-parameter λ = 1 in this paper. Note that both two losses can work independently
and we term LIns only as Zero-ICL (instance-wise) and LFea only as Zero-FCL (feature-wise).

3.5 EMPIRICAL ANALYSIS

Here for simplicity, we discuss feature-wise whitening. From the redundancy reduction perspective,
high-quality self-supervised embeddings require that: 1) embeddings are in a non-trivial constant
distribution, where trivial distribution means all the embeddings collapse to a single point; 2) posi-
tive image pairs share similar semantics; and 3) correlation of the different feature should be zero.
Considering feature-wise SSL, for simplicity, denote i-th feature in Z as Z·,i, where Z ∈ RN×d and
Z·,i ∈ RN×1, we can formulate this problem as follows:

min
θ,γ

E
[
dist(ZA·,i,Z

B
·,i)
]
s.t. cov(ZA) = cov(ZB) = I (12)

where dist(·, ·) can be quantified as any similarity metric. To solve the conditional optimization
problem, previous works (Zhang et al., 2021a; Zbontar et al., 2021) transform the hard condition to
soft condition via the Lagrangian multiplier. The objective becomes:

min
θ,γ

E
[
dist(ZA·,i,Z

B
·,i)
]
+ λ ·

(
‖(ZA)>ZA − I‖2 + ‖(ZB)>ZB − I‖2

)
(13)
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However, the second term of the above objective function requires square order complexity. Hence,
we propose another approach to solve this hard conditional optimization problem, i.e., whitening
transform the representations before calculating loss. Then the objective of Eq. 12 is equal to

min
θ,γ

E
[
dist(HA

·,i,H
B
·,i)
]

(14)

where H is the whitened embeddings. Finally, our objective only usesO(d) complexity to solve the
conditional problem, which is similar to the instance-wise branch.

3.6 THEORETICAL ANALYSIS ON WHITENING

By Eq. 1, for any Wrot = RW, which satisfies R>R = I, Wrot can be a whitening matrix. For
SSL, whitening transformation aims to make different instances or features orthogonal, and also
remains as much original information as possible. The problem can be formulated as:

min
R

E[(H− Z)>(H− Z)] s.t. H>H = I, R>R = I, W>W = Σ−1 (15)

where R, Σ are the rotation matrix and covariance matrix. Z and H are embeddings before and
after whitening, respectively. Since H and Z are two centered scaling matrices, we can rewrite the
constraint as follows, and thus minimizing the variance between whitened data and original data
equals to maximizing the second term:

E
[
(H− Z)>(H− Z)

]
= 2I− 2tr

(
REΛ−1/2E>

)
(16)

Theorem 1 Maximization of tr(REΛ−1/2E>) uniquely determines the rotation matrix R to be the
identity matrix I.

Proof 1 Since Λ is a diagonal matrix, we can write Eq. 16 as:

tr(REΛ−1/2E>) = tr(Λ−1/2E>RE) =
∑
i

Λ
−1/2
ii Aii (17)

where A = E>RE. Since R and E are both orthogonal, A is also an orthogonal matrix. So we
have Aii ≤ 1. Note that E is a rotation matrix, i.e., E>E = I. Thus, if and only if R = I, we can
obtain the maximum of Eq. 17. Then, we can complete the proof. �

4 EXPERIMENTS

We use the following datasets. The implementation and protocol details are given in Appendix.

Table 1: Accuracy on ImageNet with ResNet-50.

Method 100 eps 400 eps
acc@1 acc@5 acc@1 acc@5

SimCLR 66.5 86.31 69.2 89.0
Moco v2 67.1 87.59 71.1 90.1

BYOL 66.3 87.66 73.2 91.3
SwAV 66.5 87.71 70.7 ∼

SimSiam 68.1 88.48 70.8 ∼
Barlow Twins 67.7 88.36 73.1 91.0

Zero-CL 68.9 88.74 72.6 90.5

1) CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009), two small-scale datasets, are com-
posed of 32 × 32 images with 10 and 100
classes, respectively.

2) ImageNet-100 and ImageNet-1k (Deng
et al., 2009) sets include 100 and 1k classes,
respectively. The datasets are well-balanced
in class distribution and the images contain an
iconic view of objects, which are the commonly
used benchmark in SSL (Zbontar et al., 2021).

Main comparison. We mainly conduct experiments on CIFAR-10/100 and ImageNet-100/1k
datasets. For fair comparison, we set batch size as 128 on ImageNet-100, 1024 on ImageNet-1k,
and 256 on CIFAR-10/100. Table 1 and 2 show the best results on different datasets across differ-
ent methods, where our method outperforms most of the prior arts with symmetric architecture and
less complexity. We modify our code based on Barlow Twins, and the reported results are strictly
followed official code in this site1. Note that on CIFAR-10 and CIFAR-100 datasets, we remove
the first maxpool layer and modify the first convolutional layer with kernel size 3 and strides 1 in
ResNet-18, which are commonly used tricks in low-resolution datasets (Chen et al., 2020). The MLP

1https://github.com/facebookresearch/barlowtwins
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Table 2: Main comparison on CIFAR and ImageNet-100. Proj. and Pred. mean the hidden dimen-
sion in projector and predictor. Negs means negatives (both feature-wise and instance-wise). All
methods are trained 1000 epochs on CIFAR-10/100 (batch size 256) and 400 epochs on ImageNet-
100 (batch size 128). N means number of samples, d means hidden dimensions, M is the number
of views and C is the clustering classes. The complexity only considers objective function in line
with peer works e.g. (Zhang et al., 2021a), since other parts like feedforward computing share the
same overhead. Note that some results are directly quoted from solo-learn (da Costa et al., 2021).

Method Proj. Pred. Negs. Complexity CIFAR-10 CIFAR-100 ImageNet-100
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

A
sym

m
etric

BYOL 4096 8192 % O(N) 92.61 99.82 70.18 91.36 80.09 94.99
DINO 2048 % % O(N) 89.19 99.31 66.38 90.18 74.84 92.92

SimSiam 2048 512 % O(N) 90.51 99.72 65.86 89.48 77.04 94.02
MoCo V2 2048 % " O(NK) 92.94 99.79 69.54 91.49 78.2 95.5

ReSSL 2048 % " O(N2) 90.63 99.62 65.83 89.51 76.59 94.41

Sym
m

etric

VICReg 2048 % " O(N + d2) 90.07 99.71 68.54 90.83 79.22 95.06
SwAV 2048 % " O(NC) 89.17 99.68 64.67 88.52 74.28 92.84

W-MSE 256 % % O(NM2) 88.18 99.61 61.29 87.11 69.06 91.22
SimCLR 2048 % " O(N2) 90.74 99.75 65.39 88.58 77.48 93.42

Barlow Twins 256 % " O(d2) 87.39 99.42 57.92 85.23 67.21 90.64
Barlow Twins 2048 % " O(d2) 89.57 99.73 69.18 91.19 78.62 94.72

Zero-FCL 256 % % O(d) 89.77 99.73 66.81 89.71 75.67 93.63
Zero-FCL 2048 % % O(d) 90.51 99.76 70.25 91.96 79.32 94.94
Zero-ICL 256 % % O(N) 90.47 99.76 69.33 91.62 78.02 95.61
Zero-CL 2048 % % O(N + d) 90.81 99.77 70.33 92.05 79.26 94.98

Table 3: Analysis of convergence rate. Cholesky-
FCL and Cholesky-ICL mean replace ZCA
whitening with Cholesky whitening on feature
and instance-wise, respectively. For fair compar-
isons, we set the dimension of Projection head as
128-128-128 and batch size as 256.

Method 100 eps 1000 eps
Acc@1 Acc@5 Acc@1 Acc@5

Barlow Twins 80.65 99.10 87.27 99.46
SimCLR 78.39 98.84 90.16 99.66
Zero-ICL 84.59 99.28 90.15 99.71

Cholesky-ICL 76.51 98.75 85.24 99.16
Zero-FCL 83.2 99.11 88.25 99.41

Cholesky-FCL 82.83 99.02 87.63 99.37
Zero-CL 85.01 99.36 90.24 99.70

Table 4: Analysis on w/ and w/o negatives. The
hidden dimension of Zero-ICL and Zero-FCL
is set as 256 and 2048. Note that the repro-
duced SimCLR w/o negatives means directly us-
ing MSE loss after l2 normalization between pos-
itive embeddings, while the reproduce Barlow
Twins w/o negatives means only using the invari-
ance term in Eq. 4.

Method w/o negatives w/ negatives
Acc@1 Acc@5 Acc@1 Acc@5

Barlow Twins† 16.98 41.26 65.81 90.18
SimCLR† 6.92 22.36 64.98 89.91
Zero-ICL 67.54 90.85 62.61 87.89
Zero-FCL 67.31 90.76 65.95 90.15

(Projector) in our methods is quantified as three linear layers with two BNs (Ioffe & Szegedy, 2015)
and ReLU activation function. Table 2 shows the results on CIFAR and ImageNet-100 datasets.
We compare our Zero-FCL with Barlow Twins with the same hidden dimension. With 256 hid-
den dimension, Zero-FCL outperforms Barlow Twins by 8.89% and 8.46% in top-1 accuracy on
CIFAR-100 and ImageNet-100, respectively. For hidden dimension 2048, Zero-FCL outperforms
Barlow Twins 1.07% and 0.7% top-1 accuracy on CIFAR-100 and ImageNet-100 datasets. Note that
although Zero-ICL is an instance-wise method and the batch size is set only 128 or 256, Zero-ICL
still gets 69.33% top-1 accuracy on CIFAR-100, which is 3.94% higher than SimCLR.

Convergence rate. Many experiments (Gutmann & Hyvärinen, 2010; Chen et al., 2020) have shown
that contrasting on high dimension sphere converge faster than low dimension sphere. Hence, to
explore if our methods can converge fast on a low contrastive dimension, we conduct extensive
experiments with 100 and 1000 epochs on CIFAR-10 dataset. For fair comparisons, we choose two
symmetric methods, i.e., SimCLR (instance-wise) and Barlow Twins (feature-wise) as baselines.
Table 3 illustrates our method outperforms the mentioned two methods. Specifically, Zero-FCL
outperforms Barlow Twins and SimCLR by a large range (4.36%, 6.63% top-1 accuracy) with 100
epochs, while the improvement decreases after 1000 epochs. We conjecture the reason may be that

7



Under review as a conference paper at ICLR 2022

32 64 128 256 512 1024 2048 4096

hidden size

45

50

55

60

65

A
cc

@
1

Barlow Twins
SimCLR
Lins only
LFea only

(a) Top-1 (hidden)

32 64 128 256 512 1024 2048 4096

hidden size

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

A
cc

@
5

Barlow Twins
SimCLR
Lins only
LFea only
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Figure 3: Classification accuracy on CIFAR-100 under different hidden dimensions in (a), (b) and
batch size in (c), (d). For (a) and (b), the batch size of Zero-ICL and Zero-FCL are set 256 and 1024.
For (c) and (d), the hidden dimension of Zero-ICL and Zero-FCL is set 256 and 2048, respectively.

Barlow Twins and SimCLR have two terms to optimize, where the first term is the key to learn good
embeddings (Arora et al., 2019), and the second term (uniformity or redundancy reduction) is the
key to prevent trivial solutions. However, the second term is hard to converge (Wang & Isola, 2020).
In contrast, our methods exactly discard the second term via whitening transformation. Thus, our
method converges at a faster speed. We also report the results of different whitening transformation
methods, i.e., Cholesky and ZCA. We find that for instance-wise contrastive learning, Cholesky-
based decomposition gets much lower accuracy scores rather than the ZCA-based method. For
feature-wise contrastive learning, Cholesky gets a slightly lower accuracy than ZCA-based. We
conjecture this is because ZCA-based whitening remains maximal information of original data (see
Theorem 1), which is important for instance-wise learning (slight rotation on instance dimension will
heavily influence linear evaluation), while for feature-wise learning, when the features are permuted
or rotated, it may not cause serious influence for linear evaluation (Mitra et al., 2002).
Sensitivities to batch size. To explore our method’s sensitiveness to batch size, we conduct experi-
ments with different batch sizes from 32∼ 1024. For a fair comparison, each method with a different
batch size is trained with 50K iterations. Fig. 3(c) shows the results on CIFAR-100. We can ob-
serve SimCLR and Zero-ICL get lower accuracy when batch size is small and this phenomenon is
not surprising since instance-wise contrastive learning methods usually require a large batch size to
create negative pairs (SimCLR) or exact statistics (Zero-ICL). Another observation is the accuracy
of Zero-FCL saturates when BatchSize = 256, which is consistent with the results in (Zbontar
et al., 2021). Note that under 1024 batch size, Zero-ICL outperforms SimCLR by about 3.1% top-1
accuracy and Zero-FCL outperforms Barlow Twins 3.8% top-1 accuracy. We guess that’s because
of the diagonal property of whitened embeddings, which makes our methods robust to batch size.
Sensitivities to hidden dimensions. We also explore the sensitivity of our method to hidden dimen-
sions, which are set from 32 ∼ 4096. Note that the three linear layers in projection MLP g are set
as the same input and output dimension. For feature-wise methods (Barlow Twins, Zero-FCL), the
batch size is set as 256 (best hyper-parameter in Fig. 3(c)). For instance-wise methods (SimCLR,
Zero-ICL), we set batch size as 1024. All the results are get by 50K iterations. Fig. 3(a) shows clas-
sification accuracy with different hidden dimensions. For Barlow Twins and Zero-FCL, both two
methods are heavily influenced by hidden dimensions and Zero-FCL outperforms Barlow Twins
under all hidden dimensions settings. Oppositely, because the objective functions of SimCLR and
Zero-ICL are instance wise, making them more robust to hidden dimensions than Barlow Twins.
Ablation to negatives. To show Zero-CL is indeed a negative-free method, we conduct an ablation
study w/ and w/o negative samples and compare our methods with SimCLR, Barlow Twins. For our
methods w/ negatives, we add the off-diag entry of cross-correlation matrix in our objective function,
which is followed Barlow Twins (Zbontar et al., 2021). Table 4 shows results of four symmetric
methods w/ and w/o negatives pairs. Performance of Barlow Twins significantly decreases and
SimCLR directly crashes w/o negative pairs. Zero-FCL and Zero-ICL do not require negatives and
perform the best without negatives. After adding negatives, both Zero-ICL and Zero-FCL lose some
accuracy. We analyze that is because whitening transformation can be regarded as a constraint,
while using negatives in the objective function is also a constraint. Such two constraints will trade
off the weight of alignment part (Arora et al., 2019), where the alignment part is the key to learn
representations in contrastive learning (Grill et al., 2020; Wang & Isola, 2020). Thus, the accuracy
of Zero-ICL and Zero-FCL w/ negatives is lower than those w/o negatives.
Breaking Symmetry. In line with Barlow Twins (Zbontar et al., 2021), we conduct extensive ex-
periments with different asymmetric methods, i.e., stop-gradient and predictor. For Zero-ICL, the
objective only has an alignment part, which has been shown easily to collapse without the asym-
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metric framework (Grill et al., 2020; Chen & He, 2021), while the proposed instance whitening can
solve this problem well. Table 5 gives classification accuracy on ImageNet-100 with ResNet-18
backbone. In our experiments, the predictor module is composed of two linear layers with batch
normalization. Similar to Barlow Twins, we find these asymmetries slightly decrease the perfor-
mance of our network. For stop gradient, it is easy to understand the accuracy dropping, i.e., with-
out considering collapse, the information provided by two views will be more precise than single
view (Caron et al., 2020; Ermolov et al., 2021), while for predictor, we guess that’s because overfit-
ting by the non-linear transformation power of deep MLP (Goodfellow et al., 2016).

5 FURTHER DISCUSSION

We further compare our work with some existing decorrelation methods and highlight our differ-
ences to better elaborate on the contributions and discuss the broad impacts.
Relation to CCA-SSG (Zhang et al., 2021a). Inspired by classical Canonical Correlation Analysis,
CCA-SSG proposes a new loss function for graph data learning, which is similar to Barlow Twins.

LCCA = ‖ZA − ZB‖2︸ ︷︷ ︸
invariance

+λ

‖(ZA)>ZA − I‖2 + ‖(ZB)>ZB − I‖2︸ ︷︷ ︸
decorrelation

 (18)

where the first term is similar to LBT . However, the decorrelation term of LCCA aims
to minimize the intra-correlation of different features, while the redundancy term of LBT
minimizes cross-correlation of different features. Our feature-wise whitening with LFea
only requires the invariance term of CCA-SSG or Barlow Twins, while the other term
of LCCA is replaced by intra-feature-wise whitening, i.e., whitening transformation is con-
ducted inside each batch view. Inspired by Barlow Twins, We expect out method can per-
form whitening transformation across two batch views, which we leave for future work.

Table 5: Ablation study of asym-
metric/symmetric architectures as
generated by applying stop gra-
dient (‘SG’)/predictor (‘Pred’) on
one of the two branches, by follow-
ing the setting from (Zbontar et al.,
2021).

Method SG Pred. Top-1 Top-5

Zero-FCL

% % 79.32 94.94
% " 76.57 94.18
" % 77.81 94.22
" " 74.81 92.81

Zero-ICL

% % 78.02 94.11
% " 75.12 93.18
" % 74.87 92.72
" " 72.19 91.95

Relation to W-MSE (Ermolov et al., 2021). W-MSE firstly
combines classical whitening transformation with contrastive
learning. They create multiple views from the same im-
ages and perform the whitening transformation in each batch
view on the feature dimension. Then W-MSE objective is
proposed to maximize similarities between every two views
(instance-wise). Compared with this whitening method, Zero-
CL mainly has three differences. 1) Method. W-MSE directly
borrows whitening transformation on feature-wise, which is
widely used in other domains (Huang et al., 2018; Zhang et al.,
2021b). However, after feature-wise whitening, the instance-
wise objective function is adopted, which is groundless and
also limits their performance. Depart from W-MSE, Zero-
CL aims to replace the second term of InfoNCE and LBT .
Thus, Zero-ICL uses instance-wise objective function with
instance-wise whitening, and Zero-FCL uses feature-wise ob-

jective function with feature-wise whitening, which is meaningful and more comprehensible. Such
methods also leverage the performance (See Table 2). 2) Technology. Instead of directly using
Cholesky or PCA-based whitening, we first analyze which whitening transformation method is we
really need. Then, we theoretically analyze why ZCA whitening can remain maximal information.
3) SSL settings. W-MSE requires multiple views to boost the accuracy (the version with two views
gets much lower accuracy), while Zero-CL can get higher accuracy with only two views.

6 CONCLUSION

We have proposed two new methods to prevent degenerate solutions in the symmetric architecture
of SSL. We first analyze existing objective functions in SSL (LInfo, LBT and LCCA). Then, we
show why Zero-FCL and Zero-ICL can replace the uniformity term of LInfo and redundancy term
of LBT , respectively. We further give theoretical analysis on how ZCA based whitening remains
maximal information rather than other whitening transformation methods. Finally, we conduct ex-
periments on three image benchmarks and results show that our methods can outperform or be on par
with prior arts. Further, to the best of our knowledge, Zero-ICL is the first attempt for instance-wise
whitening and we hope it can bring more inspiration to other tasks.
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A APPENDIX

A.1 IMPLEMENTATION IN VISION

Image augmentations. Each input image is transformed twice to generate two different views
mentioned before. The image augmentation pipeline follows Barlow Twins (Zbontar et al., 2021),
composed of: random cropping, resizing to 224 × 224 (32 × 32 for CIFAR), horizontal flipping,
color jittering, converting to gray-scale, Gaussian blurring, and solarization. The last five are applied
randomly on two views with different probabilities.

Architecture. Followed by recent works (Chen et al., 2020; Zbontar et al., 2021), the encoder
consists of ResNet-50 and ResNet-18 (He et al., 2016) (without the final classification layer, 2048,
512 output units, respectively) followed by a MLP module. In line with Barlow Twins (Zbontar
et al., 2021), the MLP module contains three linear layers, each with the same output units. The first
two layers of the MLP are followed by a BatchNorm layer (Ioffe & Szegedy, 2015).

Optimization. Similar to previous works (Grill et al., 2020; Zbontar et al., 2021), we use the LARS
optimizer (You et al., 2017) on both three image datasets. We use a learning rate of 0.2 for the
weights and 0.005 for the biases and batch normalization parameters. We multiply the learning rate
by batch size and divide it by 256. We use a learning rate warm-up period of the first 10 epochs, after
which we reduce the learning rate by a factor of 1000 using a cosine decay scheduler (Loshchilov
& Hutter, 2016). For CIFAR-10 and CIFAR-100, we use single 1080 GPU. For ImageNet-100, the
batch size is set as 128 as default, and we use 8 Tesla V100 16G GPUs. For ImageNet, we use 64
1080Ti GPUs.

Evaluation. We train a linear classifier on three vision datasets on top of fixed representations of
ResNets pre-trained by Zero-CL. Specifically, the linear classifier is trained for 100 epochs with a
learning rate of 0.3 and a cosine learning rate scheduler. We minimize the cross-entropy loss with
SGD optimizer with momentum 0.9 and weight decay 1e-6. In line with previous arts (Zbontar et al.,
2021; Chen et al., 2020), we set batch size 256. At the inference stage, we resize the image to 256
× 256 and center crop it to a size of 224 × 224.
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