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Abstract

Recent history has seen a tremendous growth of work exploring implicit repre-1

sentations of geometry and radiance, popularized through Neural Radiance Fields2

(NeRFs). Such works are fundamentally based on a (implicit) volumetric repre-3

sentation of occupancy, allowing them to model diverse scene structure including4

translucent objects and atmospheric obscurants. But because the vast majority of5

real-world scenes are composed of well-defined surfaces, we introduce a surface6

analog of such implicit models called Neural Reflectance Surfaces (NeRS). NeRS7

learns a neural shape representation of a closed surface that is diffeomorphic to a8

sphere, guaranteeing water-tight reconstructions. Even more importantly, surface9

parameterizations allow NeRS to learn (neural) bidirectional surface reflectance10

functions (BRDFs) that factorize view-dependent appearance into environmental11

illumination, diffuse color (albedo), and specular “shininess.” Finally, rather than12

illustrating our results on synthetic scenes or controlled in-the-lab capture, we13

assemble a novel dataset of multiview images from online marketplaces for selling14

goods, such as Craigslist advertisements of cars, bicycles, and other items. Such15

“in-the-wild” multiview image sets pose a number of challenges, including a small16

number of views with unknown/rough camera estimates. We demonstrate that17

surface-based neural reconstructions enable learning from such data, outperforming18

volumetric neural rendering-based reconstructions. We hope that NeRS serve as19

a first step toward building scalable, high-quality libraries of real-world shape,20

materials, and illumination.21
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Figure 1: 3D view synthesis in the wild. From several multiview internet images of a truck and a coarse initial
mesh (top left), we recover the camera poses, 3D shape, texture, and illumination (top right). We demonstrate
the scalability of our approach on a wide variety of indoor and outdoor object categories (second row). Please
see the supplementary video for 360 degree visualizations.
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1 Introduction22

Although we observe the surrounding world only via 2D percepts, it is undeniably 3D. The goal23

of recovering this underlying 3D from 2D observations has been a longstanding one in the vision24

community, and any computational approach aimed at this task must answer a central question about25

representation—how should we model the geometry and appearance of the underlying 3D structure?26

An increasingly popular answer to this question is to leverage neural volumetric representations27

of density and radiance fields (Mildenhall et al., 2020). This allows modeling structures from28

rigid objects to translucent fluids, while further enabling arbitrary view-dependent lighting effects.29

However, it is precisely this unconstrained expressivity that makes it less robust and unsuitable for30

modeling 3D objects from sparse views in the wild. While these neural volumetric representations31

have been incredibly successful, they require hundreds of images, typically with precise camera poses,32

to model the full 3D structure and appearance of real-world objects. In contrast, when applied to33

‘in-the-wild’ settings e.g. a sparse set of images with imprecise camera estimates from off-the-shelf34

systems (see Fig. 1), they are unable to infer a coherent 3D representation. We argue this is because35

these neural volumetric representations, by allowing arbitrary densities and lighting, are too flexible.36

Is there a robust alternative that captures real-world 3D structure? The vast majority of real-world37

objects and scenes comprise of well-defined surfaces. This implies that the geometry, rather than38

being an unconstrained volumetric function, can be modeled as a 2D manifold embedded in euclidean39

3D space—and thus encoded via a (neural) mapping from a 2D manifold to 3D. Indeed, such meshed40

surface manifolds form the heart of virtually all rendering engines (Foley et al., 1996). Moreover,41

instead of allowing arbitrary view-dependent radiance, the appearance of such surfaces can be42

described using (neural) bidirectional surface reflection functions (BRDFs), themselves developed43

by the computer graphics community over decades. We operationalize these insights into Neural44

Reflectance Surfaces (NeRS), a surface-based neural representation for geometry and appearance.45

NeRS represents shape using a neural displacement field over a canonical sphere, thus constraining46

the geometry to be a watertight surface. This representation crucially associates a surface normal to47

each point, which enables modeling view-dependent lighting effects in a physically grounded manner.48

Unlike volumetric representations which allow unconstrained radiance, NeRS factorizes surface49

appearance using a combination of diffuse color (albedo) and specularity. It does so by learning neural50

texture fields over the sphere to capture the albedo at each surface point, while additionally inferring51

an environment map and surface material properties. This combination of a surface constraint and52

a factored appearance allows NeRS to learn efficiently and robustly from a sparse set of images53

in-the-wild, while being able to capture varying geometry and complex view-dependent appearance.54

Using only a coarse category-level template and approximate camera poses, NeRS can reconstruct55

instances from a diverse set of classes. Instead of evaluating in a synthetic setup, we introduce a56

dataset sourced from marketplace settings where multiple images of a varied set of real-world objects57

under challenging illumination are easily available. We show NeRS significantly outperforms neural58

volumetric or classic mesh-based approaches in this challenging setup, and as illustrated in Fig. 1, is59

able to accurately model the view-dependent appearance via its disentangled representation. We hope60

that our approach and results highlight the several advantages that neural surface representations61

offer, and that our work serves as a stepping stone for future investigations.62

2 Related Work63

Surface-based 3D Representations. As they enable efficient representation and rendering, polygo-64

nal meshes are widely used in vision and graphics. In particular, morphable models (Blanz and Vetter,65

1999) allow parametrizing shapes as deformations of a canonical template and can even be learned66

from category-level image collections (Cashman and Fitzgibbon, 2012; Kar et al., 2015). With the67

advances in differentiable rendering (Kato et al., 2018; Laine et al., 2020; Ravi et al., 2020), these68

have also been leveraged in learning based frameworks for shape prediction (Kanazawa et al., 2018;69

Gkioxari et al., 2019; Goel et al., 2020) and view synthesis (Riegler and Koltun, 2020). Whereas70

these approaches use an explicit discrete mesh, some recent methods have proposed using continuous71

neural surface parametrization like ours to represent shape (Groueix et al., 2018) and texture (Tulsiani72

et al., 2020).73
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However, all of these works leverage such surface representations for (coarse) single-view 3D74

prediction given a category-level training dataset. In contrast, our aim is to infer such a representation75

given multiple images of a single instance, and without prior training. Closer to this goal of76

representing a single instance in detail, contemporary approaches have shown the benefits of using77

videos (Yang et al., 2021; Li et al., 2020) to recover detailed shapes, but our work tackles a more78

challenging setup where correspondence/flow across images is not easily available. In addition, while79

these prior approaches infer the surface texture, they do not enable the view-dependent appearance80

effects that our representation can model.81

Volumetric 3D and Radiance Fields. Volumetric representations for 3D serve as a common, and82

arguably more flexible alternative to surface based representations, and have been very popular for83

classical multi-view reconstruction approaches (Furukawa and Hernández, 2015). These have since84

been incorporated in deep-learning frameworks for shape prediction (Girdhar et al., 2016; Choy85

et al., 2016) and differentiable rendering (Yan et al., 2016; Tulsiani et al., 2017). Although these86

initial approaches used discrete volumetric grids, their continuous neural function analogues have87

since been proposed to allow finer shape (Mescheder et al., 2019; Park et al., 2019) and texture88

modeling (Oechsle et al., 2019).89

Whereas the above methods typically aimed for category-level shape representation, subsequent90

approaches have shown particularly impressive results when using these representations to model a91

single instance from images (Sitzmann et al., 2019a,b) – which is the goal of our work. More recently,92

by leveraging an implicit representation in the form of a Neural Radiance Field, Mildenhall et al.93

(2020) showed the ability to model complex geometries and illumination from images. There has since94

been a flurry of impressive work to further push the boundaries of these representations and allow95

modeling deformation (Park et al., 2020; Pumarola et al., 2020), lighting variation (Martin-Brualla96

et al., 2020), and similar to ours, leveraging insights from surface rendering to model radiance (Yariv97

et al., 2020; Oechsle et al., 2021). However, unlike our approach which can efficiently learn from98

a sparse set of images with coarse cameras, these approaches rely on a dense set of multi-view99

images with precise camera localization to recover a coherent 3D structure of the scene. While recent100

concurrent work (Lin et al., 2021) does relax the constraint of precise cameras, it does so by foregoing101

view-dependent appearance, while still requiring a dense set of images.102

Multiview Datasets. Many datasets study the longstanding problem of multiview reconstruction103

and view synthesis. However, they are often captured in controlled setups, small in scale, and not104

diverse enough to capture the span of real world objects. Middlebury (Seitz et al., 2006) benchmarks105

multi-view reconstruction, containing two objects with nearly Lambertian surfaces. DTU (Aanæs106

et al., 2016) contains eighty objects with various materials, but still captured in a lab with controlled107

lightnings. Freiburg cars (Sedaghat and Brox, 2015) captures 360 degree videos of fifty-two outdoor108

cars for multi-view reconstruction. ETH3D (Schöps et al., 2019) and Tanks and Temples (Knapitsch109

et al., 2017) contain both indoor and outdoor scenes but are still small in scale. Perhaps most relevant110

are large-scale datasets of real-world objects such as Redwood (Choi et al., 2016) and Stanford111

Products (Oh Song et al., 2016), but the data tends to be dominated by single-views or small baseline112

videos. In constrast, our Craiglist Multiview (CMV) dataset contains millions of uncurated multi-view113

captures of in-the-wild objects under various illumination conditions, making it suitable for studying114

and benchmarking algorithms for multiview reconstruction, view synthesis, and inverse rendering.115

3 Method116

Given a sparse set of input images of an object under natural lighting conditions, our goal is to model117

its shape and appearance. While recent neural volumetric approaches share a similar goal, they require118

a dense set of views with precise camera information to achieve it. Instead, our approach relies on119

only approximate camera pose estimates and a coarse category-level shape template. Our key insight120

is that instead of allowing unconstrained densities popularly used for volumetric representations, we121

can enforce a surface based 3D representation. Importantly, this allows view-dependent appearance122

variation by leveraging constrained reflection models, by decomposing appearance into diffuse and123

specular components. In this section, we first introduce our (neural) surface representation that124

captures the object’s shape and texture, and then explain how illumination and specular effects can be125

modeled for rendering. We finally describe how our approach can learn in the challenging setting of126

in-the-wild images.127
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Figure 2: Neural Surface Representation. We propose an implicit, continuous representation of shape and
texture. We model shape as a deformation of a unit sphere via a neural network fshape, and texture as a learned
per-uv color value via a neural network ftex. We can discretize fshape and ftex to produce a textured mesh, as
shown above.

3.1 Neural Surface Representation128

We represent object shape via a deformation of a unit sphere. Previous works (Kanazawa et al.,129

2018; Goel et al., 2020) have generally modeled such deformations explicitly: the unit sphere is130

discretized at some resolution as a 3D mesh with V vertices. Predicting the shape deformation thus131

amounts to predicting vertex offsets δ ∈ RV×3. Such explicit discrete representations have several132

drawbacks. First, they can be computationally expensive for dense meshes with fine details. Second,133

they lack useful spatial inductive biases as the vertex locations are predicted independently. Finally,134

the learned deformation model is fixed to a specific level of discretization, making it non-trivial, for135

instance, to allow for more resolution as needed in regions with richer detail. These limitations also136

extend to texture parametrization commonly used for such discrete mesh representations—using137

either per-vertex or per-face texture samples (Kato et al., 2018), or fixed resolution texture map, limits138

the ability to capture finer details.139

Inspired by Groueix et al. (2018); Tulsiani et al. (2020), we address these challenges by adopting a140

continuous surface representation via a neural network. We illustrate this representation in Fig. 2.141

For any point u on the surface of a unit sphere S2, we represent its 3D deformation x ∈ R3 using142

the mapping fshape(u) = x where fshape is parameterized as a multi-layer perceptron. This network143

therefore induces a deformation field over the surface of the unit sphere, and this deformed surface144

serves as our shape representation. We represent the surface texture in a similar manner – as a neural145

vector field over the surface of the sphere: ftex(u) = t ∈ R3. This surface texture can be interpreted146

as an implicit UV texture map.147

3.2 Modeling Illumination and Specular Rendering148

Camera

Surface

Figure 3: Notation and conven-
tion for viewpoint and illumi-
nation parameterization. The
camera at c is looking at point x
on the surface S. v denotes the
direction of the camera w.r.t x,
and n is the normal of S at x. Ω
denotes the unit hemisphere cen-
tered about n. We compute the
light arriving in the direction of
every ω ∈ Ω, and r is the reflec-
tion of w about n.

Surface Rendering. The surface geometry and texture are not suf-149

ficient to infer appearance of the object e.g. a uniformly red car150

may appear darker on one side, and lighter on the other depend-151

ing on the direction of incident light. In addition, depending on152

viewing direction and material properties, one may observe different153

appearance for the same 3D point e.g. shiny highlight from certain154

viewpoints. More formally, assuming that a surface does not emit155

light, the outgoing radiance Lo in direction v from a surface point156

x can be described by the rendering equation (Kajiya, 1986; Immel157

et al., 1986):158

Lo(x, v) =

∫
Ω

fr(x, v, ω)Li(x, ω)(ω · n)dω (1)

where Ω is the unit hemisphere centered at surface normal n, and ω159

denotes the negative direction of incoming light. fr(x, v, ω) is the160

bidirectional reflectance function (BRDF) which captures material161

properties (e.g. color and shininess) of surface S at x, and Li(x, ω) is the radiance coming toward x162

from ω (Refer to Fig. 3). Intuitively, this integral computes the total effect of the reflection of every163

possible light ray ω hitting x bouncing in the direction v.164

We thus need to infer the environment lighting and surface material properties to allow realistic165

renderings. However, learning arbitrary lighting Li or reflection models fr is infeasible given sparse166
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Figure 4: Components of learned illumination model. Given a query camera viewpoint (illustrated via the
reference image I), we recover the radiance output Lo, computed using Phong shading (Phong, 1975). Here, we
show the full decomposition of learned components. From the environment map fenv and normals n, we compute
diffuse (Idiffuse) and specular lighting Ispecular. The texture and diffuse lighting form the view-independent
component (“View Indep.") and the specular lighting (weighted by the specular coefficient ks) forms the
view-dependent component of the radiance. Altogether, the output radiance Lo = T � Idiffuse + ksIspecularity
(5). We also visualize the radiance using the mean texture, which is used to help learn plausible illumination.
In the yellow box, we visualize the effects of the two specularity parameters. The shininess α controls the
mirror-ness/roughness of the surface. The specular coefficient ks controls the intensity of the specular highlights

views, and we need to further constrain these to allow learning. Inspired by concurrent work (Wu167

et al., 2021) that demonstrated its efficacy when rendering rotationally symmetric objects, we leverage168

the Phong reflection model (Phong, 1975) with the lighting represented as a neural environment map.169

Neural Environment Map. Using environment maps intuitively corresponds to the assumption170

that all the light sources are infinitely far away. This allows a simplified model of illumination,171

where the incoming radiance only depends on the direction ω and is independent of the position x172

i.e. Li(x, ω) ≡ Iω. We implement this as a neural spherical environment map fenv which learns to173

predict the incoming radiance for any query direction:174

Li(x, ω) ≡ Iω = fenv(ω) (2)

We note that there is a fundamental ambiguity between material properties and illumination, e.g. a175

car that appears red could be a white car under red illumination, or a red car under white illumination.176

To avoid this, we follow Wu et al. (2021), and further constrain the environment illumination to be177

grayscale, i.e. fenv(ω) ∈ R.178

Appearance under Phong Reflection. Instead of allowing an arbitrary BRDF fr, the Phong179

reflection model decomposes the outgoing radiance from point x in direction v into the diffuse and180

specular components. The view-independent portion of the illumination is modeled by the diffuse181

component:182

Idiffuse(x) =
∑
ω∈Ω

(ω · n)Iω, (3)

while the view-dependent portion of the illumination is modeled by the specular component183

Ispecular(x, v) =
∑
ω∈Ω

(rω,n · v)αIω, (4)

where rω,n = 2(ω · n)n − ω is the reflection of ω about the normal n. The shininess coefficient184

α ∈ (0,∞) is a property of the surface material and controls the “mirror-ness" of the surface. If α is185

high, the specular highlight will only be visible if v aligns closely with rω . Altogether, we compute186

the radiance of x in direction v as:187

Lo(x, v) = T (x) · Idiffuse(x) + ks · Ispecular(x, v) (5)

where the specularity coefficient ks is another surface material property that controls the intensity of188

the specular highlight. T (x) is the texture value at x computed by ftex. Please see Fig. 4 for a full189

decomposition of these components.190
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Figure 5: Qualitative results on various household objects. We demonstrate the versatility of our approach
on an espresso machine, a bottle of ketchup, a game controller, and a rice cooker. Each instance has 8-10 input
views. We find that a coarse, cuboid mesh is sufficient as an initialization to learn detailed shape and texture. We
initialize the camera poses by hand, roughly binning in increments of 45 degrees azimuth.

3.3 Learning NeRS in the Wild191

Given a sparse set of images in-the-wild, our approach aims to infer a NeRS representation, which192

when rendered, matches the available input. Concretely, our method takes as input N (typically193

8) images of the same instance {Ii}Ni=1, noisy camera rotations {Ri}Ni=1, and a category-specific194

mesh initializationM. Using these, we aim to optimize full perspective cameras {Π}Ni=1 as well195

as the neural surface shape fshape, surface texture ftext, and environment map fenv. In addition, we196

also recover the material properties of the object, parametrized by a specularity coefficient ks and197

shininess coefficient α.198

Initialization. Note that both the camera poses and mesh initialization are only required to be199

coarsely accurate. We use an off-the-shelf approach (Xiao et al., 2019) to predict camera rotations,200

and we find that a cuboid is sufficient as an initialization for several instances (See Fig. 5). We also201

use off-the-shelf approaches (Kirillov et al., 2020; Rother et al., 2004) to compute masks {Mi}Ni=1.202

We assume that all images were taken with the same camera intrinsics. We initialize the shared global203

focal length f to correspond to a field of view of 60 degrees, and set the principal point at center of204

each image. We initialize the camera pose with the noisy initial rotations Ri and a translation ti such205

that the object is fully in view. We pre-train fshape to output the template meshM.206

Rendering. To render an image, NeRS first discretizes the neural shape model fshape(u) over spherical207

coordinates u to construct an explicit triangulated surface mesh. This triangulated mesh and camera208

Πi are fed into PyTorch3D’s differentiable renderer (Ravi et al., 2020) to obtain per-pixel (continuous)209

spherical coordinates and associated surface properties:210

[UV,N, M̂i] = Rasterize(πi, fshape) (6)

where UV [p], N [p], and M [p] are (spherical) uv-coordinates, normals, and binary foreground-211

background labels corresponding to each image pixel p. Together with the environment map fenv and212

specular material parameters (α, ks), these quantities are sufficient to compute the outgoing radiance213

at each pixel p under camera viewpoint Πi using (5). In particular, denoting by v(Π, p) the viewing214

direction for pixel p under camera Π, and using u ≡ UV [p], n ≡ N [p] for notational brevity, the215

intensity at pixel p can be computed as:216

Î[p] = ftex(u) ·
(∑
ω∈Ω

(ω · n) fenv(ω)
)

+ ks

(∑
ω∈Ω

(rω,n · v(Π, p))a fenv(ω)
)

(7)
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Image loss. We compute a perceptual loss (Zhang et al., 2018) Lperceptual(Ii, Îi) that compares the217

distance between the rendered and true image using off-the-shelf VGG deep features. Note that218

being able to compute a perceptual loss is a significant benefit of surface-based representations over219

volumetric approaches such as NeRF (Mildenhall et al., 2020), which operate on batches of rays220

rather than images, due to the computational cost of volumetric rendering. Similar to Wu et al. (2021),221

we find that an additional rendering loss using the mean texture (see Fig. 4 and Fig. 7 for examples222

with details in the supplement) helps learn visually plausible lighting.223

Mask Loss. To measure disagreement between the rendered and measured silhouettes, we compute a224

mask loss Lmask = 1
N

∑N
i=1‖Mi − M̂i‖22, distance transform loss Ldt = 1

N

∑N
i=1Di � M̂i, and 2D225

chamfer loss Lchamfer = 1
N

∑N
i=1

∑
p∈E(Mi)

minp̂∈M̂i
‖p− p̂‖22. Di refers to the Euclidean distance226

transform of mask Mi, E(·) computes the 2D pixel coordinates of the edge of a mask, and p̂ is every227

pixel coordinate in the predicted silhouette.228

Regularization. Finally, to encourage smoother shape whenever possible, we incorporate a mesh229

regularization loss Lregularize = Lnormals + Llaplacian consisting of a normals consistency loss and230

Laplacian smoothing loss (Nealen et al., 2006; Desbrun et al., 1999). Note that such geometry231

regularization is another benefit of surface representations over volumetric ones. Altogether, we232

minimize:233

L = λ1Lmask + λ2Ldt + λ3Lchamfer + λ4Lperceptual + λ5Lregularize (8)

w.r.t Πi = [Ri, ti, f ], α, ks, and the weights of fshape, ftext, and fenv_map. Please refer to the234

supplemental materials for the details of all hyperparameters.235

Optimization. We find it helpful to optimize in a coarse-to-fine fashion, starting with just a few236

parameters and slowly increasing the number of free parameters. We initially optimize (8), w.r.t only237

the camera parameters Πi. After convergence, we sequentially optimize fshape, ftex, and fenv/α/ks.238

We implement NeRS in PyTorch, using Pytorch3D (Ravi et al., 2020) as our differentiable renderer.239

We optimize (8) using the Adam optimizer (Kingma and Ba, 2014). We find it helpful to sample a240

new set of spherical coordinates u each iteration when rasterizing. This helps propagate gradients241

over a larger surface and prevent aliasing. With 4 Nvidia 1080TI GPUs, training NeRS requires about242

45 minutes. Please see the supplement for hyperparameters and additional details.243

4 Evaluation244

In this section, we demonstrate the versatility of Neural Reflectance Surfaces to recover meaningful245

shape, texture, and illumination from in-the-wild indoor and outdoor images.246

Multiview Marketplace Dataset. To address the shortage of in-the-wild multiview datasets, we247

introduce a new dataset, Craigslist Multiview (CMV), collected from the online marketplace Craigslist.248

We collected hundreds of thousands of car listings, consisting of over 5 million images. Each user-249

submitted listing contains seller images of the car being sold. We train a classifier to filter out images250

of the interior of the car. We curate a subset of size 600 with at least 8 exterior views, averaging 10251

exterior images per listing. We use Xiao et al. (2019) to compute rough camera poses. CMV contains252

a large variety of cars under various illumination conditions (e.g. indoors, overcast, sunny, snowy,253

etc). The dataset contains personally identifiable information in the form of license plates and contact254

information. We intend to anonymize all personally identifiable information and then release filtered255

images, masks, initial camera poses, and optimized NeRS cameras.256

Novel View Synthesis. Since NeRS can be trained with noisy camera inputs, we recover a NeRS257

for every instance in our dataset. We hand selected 40 instances for which the optimized cameras258

at the end of optimization appeared most accurate (note that these camera parameters are provided259

to all baselines). From these 40 instances, we randomly selected 20 as our evaluation dataset. We260

evaluate all approaches on novel view synthesis. Each instance in the evaluation set has N images261

and N optimized cameras. We treat one of the images as the target, and train each method using the262

remaining N − 1 images and cameras. Finally, we compute view synthesis quality using the held out263

image and camera. We follow this process for every image for every instance. In total, we evaluate264

on 192 view synthesis tasks (20 instances, with an average of 9.6 images per instance).265

Baselines. We evaluate our approach against Neural Radiance Fields (NeRF) (Mildenhall et al.,266

2020), the predominant approach in neural view synthesis. NeRF is normally trained with many views267
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Figure 6: Qualitative comparison of NeRS with our baselines. We evaluate all baselines on the task of novel
view synthesis on Craigslist Multiview. Since we do not have ground truth cameras, we treat the optimized
cameras from our method as the camera input for the NeRF baselines. We train a modified version (See Sec. 4
for details) of NeRF (Mildenhall et al., 2020) that is more competitive in the few-shot domain (NeRF∗). We
also evaluate against a meta-learned initialization of NeRF with and without finetuning until convergence
(Tancik et al., 2021), but found poor results perhaps due to the domain shift from Shapenet cars. We find that
NeRS synthesizes novel views that are qualitatively closer to the target. Note that for both images, our method
achieves the best perceptual similarity score, while NeRF∗ suprisingly achieves the best PSNR, MSE, and
SSIM, indicating the tendency of such metrics to favor blurry results in the presence of minor camera noise. As
corroborated by past work (Yan et al., 2016), we find perceptual error to far more consistent with qualitative
results. The red truck has 16 total views while the blue SUV has 8 total views.

(50-100+) and ground truth cameras, neither of which we have in our in-the-wild low-data regime. In268

the absence of ground truth cameras, NeRF uses cameras computed from COLMAP (Schonberger269

and Frahm, 2016). However, we find that COLMAP consistently fails to produce reasonable camera270

poses due to specularities and the limited number of views. As a result, we treat the optimized271

cameras from our approach as the input cameras to NeRF. We find that a vanilla NeRF struggles with272

such few views. As such, we make the following changes to make the NeRF baseline as competitive273

as possible: 1. we add a mask loss that forces rays to either pass through or be absorbed entirely by274

the neural volume, analogous to space carving (Kutulakos and Seitz, 2000); 2. a canonical volume275

that zeros out the density outside of a tight box where the car is likely to be. This helps avoid spurious276

“cloudy" artifacts from novel views; 3. a smaller architecture to reduce overfitting; and 4. a single277

rendering pass rather than dual coarse/fine rendering passes. We denote this modified NeRF as NeRF∗.278

We also evaluate against a simplified NeRF with a meta-learned initialization for cars from multiview279

images (Tancik et al., 2021), which we denote as MetaNeRF. MetaNeRF meta-learns an initialization280

such that with just a few gradient steps, it can learn a NeRF model. This setup allows the model to281

learn a data-driven prior about the shape of cars. Note that MetaNeRF is trained on ShapeNet (Chang282

et al., 2015) and thus has seen more data. We find that with the default number of gradient steps,283

MetaNeRF does not converge on images from our CMV dataset, and cannot recreate the training284

views. Thus, we also evaluate MetaNeRF-ft, which is finetuned until convergence. Finally, we285

reiterate that all the baselines have the additional benefit of using our final optimized cameras and do286

not deal with the noisier initializations (unlike our approach).287

Metrics. We evaluate all approaches using the traditional image similarity metrics Mean-Square288

Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM).289

We note that these traditional metrics correlate poorly with human perceptual distance (Zhang et al.,290

2018). In particular, these metrics tend to favor blurrier results (See Fig. 6). For a better metric that291

more accurately matches visual perceptual error, we compute the Learned Perceptual Image Patch292

Similarity (LPIPS) (Zhang et al., 2018). Finally, we compute Fréchet Inception Distance (Heusel293

et al., 2017) between the novel view renderings and original images as a measure of visual realism. In294

Tab. 1, we find that NeRS significant outperforms the baselines in perceptual similarity (LPIPS) and295

in realism (FID) while remaining competitive on the traditional metrics. NeRS consistently produces296

outputs with higher frequencies that match the level of detail of the real images, possibly at the cost297

of small pixel shifts. As a result, the blurrier results of NeRF perform better on the traditional image298

metrics. See Fig. 6 for a visual comparison of the methods on novel view synthesis.299

Qualitative Results. In Fig. 7, we show qualitative results on our Craigslist Multiview Dataset. Each300

car instance has between 8 and 16 views. We visualize the outputs of our reconstruction from 3301

novel views. We show the rendering for both the full radiance model and the mean texture. Both of302
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Input Images Novel View 1 Novel View 2 Novel View 3
Illum. of Mean Tex.Output Illum. of Mean Tex.Output Illum. of Mean Tex.Output

Figure 7: Qualitative results on our in-the-wild Craigslist Multiview Dataset. Here we visualize the NeRS
outputs as well as the illumination of the mean texture on 3 of listings from the CMV dataset. We find that NeRS
recovers detailed textures and plausible illumination conditions. Each instance has 8 input views.

Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
MetaNeRF (Tancik et al., 2021) 0.0983 10.5 0.554 0.639 390.2

MetaNeRF-ft (Tancik et al., 2021) 0.0942 10.7 0.634 0.524 329.6
NeRF∗ (Mildenhall et al., 2020) 0.0394 15.8 0.689 0.299 236.3

NeRS (Ours) 0.0351 15.3 0.675 0.212 81.9

Table 1: Quantitative evaluation of novel-view synthesis on our in-the-wild multiview cars dataset. We
evaluate against NeRF∗, a modified variant of NeRF, and a meta-learned initialization to NeRF. NeRS significant
outperforms the baselines on the perceptual similarity metric (LPIPS) and realism evalauted via Fréchet Inception
Distance (FID). NeRS performs competitively on the traditional image similarity metrics PSNR and SSIM. We
note that the traditional similarity metrics do not correlate well with human perceptual similarity (See Fig. 6).

these renderings are used to compute the perceptual loss (See Sec. 3.2). We find that NeRS recovers303

detailed texture information and plausible illumination parameters. To demonstrate the scalability304

of our approach, we also evaluate on various household objects in Fig. 5. We find that a coarse,305

cuboid mesh is sufficient as an initialization to recover detailed shape, texture, and lighting conditions.306

Please refer to the supplementary video for 360 degree visualizations.307

5 Discussion308

We present NeRS, an approach for learning neural surface models that capture geometry and surface309

reflectance. In contrast to volumetric neural rendering, NeRS enforces reconstructions to be water-310

tight and closed manifolds. This allows NeRS to model surface-based appearance affects, including311

view-dependant specularities and normal-dependant diffuse appearance. We demonstrate that such312

regularized reconstructions allow for learning from sparse in-the-wild multiview data, enabling313

reconstruction of objects with diverse material properties across a variety of indoor/outdoor illumi-314

nation conditions. We hope NeRS will enable construction of high-quality libraries of real-world315

geometry, materials, and environments through better neural approximations of shape, reflectance,316

and illuminants.317

Limitations. Though NeRS makes use of factorized models of illumination and material reflectance,318

there exists some fundamental ambiguities that are difficult from which to recover. For example, it319

difficult to distinguish between an image of a gray car under bright illumination and an image of a320

white car under dark illumination. We visualize such limitations in the supplement.321

Broader Impacts. NeRS reconstructions could be used to reveal identifiable or proprietary informa-322

tion (e.g., license plates).323
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