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Abstract

Video-language models suffer from forgetting old/learned knowledge when trained1

with streaming data. In this work, we thus propose a continual video-language mod-2

eling (CVLM) setting, where models are supposed to be sequentially trained on five3

widely-used video-text datasets with different data distributions. Although most of4

existing continual learning methods have achieved great success by exploiting extra5

information (e.g., memory data of past tasks) or dynamically extended networks,6

they cause enormous resource consumption when transferred to our CVLM setting.7

To overcome the challenges (i.e., catastrophic forgetting and heavy resource con-8

sumption) in CVLM, we propose a novel cross-modal MoCo-based model with9

bidirectional momentum update (BMU), termed BMU-MoCo. Concretely, our10

BMU-MoCo has two core designs: (1) Different from the conventional MoCo, we11

apply the momentum update to not only momentum encoders but also encoders12

(i.e., bidirectional) at each training step, which enables the model to review the13

learned knowledge retained in the momentum encoders. (2) To further enhance14

our BMU-MoCo by utilizing earlier knowledge, we additionally maintain a pair of15

global momentum encoders (only initialized at the very beginning) with the same16

BMU strategy. Extensive results show that our BMU-MoCo remarkably outper-17

forms recent competitors w.r.t. video-text retrieval performance and forgetting rate,18

even without using any extra data or dynamic networks.19

1 Introduction20

Existing video-language modeling (VLM) methods have achieved promising performance for video-21

text retrieval [56, 36, 58, 27, 22, 50, 25, 4] with non-streaming data. However, in real-world22

application scenarios, VLM models need to evolve with streaming data (e.g., collected from the23

Internet [36, 39]) to accommodate more tasks. Under this setting, since it costs too much resource to24

retrain the model with both old and new data for each task, a common practice is to fine-tune VLM25

models with only the newly-arrived data. Note that such model fine-tuning leads to severe performance26

degradation on previous tasks. This is a well-documented phenomenon called catastrophic forgetting27

[16, 35] under the conventional continual learning setting [45, 42, 31, 14, 21, 57].28

Therefore, in this work, we propose a continual video-language modeling (CVLM) setting to better29

simulate the realistic scenario. Under our CVLM setting, models are supposed to be sequentially30

trained on five widely-used video-text datasets: VATEX [51], ActivityNet [23], MSR-VTT [52],31

DiDeMo [18], and MSVD [10]. An evaluation protocol is also established for CVLM, which contains32

three metrics to respectively measure the text-to-video retrieval performance (Recall@1, shortened33
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Figure 1: Illustration of the catastrophic forgetting problem in CVLM and the core design for our
BMU-MoCo. (a) The catastrophic forgetting problem in CVLM. We train a basic cross-modal
MoCo model on five tasks and present the comparative results of the final model and current models
on learned tasks (Task 1–4). Note that there is no catastrophic forgetting on Task 5 and thus this task
is omitted here. (b) The core design of BMU-MoCo. Different from the conventional MoCo, we
update not only momentum encoders but also encoders through the bidirectional momentum update
(BMU) strategy without extra memory or dynamic network across all tasks.

as R@1), forgetting rate (FR), and harmonic mean (HM) performance. Moreover, we implement34

a basic cross-modal MoCo [17] model (Base-MoCo) as our baseline method since it has shown35

superiority on video-language modeling [30, 32]. As illustrated in Figure 1(a), we observe that in36

spite of achieving great R@1 results with current models (evaluated right after trained on each task),37

the performance of the final Base-MoCo model (trained across all five tasks) drops significantly.38

To tackle the catastrophic forgetting problem, most recent continual learning works attempt to39

preserve the learned knowledge from a variety of perspectives: (1) Maintaining a memory buffer to40

save and exploit data from previous tasks [43, 5, 31, 3, 8, 42]; (2) Generating pseudo data of learned41

tasks [48, 24, 40, 54]; (3) Extending the network architecture dynamically as each new task arrives42

[45, 14, 1, 7, 28]. However, when these methods are transferred to our CVLM setting, the resource43

consumption is enlarged rapidly as the number of tasks grows, due to the characteristic of video data.44

In addition, another branch of continual learning works focus on imposing a regularization constraint45

with quadratic penalty [21, 57, 13, 46] or knowledge distillation [29, 2, 19, 41, 20], which leads to46

an unwanted trade-off on the performance of old and new tasks with limited neural resources [37].47

Therefore, it is a long-standing and arduous challenge to train a video-language modeling network48

under the CVLM setting with both effectiveness and efficiency taken into consideration.49

To overcome this challenge, we devise BMU-MoCo, a cross-modal MoCo-based model with a50

novel bidirectional momentum update (BMU) strategy. As shown in Figure 1(b), our BMU-MoCo51

needs neither extra memory data nor dynamically extended neural networks. Concretely, similar to52

cross-modal MoCo applied in [30, 32], our BMU-MoCo has a video encoder (i.e., ViT-Base [12])53

and a text encoder (i.e., BERT-Base [11]), followed by the momentum video/text encoders. Different54

from the original MoCo [17] and its cross-modal versions [30, 32] that utilize momentum update for55

only momentum encoders to maintain a consistent queue, our BMU strategy imposes momentum56

update on both momentum encoders and encoders. As a result, at each training step, the encoders of57

our BMU-MoCo learn new knowledge by end-to-end update with back-propagation whilst reviewing58

old knowledge directly from the parameters of momentum encoders by momentum update. In our59

opinion, our BMU-MoCo outperforms existing methods for two main reasons: (1) Momentum60

encoders are initialized by current encoders at the beginning of each new task and then progress61

slowly, which helps our model preserve adequate old knowledge without sacrificing the performance62

on new tasks; (2) Since there is no category information under the CVLM setting, learning from63

memory data or distilling with a batch of new data only absorbs part of previous knowledge while64

our BMU-MoCo learns holistic knowledge directly from the parameters of momentum encoders. To65

further enhance our BMU-MoCo, we also maintain a pair of global (cross-task) momentum encoders66

with the same BMU strategy, which are only initialized at the very beginning and thus preserve earlier67

knowledge than the normal local (task-specific) momentum encoders.68
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Our main contributions are four-fold: (1) We propose a new continual video-language modeling69

(CVLM) setting, where models are supposed to be sequentially trained on five widely-used video-text70

datasets. (2) To effectively and efficiently overcome the catastrophic forgetting problem under the71

CVLM setting, we devise BMU-MoCo, a cross-modal MoCo-based model with a novel bidirectional72

momentum update (BMU) strategy. It can review holistic old knowledge directly from the parameters73

of momentum encoders while learning on new tasks. (3) To further boost our BMU-MoCo, a pair of74

global momentum encoders are maintained by the same BMU strategy to preserve and review earlier75

knowledge. (4) Extensive results demonstrate that our BMU-MoCo outperforms recent continual76

learning methods by large margins w.r.t. both text-to-video retrieval performance and forgetting rate,77

even without any extra memory data or dynamically extended networks.78

2 Related Work79

Video-Language Modeling. Most existing methods for video-language modeling follow two80

paradigms: (1) Single-stream methods [33, 58, 49, 26, 25, 53] typically include a multi-modal trans-81

former to achieve fine-grained cross-modal interaction between the video and language modalities.82

Although achieving great performance, they suffer from the huge time complexity caused by the pair-83

wise inputs during inference, which makes them unsuitable for practical applications. (2) Two-stream84

methods [15, 38, 4, 30, 32] learn video and text representations independently, and align them after85

encoding. To ensure the inference efficiency, both the baseline method (i.e., Base-MoCo) and our86

BMU-MoCo for CVLM are set to be two-stream methods. Importantly, different from Base-MoCo,87

our BMU-MoCo has a novel BMU strategy to address the catastrophic forgetting problem and two88

extra global momentum encoders to further boost the model performance.89

Continual Learning. Conventional continual learning methods mainly focus on image classification90

tasks. They can be roughly categorized into three groups: (1) Rehearsal-based methods apply extra91

memory to store sampled data [42, 31, 43, 9, 5, 3, 8, 6] or generate pseudo data [48, 24, 40, 54]92

from previous tasks. The memory size and the training complexity tend to be enlarged significantly93

as the number of tasks grows. (2) Expansion-based methods either add extra extended networks94

for new tasks [45, 14, 1, 7, 28] or select partial model parameters to update for different tasks95

[55, 44, 47]. They need more computational resources especially for a long sequence of training tasks96

(e.g., under our CVLM setting). (3) Regularization-based methods modify the model parameters97

with quadratic loss penalty [21, 57, 13, 46] or knowledge distillation constraints [29, 2, 19, 41, 20].98

Although succeeded in image classification tasks, they still face a large challenge in balancing the99

model performance between old and new tasks when applied to our CVLM setting. Although our100

BMU-MoCo can be classified as a regularization-based method, it has a vital difference from existing101

regularization-based methods: benefiting from the bidirectional momentum updating process, our102

BMU-MoCo can directly utilize the holistic previous knowledge from the parameters of momentum103

encoders for model training (i.e., updating the encoders), and simultaneously update the momentum104

encoders at each training step to accommodate new tasks.105

3 Methodology106

3.1 Preliminary107

We propose a new continual video-language modeling (CVLM) setting, where models are supposed108

to be sequentially trained on n video-text datasets D = [D1,D2, · · · ,Dn]. For each task t, it contains109

a dataset Dt = {Vi, Ti}Nt−1
i=0 with Nt video-text pairs, where Vi denotes a video with Si frames110

and Ti represents an English text. The target of CVLM is to learn a video encoder fθV and a111

text encoder fθT , which can respectively project the input video and its related text into a joint112

embedding space with nearest metric distance. Different from the classical VLM setting which only113

considers the model performance on the current dataset Dt, our CVLM setting requires the models114

to prevent the catastrophic forgetting on previously-used datasets [D1,D2, · · · ,Dt−1] (t > 1) while115

also performing well on the current dataset Dt. Note that our proposed BMU-MoCo for CVLM is a116

memory-free method which only utilizes the current dataset Dt for each task t. Therefore, without117

particular statement, we only consider task t with Dt in the following subsections for simplicity.118
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3.2 Network Architecture119

Video Encoder. We follow the most recent video-language modeling works [25, 53, 30, 32] to120

learn video representation by fusing the image embeddings of sampled frames per video. Concretely,121

given each video Vi with Si frames, we randomly sample s frames (s < Si) and embed them with an122

image encoder fimg (i.e., ViT-Base [12]) to obtain the frame embeddings:123

F i,j
img = fimg(x

j
i ), j = 1, 2, · · · , s, (1)

where xj
i denotes the j-th sampled frames of video Vi and F i,j

img denotes its image embedding encoded124

by fimg . Then we project F i,j
img by a Linear layer fproj :125

F i,j
proj = fproj(F

i,j
img), j = 1, 2, · · · , s, (2)

where F i,j
proj ∈ Rd denotes the projected d-dimensional image embedding of F i,j

img . Following COTS126

[32] and HiT [30], we obtain the final video embedding of Vi by adopting a fusing layer favg to127

aggregate the image embeddings {F i,j
img}:128

F i
V = favg(F

i,1
proj , F

i,2
proj , · · · , F

i,j
proj), (3)

where favg denotes an Average Pooling layer and F i
V ∈ Rd is the video embedding of Vi. In summary,129

our video encoder fθV encodes the video inputs by adopting fimg , fproj and favg in Eqs. (1)–(3).130

Text Encoder. For the language modality, we adopt BERT-Base [11] as our backbone to encode131

each input text Ti. In detail, we first tokenize Ti into a sequence of text tokens [l1i , l
2
i , · · · , l

ri
i ], where132

ri denotes the length of Ti. Then we obtain the text token embeddings through the backbone fbert:133

F i
bert = fbert(l

1
i , l

2
i , · · · , l

ri
i ), (4)

where F i
bert denotes the token embeddings of Ti obtained by fbert. We then project them by a Linear134

layer f̂proj into the d-dimensional space as:135

F̂ i
proj = [F̂ i

proj [1], F̂
i
proj [2], ..., F̂

i
proj [ri]] = f̂proj(F

i
bert[1], F

i
bert[2], · · · , F i

bert[ri]), (5)

where F i
bert[j] denotes the j-th element of F i

bert, and F̂ i
proj [j] ∈ Rd represents the projected text136

embedding of token j in Ti (which has the same dimension d as video embedding F i
V ). To obtain the137

final text embedding of Ti, we apply an Average Pooling layer favg:138

F i
T = favg(F̂

i
proj [1], F̂

i
proj [2], · · · , F̂ i

proj [ri]), (6)

where F i
T ∈ Rd denotes the text embedding of Ti. In summary, our text encoder fθT encodes the text139

inputs by adopting fbert, f̂proj , and favg in Eqs. (4)-(6).140

3.3 BMU-MoCo141

Cross-Modal MoCo. Similar to the original single-modal MoCo [17], recent state-of-the-art video-142

language modeling works COTS [32] and HiT [30] construct a cross-modal MoCo architecture to143

maintain video/text momentum encoders by the same momentum update mechanism, which creates144

consistent queues for cross-modal contrastive learning objectives. As illustrated in Figure 2, our145

BMU-MoCo follows this paradigm and further transfers it to our CVLM setting. Concretely, for a146

mini-batch of NB video-text pairs B = {Vi, Ti}NB
i=1, we first obtain the query embeddings qVi , qTi of147

Vi, Ti by video encoder fθV and text encoder fθT :148

qVi = fθV (Vi), qTi = fθT (Ti). (7)

Then we maintain two momentum encoders fθV,m
, fθT,m

(termed local momentum video/text en-149

coders in Figure 2) for both video and text modalities, whose parameters θV,m, θT,m are initialized150

by θV , θT at the beginning of each task t. During the training process, θV,m, θT,m are continuously151

updated by θV , θT with the momentum update strategy:152

θV,m = m · θV,m + (1−m) · θV , θT,m = m · θT,m + (1−m) · θT , (8)
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Figure 2: Schematic illustration of our BMU-MoCo. The momentum update strategy is applied to
both encoders and momentum encoders (i.e., bidirectional). To exploit earlier knowledge, we further
maintain a pair of global momentum encoders with the same BMU strategy, whose parameters are
inherited across tasks and only initialized at the very beginning.

where m is the coefficient of momentum update. To form the contrastive learning loss of cross-modal153

MoCo, we need two consistent queues to preserve the negative video/text samples. In detail, the key154

embeddings kVi , kTi of Vi, Ti are firstly acquired by momentum video and text encoders:155

kVi = fθV,m
(Vi), kTi = fθT,m

(Ti). (9)

We then respectively push kVi and kTi into the negative video queue QV and the negative text queue156

QT (after computing loss), where QV = {kV1 , kV2 , kV3 , · · · kVNQ
} and QT = {kT1 , kT2 , kT3 , · · · , kTNQ

}157

(NQ is the queue size). The contrastive losses of cross-modal MoCo (Base-MoCo) are:158

L̂V 2T = − 1

NB

NB∑
i=1

log
exp (

qVi ·kT
i

τ )

exp (
qVi ·kT

i

τ ) +
∑NQ

j=1 exp (
qVi ·kT

j

τ )
, (10)

L̂T2V = − 1

NB

NB∑
i=1

log
exp (

qTi ·kV
i

τ )

exp (
qTi ·kV

i

τ ) +
∑NQ

j=1 exp (
qTi ·kV

j

τ )
, (11)

where τ is the temperature. Note that the queue size NQ is decoupled from the batch size NB .159

Therefore, it can take a large value for better representation of the data distribution.160

Bidirectional Momentum Update. Although achieving great success with non-streaming data161

(e.g., a single video-text dataset), the original cross-modal MoCo has difficulty in coping with the162

catastrophic forgetting problem under our CVLM setting. To overcome this difficulty, we propose163

a novel bidirectional momentum update (BMU) strategy for cross-modal MoCo to review the old164

knowledge retained in momentum encoders at each training step. Concretely, for video/text encoders165

fθV ,fθT , in addition to the end-to-end update by back-propagation, we further update their parameters166

θV , θT using the parameters θV,m, θT,m of momentum encoders fθV,m
, fθT,m

by momentum update:167

θV = m̂ · θV + (1− m̂) · θV,m, θT = m̂ · θT + (1− m̂) · θT,m, (12)

where m̂ is a momentum coefficient, and θV,m, θT,m are simultaneously updated by Eq. (8). Together,168

Eq. (8) and Eq. (12) compose our BMU strategy. Note that the advantages of BMU lie in two aspects:169

(1) At the beginning of each new task t, θV,m and θT,m are respectively initialized by θV and θT ,170

which makes the knowledge of task t− 1 be preserved. (2) During the training process, θV,m and171

θT,m are constantly and slowly updated by the momentum update strategy, which enables our model172

to review the old knowledge but without sacrificing the performance on new tasks.173

Global Momentum Encoders. To further enhance our BMU-MoCo, we propose to maintain a174

pair of global momentum encoders which can preserve earlier knowledge. As shown in Figure 2,175

they are only initialized at the very beginning of the whole training process under our CVLM setting,176
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and their parameters are transmitted across tasks. Formally, let fθ̃V,m
and fθ̃T,m

denote the global177

momentum video and text encoders, respectively. Their parameters θ̃V,m and θ̃T,m are updated by178

the BMU strategy along with the parameters θV and θT of encoders:179

θV = m̂ · θV + (1− m̂) · θ̃V,m, θT = m̂ · θT + (1− m̂) · θ̃T,m, (13)

θ̃V,m = m · θ̃V,m + (1−m) · θV , θ̃T,m = m · θ̃T,m + (1−m) · θT . (14)

Note that Eq. (12) and Eq. (13) are implemented subsequently. For each video-text input {Vi, Ti},180

we obtain a new group of key embeddings k̃Vi , k̃Ti with the global momentum encoders fθ̃V,m
, fθ̃T,m

:181

k̃Vi = fθ̃V,m
(Vi), k̃Ti = fθ̃T,m

(Ti). (15)

We push k̃Vi and k̃Ti respectively into two negative queues Q̃V and Q̃T , where Q̃V =182

{k̃V1 , k̃V2 , k̃V3 , · · · , k̃VNQ
}, Q̃T = {k̃T1 , k̃T2 , k̃T3 , · · · , k̃TNQ

}. Note that each query embedding (e.g.,183

qTi ) has two corresponding positive embeddings (kVi , k̃Vi ) and two corresponding negative queues184

(QV ,Q̃V ). The cross-modal contrastive losses are defined as:185

LV 2T = − 1

NB

NB∑
i=1

log
exp (

qVi ·kT
i

τ ) + exp (
qVi ·k̃T

i

τ )

exp (
qVi ·kT

i

τ )+exp (
qVi ·k̃T

i

τ )+
∑NQ

j=1[exp (
qVi ·kT

j

τ ) + exp (
qVi ·k̃T

j

τ )]
, (16)

LT2V = − 1

NB

NB∑
i=1

log
exp (

qTi ·kV
i

τ ) + exp (
qTi ·k̃V

i

τ )

exp (
qTi ·kV

i

τ )+exp (
qTi ·k̃V

i

τ )+
∑NQ

j=1[exp (
qTi ·kV

j

τ ) + exp (
qTi ·k̃V

j

τ )]
, (17)

where τ is the temperature. Now we have the final loss of BMU-MoCo for our CVLM setting:186

Lfinal = LV 2T + LT2V . (18)

The full (pseudocode) algorithm of our BMU-MoCo is presented in the supplementary material.187

4 Experiments188

4.1 Experimental Setup189

Datasets. Our CVLM setting is defined over a sequence of five video-text datasets: (1) VATEX [51]190

is a large-scale open-domain dataset, which has 25,991 videos with 250K text descriptions for training,191

3,000 videos for validation and 6,000 videos for testing. (2) ActivityNet [23] is an action domain192

dataset, which consists of 20K YouTube videos with 100K text descriptions. We follow the standard193

setting in [4, 25] to use 10K videos for training and 4.9K for test (the val1 split), where all texts of194

each video are concatenated into one query paragraph. (3) MSR-VTT [52] contains 10K videos,195

with 20 text descriptions per video. We follow the 1k-A split in recent works [25, 4, 53, 30] with196

9K training videos and 1K test videos. (4) DiDeMo [18] consists of 10K Flickr videos with 40K197

text annotations. Following [4, 25], we train and evaluate our model on paragraph-to-video retrieval198

(the same setting for ActivityNet). (5) MSVD [10] has 1,200 videos with 48K texts for training, 100199

videos for validation and 670 ones for testing. Overall, there are around 50K videos with 500K text200

descriptions in all five datasets (i.e., each dataset has 100K video-text pairs in average).201

Evaluation Metrics. Similar to the standard video-language modeling setting, we evaluate the202

text-to-video retrieval performance of a model on Recall@1 (shortened as R@1). R@1 refers to the203

percentage of text queries that correctly retrieve the ground-truth candidate at top-1. For our CVLM204

setting, we further define two evaluation metrics: forgetting rate (FR) and harmonic mean (HM).205

Formally, let Mi denotes the model after trained on task i and Ai
t (t ≤ i) denotes the R@1 result of206

Mi on task t. The overall R@1 ( 1n
∑n

t=1 An
t ) is the average R@1 results of the final model Mn on207

all tasks. Based on these notations, we then define the FR and HM as follows:208

(1) Forgetting rate (FR) of Mi on task t (t ≤ i) is the performance decrease between Mi and Mt:209

FR = At
t −Ai

t, where a lower FR indicates the model forgets less knowledge. Note that there is no210

catastrophic forgetting (FR = 0) when t = i. The Overall FR is obtained by just summing the FR211

results of the final model Mn across all tasks: Overall FR =
∑n

t=1(At
t −An

t ).212
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Table 1: Comparative results obtained by the final model Mn on five video-text datasets/tasks under
our CVLM setting: VATEX [51] (i.e., Task1), ActivityNet [23] (i.e., Task2), MSR-VTT [52] (i.e.,
Task3), DiDeMo [18] (i.e., Task4), MSVD [10] (i.e., Task5). For fair comparison, all baseline models
are re-implemented based on the same cross-modal MoCo architecture for our CVLM setting. †

denotes applying extra encoders, including encoders from the last task (e.g., LwF [29]) and global
momentum encoders (e.g., our BMU-MoCo). ‘Mem.’ denotes applying memory buffer during
training. ‘BMU-MoCo (local)’ denotes BMU-MoCo without global momentum encoders.

Task1 Task2 Task3 Task4 Task5 Overall
Method Mem. R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ R@1↑ FR↓ HM↑
Base-MoCo [32] No 38.99 15.30 18.61 15.23 28.00 5.60 28.22 7.27 40.28 30.82 43.40 34.67
LwF† [29] No 42.02 12.27 19.95 14.87 28.90 6.00 29.91 6.98 37.91 32.24 40.12 35.81
ER-ring [9] Yes 41.99 12.30 22.09 11.79 29.80 5.40 30.31 5.08 38.53 32.54 34.57 35.67
DER [5] Yes 40.15 14.14 21.35 12.65 28.80 5.00 30.71 4.09 39.96 32.19 35.88 35.39
Co2L† [6] Yes 41.23 13.06 21.74 13.06 27.50 5.30 30.41 5.38 39.29 31.58 34.48 35.06
LUMP† [34] Yes 40.16 14.13 21.78 12.37 30.50 3.00 29.91 4.99 39.39 32.45 34.49 35.56

BMU-MoCo (local) No 46.82 7.47 23.27 10.84 30.00 3.40 31.21 4.08 41.94 34.65 25.79 37.05
BMU-MoCo† No 48.48 5.81 23.45 10.43 30.80 2.90 32.80 3.49 41.83 35.47 22.63 37.59

(2) Harmonic mean (HM) calculates the harmonic mean of the overall R@1 (current) and the overall213

R@1 (final), where the overall R@1 (current) denotes the average of the R@1 values obtained by each214

current model Mi (i = 1, 2, · · · , n) on each current task i, and the overall R@1 (final) denotes the215

average R@1 for the final model Mn on all tasks. Formally, we have: HM =
2· 1

n

∑n
i=1 Ai

i· 1
n

∑n
i=1 An

i
1
n

∑n
i=1 Ai

i+
1
n

∑n
i=1 An

i

.216

Note that HM can alleviate the trade-off problem between overall R@1 (current) and overall R@1217

(final), which is otherwise an inherent limitation of FR. Specifically, when a model has a lower218

overall R@1 (current) and a lower overall R@1 (final), it could also have a better/lower FR (which is219

unsatisfactory) but still lead to a worse/lower HM (see Figure 4(c)).220

Implementation Details. Recent works show that video-language models benefit from image-text221

pre-training [25, 4], which can accelerate the model convergence and is more suitable for the practical222

scenarios. We thus apply ViT-Base [12]/BERT-Base [11] as our image/text encoder and follow223

recent state-of-the-art MoCo-based model COTS [32] to pre-train our model with 5.3M image-text224

pairs. We then sequentially train all the models (BMU-MoCo and all competitors) on five video-text225

datasets/tasks. For each task, we train a model for 10 epochs and choose the best trained one w.r.t.226

the validation R@1 results. For those competitors using a memory buffer during training (e.g.,227

ER-ring [9]), we set the memory size to 10% of the average data size 100K (i.e., 10K video-text228

pairs). Note that the percentage 10% is larger than the buffer size of most recent rehearsal-based229

continual learning methods [9, 5, 34]. More details are given as follows: (1) In the training phase, all230

sampled frames of each video are resized to 384×384 and augmented by gray-scaling and color-jitter.231

(2) For the first epoch of each task under our CVLM setting, we set the learning rate to 5e-5 and232

decay it to 5e-6 afterwards. (3) We select the two momentum coefficients m = 0.99, m̂ = 0.99, and233

the temperature τ = 0.07. We set the batch size NB to 48 and the queue size NQ to 1,440. (4) The234

total training time on five tasks is around 20 hours with 8 Tesla V100 GPUs for each model.235

4.2 Main Results236

Table 1 summarizes the comparative results in terms of text-to-video retrieval (R@1), forgetting237

rate and harmonic mean (HM) obtained by the final model Mn (per method) on five datasets. We238

re-implement five recent continual learning methods (fused with cross-modal MoCo) under our239

CVLM setting, including rehearsal-based methods (ER-ring [9], DER [5]), regularization-based240

methods (LwF [29]) and their combinations (Co2L [6], LUMP [34]). We can observe that: (1)241

Our BMU-MoCo outperforms recent methods by large margins without using any extra memory or242

dynamically extended networks. Concretely, our method achieves the best R@1 and FR results on all243

tasks, and outperforms the second best by 2.93% for overall R@1, 11.85% for overall FR and 1.78%244

for overall HM. (2) Without applying global momentum encoders, our BMU-MoCo (local) also beats245

all competitors, directly showing the effectiveness of our BMU strategy. (3) The improvements over246

Base-MoCO obtained by utilizing knowledge distillation (e.g., LwF [29]) or extra memory data (e.g.,247

Co2L [6]) are limited due to the lack of category information under our CVLM setting.248
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Figure 3: Detailed comparative results for text-to-video retrieval (R@1) obtained by each model Mi

(per method) on the first two tasks: VATEX and ActivityNet. Note that the gap between the beginning
and the end of each line denotes the forgetting rate.

Table 2: Ablation study results for our BMU-MoCo. ‘Local’ denotes applying the local momentum
encoders, while ‘Global’ denotes applying the global momentum encoders. Results for text-to-video
retrieval (R@1), forgetting rate (FR) and harmonic mean (HM) are reported.

Task1 Task2 Task3 Task4 Task5 Overall
BMU Local Global R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ R@1↑ FR↓ HM↑

✓ 38.99 15.30 18.61 15.23 28.00 5.60 28.22 7.27 40.28 30.82 43.40 34.67
✓ 38.95 15.97 18.51 15.45 30.10 4.60 28.91 6.78 39.89 31.47 42.75 35.16

✓ ✓ 41.44 12.85 21.68 13.22 29.40 4.90 29.31 6.08 39.96 32.35 36.95 35.67
✓ ✓ 46.82 7.47 23.27 10.84 30.00 3.40 31.21 4.08 41.94 34.65 25.79 37.05
✓ ✓ 46.35 7.94 23.16 10.99 30.60 3.70 31.41 5.28 41.70 34.64 27.91 37.22
✓ ✓ ✓ 48.48 5.81 23.45 10.43 30.80 2.90 32.80 3.49 41.83 35.47 22.63 37.59

Figure 3 shows more detailed comparative results for text-to-video retrieval (R@1) obtained by each249

model Mi (per method) on the first two datasets (VATEX [51] and ActivityNet [23]). We compare250

our BMU-MoCo with three representative competitors, including Base-MoCo [17], ER-ring [9], and251

Co2L [6]. Concretely, the left sub-figure presents the results of M1 ∼ M5 (per method) on task 1252

(VATEX), i.e., Ai
1 (1 ≤ i ≤ 5). The right sub-figure presents the results of M2 ∼ M5 (per method)253

on task 2 (ActivityNet), i.e., Ai
2 (2 ≤ i ≤ 5). It can be observed that: (1) For task 1 (VATEX), the254

performance of our BMU-MoCo drops the most slowly after it is trained on the following tasks (task255

2 to task 5). (2) For task 2 (ActivityNet), our BMU-MoCo also leads to the slowest performance drop256

after trained on the following tasks (task 3 to task 5). Overall, our BMU-MoCo indeed significantly257

alleviates the performance decrease problem during the whole training process.258

4.3 Ablation Study259

We first analyze the contributions of the BMU strategy, the local momentum encoders and the global260

momentum encoders applied in our BMU-MoCo. The ablative results are shown in Table 2. It can be261

clearly seen that: (1) With our BMU strategy, our model achieves remarkable improvements (4th row262

vs. 1st row). (2) Simultaneously applying local and global encoders is better than using only one of263

them (3rd row vs. 1st/2nd row), which indicates that the knowledge preserved in local and global264

momentum encoders are different. (3) Our BMU strategy helps our model to excavate knowledge265

preserved in different momentum encoders (6th row vs. 3rd row) and achieve the best performance266

(6th row vs. 4th/5th row), which further validates the effectiveness of our BMU.267

Considering the core role of BMU, we thus analyze the impact of the momentum coefficient m̂268

utilized in our BMU-MoCo. According to COTS [32], the other momentum coefficient m of our269

model is fixed at 0.99 (only the value of m̂ is changed). Figure 4 shows the results for overall R@1270

(current), overall R@1 (final), and overall HM, respectively. We find that the value of m̂ cannot be271

too big or too small. Concretely, when m̂ is too big (e.g., 0.999 and 1), the knowledge preserved272

in momentum encoders cannot be well-reviewed by our model. When m̂ is too small (e.g., 0.9),273

the end-to-end update by back-propagation is influenced too much, which leads to bad results for274

overall R@1 (current) and overall HM. It is worth mentioning that the model with smaller m̂ (0.9)275
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Figure 5: Comparative results obtained by different memory size. The red dotted line denotes our
BMU-MoCo (with no memory) while the blue line denotes the representative rehearsal-based method
ER-ring. The green line suggests that the storage space consumption of our BMU-MoCo (with global
momentum encoders) is equal to ER-ring (with 0.05% memory to store videos).

has lower/better FR (14.95) since it sacrifices the model performance on overall R@1 (current). This276

phenomenon demonstrates the necessity of utilizing the overall HM to measure the overall (trade-off)277

model performance. Therefore, we set the momentum coefficient m̂ to 0.99 in all our experiments,278

which helps our model to review old knowledge while learning well on new tasks.279

4.4 Further Evaluation280

To demonstrate both the efficiency and effectiveness of our BMU-MoCo under our CVLM setting, we281

compare our model with a representative rehearsal-based method ER-ring [9] by different memory282

size in Figure 5. Note that our BMU-MoCo has two global momentum encoders that need 0.5GB283

more storage space than the original cross-modal MoCo (used by all competitors including ER-ring).284

As shown in Figure 5, when the memory size of ER-ring becomes 0.05%, it equals to the size of extra285

storage space used by our BMU-MoCo (but our model performs significantly better). In real-world286

application scenarios, the memory size of rehearsal-based methods like ER-ring enlarges rapidly as287

the number of tasks grows, while the fixed extra space size (0.5GB) of our BMU-MoCo is negligible.288

More importantly, our BMU-MoCo (with a fixed 0.5GB sapce size) even outperforms ER-ring using289

10% memory (about 200GB under our CVLM setting) by large margins for both overall R@1 (final)290

and overall FR. This directly indicates the efficiency and effectiveness of our BMU-MoCo.291

5 Conclusion292

In this paper, we propose a new continual video-language modeling (CVLM) setting, where models293

are supposed to be sequentially trained on five widely-used video-text datasets. To overcome the294

catastrophic forgetting and heavy resource consumption challenges, we propose a novel framework295

BMU-MoCo, which is a cross-modal MoCo-based model with bidirectional momentum update296

(BMU). We maintain both local and global momentum encoders with our BMU strategy to review297

broader old knowledge while learning on new tasks. Extensive experimental results show that our298

BMU-MoCo outperforms recent competitors by large margins, even without using extra memory data299

or dynamically extended networks. The limitation of our work lies in that we have only evaluated300

BMU-MoCo under the CVLM setting, and thus we need to transfer it to other continual learning301

settings (e.g., continual image-text pre-training) for comprehensive study.302
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using/curating? [No]458

(e) Did you discuss whether the data you are using/curating contains personally identifiable459

information or offensive content? [No]460

5. If you used crowdsourcing or conducted research with human subjects...461

(a) Did you include the full text of instructions given to participants and screenshots, if462

applicable? [N/A]463

(b) Did you describe any potential participant risks, with links to Institutional Review464

Board (IRB) approvals, if applicable? [N/A]465

(c) Did you include the estimated hourly wage paid to participants and the total amount466

spent on participant compensation? [N/A]467
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