
AdaptFormer: Adapting Vision Transformers for
Scalable Visual Recognition

Anonymous Author(s)
Affiliation
Address
email

Abstract

Although the pre-trained Vision Transformers (ViTs) achieved great success in1

computer vision, adapting a ViT to various image and video tasks is challenging2

because of its heavy computation and storage burdens, where each model needs3

to be independently and comprehensively fine-tuned to different tasks, limiting4

its transferability in different domains. To address this challenge, we propose an5

effective adaptation approach for Transformer, namely AdaptFormer, which can6

adapt the pre-trained ViTs into many different image and video tasks efficiently.7

It possesses several benefits more appealing than prior arts. Firstly, AdaptFormer8

introduces lightweight modules that only add less than 2% extra parameters to9

a ViT, while it is able to increase the ViT’s transferability without updating its10

original pre-trained parameters, significantly outperforming the existing 100% fully11

fine-tuned models on action recognition benchmarks. Secondly, it can be plug-and-12

play in different Transformers and scalable to many visual tasks. Thirdly, extensive13

experiments on five image and video datasets show that AdaptFormer largely14

improves ViTs in the target domains. For example, when updating just 1.5% extra15

parameters, it achieves about 10% and 19% relative improvement compared to the16

fully fine-tuned models on Something-Something v2 and HMDB51, respectively.17

Project page: anonymous-adaptformer.github.io/.18

1 Introduction19

There is a growing interest in adopting a general neural model to tackle a large variety of different20

tasks since it benefits in reducing the need for task-specific model design and training. Recently,21

Transformer [75] demonstrates great potential in this goal considering its success in various fields,22

e.g., natural language processing (NLP) [26, 10, 76, 82], visual recognition [29, 73, 84, 59], dense23

prediction [77, 11, 92, 90, 80], Generative Adversarial Network (GAN) [49, 45], reinforcement24

learning (RL) [18, 16, 81], robotics [47, 24], and etc. However, existing literature in computer vision25

tend to focus on the same network with task-specific weights scenario, where a single network is26

used to train from scratch or fully fine-tune on a specific dataset, making it infeasible to maintain a27

separate model weight for every dataset when the number of task grows, especially for the increasing28

model capacity of state-of-the-art models (e.g., ViT-G/14 [87] with over 1.8 billion parameters).29

Different from prior arts, we step into the direction of developing same network with almost same30

weights and achieve superior performance than the full-tuning approach by only tuning less than31

2% parameters, with the remaining over 98% parameters shared across different tasks. There are32

two challenges to learning universal representations using a single model. The first one lies in the33

pre-training stage, which requires algorithms that can learn well-generalized representations that are34

easy to be applied to many tasks. Recent arts in self-supervised learning [12, 5, 40, 91, 79, 72, 32]35

can serve as a solution to this challenge. The second one, which is our main concern in this work, is36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

anonymous-adaptformer.github.io/

to build an effective pipeline that can adapt the model obtained at the pre-training stage to various37

downstream tasks by tuning parameters as less as possible and keeping the left parameters frozen.38

While fine-tuning pre-trained models has been widely studied in NLP [6, 43, 65, 66, 55, 53, 44, 86,39

58, 39], this topic is seldomly explored in the vision, where full tine-tuning of model parameters is40

still the dominant strategy for adapting vision transformers. However, the full fine-tuning cannot41

satisfy the goal of universal representation as it assigns an independent set of weights for every task.42

Linear probing is a straightforward approach to maintaining the pre-trained model fixed by only43

tuning a specific lightweight classification head for every task. However, linear probing tends to44

have an unsatisfactory performance and misses the opportunity of pursuing strong but non-linear45

features [40], which indeed benefit deep learning. More recently, Bahng et.al., [4] aimed to adapt46

pre-trained models by modifying raw input pixel space. Jia et.al., [48] proposed Visual Prompt47

Tuning (VPT) to adapt transformer models for downstream vision tasks, which prepends several48

learnable parameters (prompts) to the patch embeddings and freezes the whole pre-trained backbone.49

< 𝟎. 𝟐%
parameters

Figure 1: Parameter-Accuracy trade-off. We lever-
age ViT-Base as backbone and report top-1 accuracy on
SSv2 dataset. AdaptFormer can surpass full-tuning with
only 0.2% tunable parameters. More detailed results are
shown in Table 1.

In this work, we propose a lightweight module,50

namely AdaptFormer, to adapt vision transform-51

ers by updating the weights of AdaptFormer. We52

introduce learnable parameters from the model53

perspective, which is different from VPT, which54

inserts learnable parameters into the token space.55

Our AdaptFormer is conceptually simple yet56

effective. It consists of two fully connected57

layers, a non-linear activation function, and a58

scaling factor. This module is set in parallel to59

the feed-forward network (FFN) of the original60

ViT model, as shown in Figure 2b. This design61

is turned out to be effective for model transfer62

when processing scalable visual tokens for both63

image and video data (i.e., image data consists64

of a small scale of visual tokens while video65

data consists of a large scale). As shown in Fig-66

ure 1, compared with the full-tuning strategy,67

AdaptFormer achieves comparable performance68

on video recognition with only about 0.1% tunable parameters. Meanwhile, with less than 2% tunable69

parameters, AdaptFormer surpasses the full-tuning solution by about 10% on top-1 accuracy. Similar70

approaches are also proposed in fine-tuning pre-trained language models (PLMs) [6, 43, 66, 39].71

The key contributions of this paper are summarized as follows: (1) We propose a simple yet effective72

framework, namely AdaptFormer, for adapting vision transformers to a large variety of downstream73

visual recognition tasks and avoiding catastrophic interference with each other. To the best of74

our knowledge, this is the first work that explores efficient fine-tuning in video action recognition.75

(2) We ablate many design choices and demonstrate the superior robustness of AdaptFormer when76

parameters scale up. (3) Extensive experiments on various downstream tasks demonstrate that77

AdaptFormer outperforms existing fine-tuning approaches significantly. By demonstrating the78

effectiveness of AdaptFormer on multiple visual benchmarks, we hope our work could inspire the79

research communities to rethink the fine-tuning mechanism in computer vision and make progress80

toward a flexible yet universal Transformer model for visual recognition.81

2 Related Works82

In the proposed AdaptFormer, we mainly introduce a plug-and-play module for efficiently fine-tuning83

the current vision Transformer models. In this section, we perform a literature review on related84

works from two perspectives, i.e., the vision Transformers, and efficient transfer learning for vision85

Transformers.86

2.1 Transformer in Vision87

The Transformer architecture is first introduced in [75] and has re-energized the natural language88

processing (NLP) field from then on [26, 10]. Inspired by its huge success, researches in the89

computer vision filed have also evolved into Transformer era since ViTs [29]. The strong capability90

2

of modeling long-range relation has facilitated Transformer in various vision tasks, including image91

classification [29, 59, 57], object detection [11, 92, 21], semantic/instance segmentation [80], video92

understanding [8, 2, 31, 54], point cloud modeling [89, 38], 3D Object Recognition [19] and even93

low-level processing [17, 56, 78]. Furthermore, transformers have advanced the vision recognition94

performance by a large-scale pretraining [20, 63, 13, 33, 40, 72, 67]. In such a situation, given the95

pre-trained Transformer models, which are more larger than the previously prevalent CNN backbones,96

one open question is how to fine-tune the big vision models so that they can be adapted into more97

specific down-stream tasks. To solve the open question, we propose AdaptFormer to transfer ViTs98

from the pre-trained pre-texts into the target tasks in a more effective and efficient way.99

2.2 Efficient Transfer learning for Transformers100

Transfer learning targets re-adopting a pre-trained model (either via the supervised or the unsupervised101

manner) as the starting point and further fine-tuning the specific model on a new task. In the NLP102

field, transferring the large pre-trained language models (PLMs) [26, 10] into downstream tasks has103

been the popular paradigm for a long time. Conventional arts [26, 10] set all the network parameters104

as learnable ones and adapt them to the target tasks. However, with the growth of model sizes and105

the complexity of the specific tasks, the conventional paradigm is inevitably limited by the huge106

computational burden. The NLP community has explored several ways for parameter-efficient transfer107

learning that only set a few parameters learnable and fine-tune them for efficiency. The pioneer108

works could be mainly categorized from the token [55, 53] and network perspectives [43, 44, 86, 37].109

Basically speaking, the token-related methods [53, 55] typically prepend several learnable prefix110

vectors/tokens to the projected tokens within the multi-head self-attention layers (MHSA [75]). The111

philosophy behind it is to assist the pre-trained models in understanding downstream tasks with the112

guidance of extra token information. On the other hand, network-related methods [43, 44] integrate113

shallow modules to improve the model transferability. The introduced modules adapt the produced114

representations into the downstream tasks via features fusion.115

Recently, with the emergence of a much more large-scale dataset [25, 68, 70, 62, 50], increasing116

researchers in computer vision have adopted the homologous paradigm, i.e., first pre-training and117

then fine-tuning, to advance the vision tasks. As for the second stage, traditional methods typically118

adopt the full-tuning arts in the downstream tasks. Rare attention has been drawn to the field of119

efficient adaptation, especially in the field of vision Transformers. Inspired by Prompting in NLP,120

[48] introduced the learnable tokens in exploring the efficient adaptation for ViTs. We empirically121

found that the performance of prompting is hindered by the scale of tokens. That is to say, for the122

tasks where the number of tokens is on a small scale, e.g., image classification, Prompting is efficient123

for improving the model transferability. However, for larger scale tokens, e.g., video understanding,124

Prompting presents limited potential. This observation motivates us to introduce AdaptFormer, which125

is effective in the scenarios of scalable visual tokens.126

3 Approach127

We propose AdaptFormer for efficiently transferring large pre-trained vision transformer models128

to downstream tasks, in both image and video domains. AdaptFormer attains strong transfer learn-129

ing abilities by only fine-tuning a small number of extra parameters, circumventing catastrophic130

interference among tasks. We illustrate the overall framework of AdaptFormer in Figure 2b.131

3.1 Preliminary and Notation132

Vision Transformers (ViTs) are first introduced by [29] into vision recognition. A vanilla vision133

Transformer basically consists of a patch embedding layer and several consecutively connected134

encoders, as depicted in Figure 2a. Given an image x ∈ RH×W×3, the patch embedding layer first135

splits and flatten the sample x into sequential patches xp ∈ RN×(P 2d), where (H ,W) represents136

the height and width of the input image, (P, P) is the resolution of each image patch, d denotes137

the output channel, and N = HW/P 2 is the number of image tokens. The overall combination138

of a prepended [CLS] token and the image tokens xp are further fed into Transformer encoders for139

attention calculation.140

3

LayerNorm

Multi-Head
Attention

LayerNorm

MLP

𝑁×

(a) Full fine-tuning.

MLP

Down

Up

ReLU

LayerNorm

Multi-Head
Attention

LayerNorm

S

S Scaling

Frozen

Trainable

AdaptMLP

𝑁×

(b) AdaptFormer fine-tuning

Figure 2: Comparison of previous full and our AdaptFormer fine-tuning. AdaptFormer is
conceptually simple by replacing the original MLP block with AdaptMLP, which consists of two
branches, including the frozen branch (left) and the trainable down→ up bottleneck module (right).

Each Transformer encoder mainly consists of two types of sub-layers, i.e., a multi-head self-attention141

layer (MHSA) and a MLP layer. In MHSA, the tokens are linearly projected and further re-formulated142

into three vectors, namely Q,K and V . The self-attention calculation is performed on Q,K and V143

by:144

x′
ℓ = Attention(Q,K,V) = Softmax(

QK⊤
√
d

)V , (1)

where x′
ℓ are the tokens produced by MHSA at the ℓ-th layer. The output tokens x′

ℓ are further sent to145

a LayerNorm [3] and a MLP block which is consisted of two fully connected layers with a GELU146

activation [42] in between. This process is formally formulated as follows,147

xℓ = MLP(LN(x′
ℓ)) + x′

ℓ, (2)

where xℓ is the output of the ℓ-th encoder block. At the last transformer layer, the [CLS] is utilized148

for the final object recognition. We refer the readers to find more details in [29]. In our work, we149

replace the MLP layer with our AdaptMLP module for efficient fine-tuning purposes.150

3.2 AdaptFormer151

We propose a plug-and-play bottleneck module, namely AdaptMLP1. We denote the vision Trans-152

former equipped with AdaptMLP as AdaptFormer.153

Architecture. The design principle of AdaptFormer is simple yet effective, which is illustrated in154

Figure 2b. Compared to the vanilla full fine-tuning regime, AdaptFormer replaces the MLP block in155

the transformer encoder with AdaptMLP, which is consisted of two sub-branches. The MLP layer in156

the left branch is identical to the original network, while the right branch is an additionally introduced157

lightweight module for task-specific fine-tuning. Specifically, the right branch is designed to be a158

bottleneck structure for limiting the number of parameters purpose, which includes a down-projection159

layer with parameters Wdown ∈ Rd×d̂, an up-projection layer with parameters Wup ∈ Rd̂×d, where160

d̂ is the bottleneck middle dimension and satisfies d̂ ≪ d. In addition, there is a ReLU layer [1]161

between these projection layers for non-linear property. This bottleneck module is connected to the162

original MLP network (left branch) through the residual connection via a scale factor s . For a specific163

input feature x′
ℓ, the right branch in AdaptMLP produces the adapted features, x̃ℓ, formally via:164

x̃ℓ = ReLU(LN(x′
ℓ) ·Wdown) ·Wup. (3)

Then both the features x̃ℓ and x′
ℓ are fused with xℓ by residual connection,165

xℓ = MLP(LN(x′
ℓ)) + s · x̃ℓ + x′

ℓ. (4)

1In this paper, we use the term ‘AdaptMLP’ to denote the designed module and the term ‘AdaptFormer’ to
represent the fine-tuning framework for Vision Transformers. Unless otherwise specified, we apply AdaptFormer
to fine-tune the vanilla ViT backbone [29] in this paper.

4

Fine-tuning. During the fine-tuning phase, the original model parts (blue blocks in Figure 2b)166

load weights from the pre-trained checkpoint and keeps untouched, avoiding interaction among167

downstream tasks. The newly added parameters (orange blocks) are updated on the specific data168

domain with the task-specific losses.169

Inference. After fine-tuning, we still keep the shared parameters frozen as in the previous fine-170

tuning state, and additionally load the weights of the extra parameters that were fine-tuned in the171

previous stage. The single overall model is able to be adapted to multiple tasks with the assistance of172

lightweight introduced modules.173

3.3 Discussion174

Tunable parameters analysis. Our AdaptMLP module is lightweight. The total number of param-175

eters introduced to per layer is 2 × d × d̂ + d̂ + d, which includes biases parameters. The middle176

dimension d̂ is a small value compared with d (AdaptFormer still obtains a decent performance even177

when d̂ = 1, as discussed in Sec. 4.4). Since most of the shared parameters are fixed and the number178

of newly introduced parameters is small (< 2% of the pre-trained model parameters), the total model179

size grows slowly when more downstream tasks are added.180

Linear Linear Linear

Scale

Softmax

𝑄 𝐾 𝑉

Linear

Embedded
Patches

Multi-Head
Attention

Before Linear

After LinearAfter Linear

Figure 3: Prompt tuning illustration.

Applicability. We note that AdaptMLP is a plug-and-play181

module that can be adaptively inserted into existing popu-182

lar vision transformer architectures [29, 59, 77, 84, 22, 28]183

since all of the backbones share the same MLP layers even184

though they differ in the MHSA architectures (as shown in185

Figure 2b). Compared to our methods, we notice that recent186

prompt-related approaches insert trainable parameters into187

the token space, as illustrated in Figure 3. They prepend188

learnable parameters either into the embedded tokens before189

linear projection [55] or the key and value tokens after lin-190

ear projection [48]. Therefore, the prompt-related method191

can not be straightforwardly adapted to special MHSA vari-192

ants, especially for the one that takes the pyramid spatial193

information into account [59, 77]. Besides, we empirically194

observe that prompt-related methods perform not well when195

the number of patch tokens grows up from image to video196

scale, as shown in Figure 1.197

In summary, we present a strategy for tuning a pre-trained vision Transformer on a set of scalable198

vision recognition tasks (e.g.image domain and video domain). It adds limited learnable parameters199

for tuning while achieving comparable or even better performance than the full-tuning strategy.200

Moreover, AdaptFormer could serve as a generic module for a large variety of recognition tasks.201

4 Experiments202

We evaluate the effectiveness of AdaptFormer by conducting extensive visual recognition experiments203

in both the image and video domains. We first describe our experimental settings in Sec. 4.1, covering204

the pre-trained backbones, baseline methods, downstream tasks and training details. We then compare205

AdaptFormer with baseline methods and provide a thorough analysis in Sec. 4.2. In addition, we also206

conduct ablation studies to explore different experimental configurations and explain what makes for207

the superiority of AdaptFormer in Sec 4.4.208

4.1 Experimental Settings209

Pre-trained backbone. We adopt the plain Vision Transformer (ViT) [29], i.e., ViT-Base (ViT-B/16)210

as our backbone model and pre-train the model with both supervised and self-supervised approaches.211

Specifically, for image, we directly use the ImageNet-21k [25] supervised pre-trained model2 and212

MAE [40] self-supervised model3. For video, we take both supervised and self-supervised pre-trained213

2https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_
224_in21k-e5005f0a.pth

5

https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth

Table 1: Fine-tuning with self-supervised pre-trained model. For tunable parameters, we also
report the parameter percentage in the brackets. Besides, we report the top-1 accuracy on different
dataset with the absolute value and the gap value relative to the full-tuning regime. † denotes 0.1×
learning rate due to unstable training.

Method
Avg. Image Video

Params (M) CIFAR-100 SVHN Food-101 SSv2 HMDB51
Full-tuning 86.04 (100%) 85.90 97.67† 90.09† 53.97 46.41
Linear 0.07 (0.08%) 69.83 (-16.07) 66.91 (-30.76) 69.74 (-20.35) 29.23 (-24.74) 49.84 (+3.43)
VPT [48] 0.08 (0.09%) 82.44 (-3.46) 94.02 (-3.65) 82.98 (-7.11) 43.73 (-10.24) 52.67 (+6.26)

AdaptFormer-1 0.10 (0.12%) 83.52 (-2.38) 93.04 (-4.63) 83.64 (-6.45) 50.03 (-3.94) 51.68 (+5.27)
AdaptFormer-4 0.15 (0.17%) 84.83 (-1.07) 96.19 (-1.48) 85.42 (-4.67) 54.70 (+0.73) 51.81 (+5.40)
AdaptFormer-64 1.26 (1.46%) 85.90 (0.00) 96.89 (-0.78) 87.61 (-2.48) 59.02 (+5.05) 55.69 (+9.28)

models from VideoMAE [72]. More details about pre-training approaches and datasets can be found214

in Appendix.215

Initialization of AdaptFormer. For the original networks, we directly load the weights pre-trained216

on the upstream tasks and keep them frozen/untouched during the fine-tuning process. For the newly217

added modules, the weights of down-projection layers are initialized with Kaiming Normal [41],218

while the biases of the additional networks and the weights of the up-projection layers are configured219

with zero initialization.220

Baseline methods. We compare AdaptFormer with three commonly used fine-tuning approaches,221

including (1)Linear probing: adding an extra linear layer on top of the backbone and tuning the added222

parameters for evaluation. (2) Full Fine-tuning: setting all the parameters learnable and tuning them223

together. (3) Visual Prompt Tuning (VPT): [48] fine-tuning the extra token parameters as shown in224

Figure 3.225

Downstream tasks. We evaluate our AdaptFormer on both image and video recognition tasks to226

verify its effectiveness. The specific datasets leveraged in this work are presented in the following.227

• Image domain : CIFAR-100 [51] contains 50,000 training images and 10,000 validation images228

of resolution 32×32 with 100 labels. Street View House Numbers (SVHN) [34] is a digit classification229

benchmark dataset. In total, the dataset comprises over 600,000 labeled images, containing 73,257230

training samples, 26,032 testing samples and 531,131 extra training data. The Food-101 [9] dataset231

consists of 101 food categories with a total of 101k images, including 750 training and 250 testing232

samples per category.233

• Video domain : Something-Something V2 (SSv2) [36] is a large collection of video clips234

showing the people perform several normal actions in the daily life (e.g., moving stuff and opening235

the door). It consists of 168,913 training samples, 24,777 validation samples and 27,157 testing236

samples, making a total of 220,847 videos with 174 labels. HMDB51 [52] is composed of 6,849237

videos with 51 categories, making a split of 3.5k/1.5k train/val videos.238

Implementation details. In this work, we use PyTorch toolkit [64] to conduct all experiments on239

NVIDIA V100 GPUs. Unless otherwise stated, we use 8×8 GPUs for video experiments and 1×8240

GPUs for image experiments. Our default configurations follow the linear probing settings in [20, 40],241

which do not utilize many common regularization strategies, such as mixup [88], cutmix [85], color242

jittering and so on. More details can be found in Appendix.243

4.2 Main Properties and Analysis244

We compare the performance of different fine-tuning approaches in Table 1 with the backbones pre-245

trained via the self-supervised paradigms. The results show that AdaptFormer consistently surpasses246

linear probing and Visual Prompt tuning (VPT) methods. Specifically, AdaptFormer outperforms VPT247

on image benchmark CIFAR-100, SVHN, and Food-101, by 9.50%, 5.95%, and 10.04% respectively.248

On the more challenging video action recognition dataset Something-Something V2, the superiority249

becomes even more significant, i.e., about 34.96%. Note that even compared with the full fine-tuning250

3https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth

6

https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth

0 100 200 300 400 500 600
Number of tunable parameters (K)

10

20

30

40

50

60

H
M

D
B

51
 T

op
-1

 A
cc

 (%
)

VPT
VADA (ours)

0

10

20

30

40

50

60

70

S
S

v2
 T

op
-1

 A
cc

 (%
)

VPT
VADA

Figure 4: The trend of performance as the num-
ber of tunable parameters grows up. The ac-
curacy of VPT drops dramatically when the pa-
rameter number exceeds task-specific value, while
AdaptFormer is robust to the increasing parame-
ters.

0 20 40 60 80
Epoch

0

10

20

30

40

50

HM
DB

51
 To

p-
1

Ac
c

(%
)

1
2
4
8
16
32

Figure 5: Test accuracy of VPT [48] with dif-
ferent number of introduced tokens. The op-
timization procedure becomes unstable when
the token number is equal or larger than eight
on HMDB51 dataset [52].

strategy, our AdaptFormer still outperforms by about 10% Top-1 accuracy on SSv2 dataset. To251

summarize, our AdaptFormer is highly parameter-efficient, as well as yielding good performance252

with parameter size at most 2% times than the full fine-tuning manner.253

4.3 Scaling Tunable Parameters Up254

Even though there are only limited parameters introduced, one might also argue that more tunable255

parameters of AdaptFormer contribute to its higher accuracy compared with VPT [48]. We conduct256

experiments to make a comprehensive discussion on this aspect.257

As described in Sec. 3.3, the number of tunable parameters can be adjusted by changing the number of258

introduced tokens for VPT, or the hidden feature dimension for AdaptFormer. As shown in Figure 4,259

we conduct experiments with a wide range of tunable parameters on both SSv2 and HMDB-51260

datasets. Since AdaptFormer and VPT share the same number of parameters of classification head261

on a specific dataset, we only report the tunable parameters on the x-axis, which comes from the262

visual prompts (VPT) or weight/bias of the down-up fully-connected layers (AdaptFormer), without263

calculating the parameters of classification head. For VPT, the number of introduced tokens is chosen264

from {1, 2, 4, 8, 16, 32, 48, 64}. Similarly, the number of hidden dimensions in AdaptFormer is in {1,265

2, 4, 8, 16, 32}. AdaptFormer has a slight performance gain or maintains the accuracy stably when266

the parameters scale up. On the contrary, the performance of VPT decreases dramatically when the267

parameters exceed the task-specific value. Moreover, choosing the most suitable number of token268

number becomes laborious since it might be task-specific (i.e.varying from one dataset to the other269

one). For example, the accuracy of VPT keeps going up when the number of tunable parameters270

increases up to 300K on SSv2, whereas it begins to drop when the number of tunable parameters271

exceeds 50K on HMDB-51.272

We further study the optimization procedures of VPT by monitoring the test accuracy of the training273

stage. As shown in Figure 5, we gradually increase the number of tokens in VPT and plot the Top-1274

accuracy of each epoch. The training stages are stable when the number of tokens is less than or equal275

to 4, e.g., {1, 2, 4}. However, when the number becomes 8 or larger, e.g., {8, 16, 32}, the training276

procedure collapses at about the tenth epoch and achieves poor performance at the end of the training277

stage. On the contrary, the optimization procedures of AdaptFormer are stable when the number of278

parameters varies across a large range, as shown in Table 2a. The top-1 accuracy fluctuates within279

1.5% when the number of parameters increases from 0.44M (dim=16) to 4.87M (dim=256).280

4.4 Ablation Studies281

We ablate our AdaptFormer to study what properties make for a good AdaptFormer and observe282

several intriguing properties. The ablation studies conducted in this work are all performed on the283

SSv2 validation set [36].284

7

Middle dimension. The middle dimension controls the number of introduced parameters by Adapt-285

Former. Lower middle dimensions introduce fewer parameters with a possible performance cost. We286

ablate AdaptFormer on the middle feature dimension to study this effects. As shown in Table 2a,287

the accuracy consistently improves when the middle dimension increases up to 64 and reaches the288

saturation point when the middle dimension is about 64. We note that our AdaptFormer can achieve a289

decent performance when the middle dimension reduces even to one, about 50.03% top-1 accuracy.290

Table 2: AdaptFormer ablation experiments with ViT-B/16 on SSv2. We report the top-1 accuracy
on the val set. Most suitable settings are marked in color .

(a) Middle dimension d̂.

mid dim #params top-1
1 0.16M 50.03
16 0.44M 57.62
32 0.73M 58.27
64 1.32M 59.02

256 4.87M 58.87

(b) AdaptMLP inserted layers and form.

layers form #params top-1
1 → 6 parallel 0.73 50.48
7 → 12 parallel 0.73 57.99
1 → 12 parallel 1.32 59.02
1 → 12 sequential 1.32 58.17

(c) Scaling factor s.

factor top-1
0.01 53.44
0.05 58.85
0.10 59.02
0.20 58.89

Scaling factor. The scaling factor s is introduced to balance the task-agnostic features (generated291

by the original frozen branch) and the task-specific features (generated by the tunable bottleneck292

branch). We evaluate AdaptFormer with multiple s values and the results are summarized in Table 2c.293

Different from the scaling factor in NLP field which prefer s larger than 1 (e.g., s = 4 in [39]), we294

empirically found that the s should be < 1 for vision tasks, otherwise the fine-tuning would become295

unstable. Besides, we found that AdaptFormer achieves optimal performance with s = 0.1. A larger296

or smaller s would bring slight performance drop. Thus, we choose s = 0.10 as a default setting.297

AdaptFormer position. As shown in Table 2b, we further ablate on the specific position to introduce298

the AdaptMLP block. We gradually increase the number of AdaptMLP layers with a step of three299

(start → end, both included). We observe that the performance of AdaptFormer has a positive300

correlation with the number of added layers. In addition, AdaptFormer prefers the top part (the one301

far away from the input image) of the network to the bottom part when introducing the same number302

of layers, e.g., AdaptFormer with 7→ 12 obtains over 14.5% higher accuracy than 1→ 6, though303

both equipped with six AdaptMLP layers.304

Insertion form. We study the insertion formulation by comparing the parallel and sequential305

instances which are illustrated in Figure 6. As shown in Table 2b, the parallel AdaptFormer is able306

to outperform the sequential one by 0.85% top-1 accuracy. The reason might be: (1) the parallel307

design maintains the original feature using an independent branch and aggregating updated context308

by element-wise scaled sum; (2) the sequential design is equivalent to adding more layers, which309

might cause optimization difficulty. Therefore, we adopt the parallel design as our default setting due310

to its superiority.311

MLP

Down

Up

ReLU

S

MLP

S

Parallel Sequential

Down

Up

ReLU

Figure 6: Illustration of the parallel
and sequential insertion form. Com-
parison results are shown in Table 2b.

2 4 8 16
Number of frames

10

20

30

40

50

60

70

S
S

v2
 T

op
-1

 A
cc

. (
%

)

Linear
VPT
AdaptFormer

11

12

13

14

15

16

17

18

To
p-

1
A

cc
. D

iff
er

en
ce

 (AdaptFormer - VPT)

Figure 7: Performance with video
frames number. AdaptFormer outper-
forms VPT and linear fine-tuning.

Number of frames. The number of embedded patch tokens increases linearly with the number of312

video frames for the plain ViT [29]. We conduct experiments with the different number of frames,313

i.e., {2, 4, 8} and the results are shown in Figure 7. We observe that increasing the number of frames314

is beneficial for all these three fine-tuning methods. However, AdaptFormer consistently outperforms315

8

the linear manner (e.g., +30% top-1 accuracy on 8 input frames) and VPT method(e.g., +14% top-1316

accuracy on 8 input frames).317

4.5 Towards Visual Recognition Generalist Agent318

In the above experiments, we typically utilize a modality-specific pre-trained checkpoint for319

the corresponding downstream tasks. For example, we use Kinetics-400 (video domain) pre-320

trained model for downstream video action recognition on Something-Something V2 and HMDB-321

51 benchmarks. Besides, we use ImageNet-21K (image domain) pre-rained model for down-322

stream image classification on CIFAR-100, SVHN and Food-101 benchmarks. Our AdaptFormer323

achieves superior performances in this same network with modality-specific weights scenario.324

Table 3: Fine-tuning on video data with image
pre-trained model.

Method Avg. Fine-tuning
Params (M) SSv2

Full-tuning 86.36 41.50
Linear 0.15 6.56
VPT [48] 0.16 16.94
AdaptFormer 1.33 46.06

Next, we take a further step to ask what would325

happen if using the same network with the326

modality-agnostic weights for multiple tasks in327

the multi-modalities downstream tasks?328

We use the model pre-trained on ImagNet-21k329

to do action recognition on SSv2. As shown330

in Table 3, AdaptFormer is robust to domain331

shift caused by modality. The experimental re-332

sults show that the linear probe approach obtains333

a very poor accuracy (i.e., 6.56% top-1 accu-334

racy) when fine-tuning on SSv2. Meanwhile,335

VPT [48] achieves a better performance than linear probe but it is not decent (i.e., 16.94% top-1336

accuracy). Our AdaptFormer, compared to the above two methods, attains a promising 46.06% top-1337

accuracy, which is even higher than the full-tuning schedule (+4.56%).338

4.6 Visualization339

(a) Linear (0.08%)
(Top1 29.23%)

(b) VPT (0.09%)
(Top1 43.73%)

(c) Full fine-tune (100%)
(Top1 53.97%)

(d) AdaptFormer (1.26%)
(Top1 59.02%)

Figure 8: t-SNE visualizations on SSv2 val dataset. We extract the final classification features from
the top linear layer for t-SNE visualizations. The top-1 accuracy is reported in red, while the relative
parameter (compared to the full fine-tuning strategy) is reported in blue.

To evaluate the quality of the produced features, we conduct t-SNE [74] visualizations on Adapt-340

Former and other baseline methods. The features are extracted from the SSv2 validation set via341

the ViT-Base backbone. Figure 8 shows that the linear fine-tuning and the VPT methods tend to342

output mixed features as shown in Figure 8(a)-(b). Compared with the above two methods, the full343

fine-tuning strategy performs well in projecting features. However, it consumes huge computational344

sources to tune the whole network parameters. Figure 8(d) validates that our AdaptFormer facilitates345

ViT-Base in generating more separable representations with fewer learnable parameters.346

5 Conclusion347

We present a conceptually simple yet effective framework, AdaptFormer, for efficiently adapting a348

pre-trained Vision Transformer (ViT) backbone to scalable vision recognition tasks. By introducing349

AdaptMLP, our AdaptFormer is able to fine-tune the lightweight modules for producing features350

adapted to multiple downstream tasks. The extensive experiments on five datasets, covering both351

the image and the video domains, validate that our proposed methods are able to increase the352

ViT’s transferability with little computational cost. We hope our work will inspire future research353

in exploring more efficient fine-tuning methods for large vision models. One limitation is that354

AdaptFormer is only employed in recognition tasks in this work, it’s unclear whether it can work355

well in tasks beyond recognition, e.g., object detection and semantic segmentation. We leave it for356

the future exploration. Since our method is specially designed for efficient fine-tuning, we do not357

foresee obvious undesirable ethical/social impacts at this moment.358

9

References359

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,360

2018. 4361

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit: A362

video vision transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision,363

pages 6836–6846, 2021. 3, 16364

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint365

arXiv:1607.06450, 2016. 4366

[4] Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Visual prompting: Modifying367

pixel space to adapt pre-trained models. arXiv preprint arXiv:2203.17274, 2022. 2368

[5] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv preprint369

arXiv:2106.08254, 2021. 1370

[6] Ankur Bapna, Naveen Arivazhagan, and Orhan Firat. Simple, scalable adaptation for neural machine371

translation. arXiv preprint arXiv:1909.08478, 2019. 2372

[7] Emanuel Ben-Baruch, Tal Ridnik, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and Lihi373

Zelnik-Manor. Asymmetric loss for multi-label classification. arXiv preprint arXiv:2009.14119, 2020. 18374

[8] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video375

understanding. arXiv preprint arXiv:2102.05095, 2021. 3376

[9] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components377

with random forests. In European Conference on Computer Vision, 2014. 6378

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind379

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.380

Advances in Neural Information Processing Systems, 2020. 1, 2, 3381

[11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey382

Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision,383

2020. 1, 3384

[12] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand385

Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the International386

Conference on Computer Vision (ICCV), 2021. 1387

[13] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand388

Joulin. Emerging properties in self-supervised vision transformers. In IEEE/CVF International Conference389

on Computer Vision, 2021. 3390

[14] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short note391

about kinetics-600. arXiv preprint arXiv:1808.01340, 2018. 17392

[15] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.393

In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6299–6308,394

2017. 16395

[16] Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning with396

transformer world models. arXiv preprint arXiv:2202.09481, 2022. 1397

[17] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu,398

Chao Xu, and Wen Gao. Pre-trained image processing transformer. In IEEE/CVF Conference on Computer399

Vision and Pattern Recognition, 2021. 3400

[18] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,401

Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence402

modeling. Advances in neural information processing systems, 34, 2021. 1403

[19] Shuo Chen, Tan Yu, and Ping Li. Mvt: Multi-view vision transformer for 3d object recognition. arXiv404

preprint arXiv:2110.13083, 2021. 3405

[20] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision406

transformers. In IEEE/CVF International Conference on Computer Vision, 2021. 3, 6407

10

[21] Cheng Chi, Fangyun Wei, and Han Hu. Relationnet++: Bridging visual representations for object detection408

via transformer decoder. Advances in Neural Information Processing Systems, 2020. 3409

[22] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua410

Shen. Twins: Revisiting the design of spatial attention in vision transformers. In NeurIPS 2021, 2021. 5411

[23] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. Nus-wide:412

a real-world web image database from national university of singapore. In Proceedings of the ACM413

international conference on image and video retrieval, pages 1–9, 2009. 18414

[24] Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. arXiv preprint415

arXiv:2011.05970, 2020. 1416

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical417

image database. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2009. 3, 5, 16, 17418

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-419

tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 1, 2, 3420

[27] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context421

prediction. In Proceedings of the IEEE international conference on computer vision, pages 1422–1430,422

2015. 16423

[28] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and424

Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped windows,425

2021. 5426

[29] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas427

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth428

16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 1, 2, 3,429

4, 5, 8, 16, 17430

[30] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-label classification431

with partial labels. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,432

pages 647–657, 2019. 18433

[31] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph434

Feichtenhofer. Multiscale vision transformers. In IEEE/CVF International Conference on Computer Vision,435

2021. 3436

[32] Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaiming He. Masked autoencoders as spatiotemporal437

learners. arXiv preprint arXiv:2205.09113, 2022. 1438

[33] Chongjian Ge, Youwei Liang, Yibing Song, Jianbo Jiao, Jue Wang, and Ping Luo. Revitalizing cnn439

attention via transformers in self-supervised visual representation learning. Advances in Neural Information440

Processing Systems, 2021. 3441

[34] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number recog-442

nition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082,443

2013. 6444

[35] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew445

Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv446

preprint arXiv:1706.02677, 2017. 16447

[36] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,448

Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something449

something" video database for learning and evaluating visual common sense. In IEEE/CVF International450

Conference on Computer Vision, 2017. 6, 7451

[37] Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.452

arXiv preprint arXiv:2012.07463, 2020. 3453

[38] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu. Pct:454

Point cloud transformer. Computational Visual Media, 2021. 3455

[39] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified456

view of parameter-efficient transfer learning. In International Conference on Learning Representations,457

2022. 2, 8458

11

[40] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders459

are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021. 1, 2, 3, 5, 6, 16460

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing461

human-level performance on imagenet classification. In Proceedings of the IEEE international conference462

on computer vision, pages 1026–1034, 2015. 6463

[42] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,464

2016. 4465

[43] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-466

mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International467

Conference on Machine Learning, 2019. 2, 3468

[44] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and469

Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,470

2021. 2, 3471

[45] Drew A Hudson and Larry Zitnick. Generative adversarial transformers. In International Conference on472

Machine Learning, pages 4487–4499. PMLR, 2021. 1473

[46] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing474

internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015. 16475

[47] Rishabh Jangir, Nicklas Hansen, Sambaran Ghosal, Mohit Jain, and Xiaolong Wang. Look closer:476

Bridging egocentric and third-person views with transformers for robotic manipulation. IEEE Robotics477

and Automation Letters, 2022. 1478

[48] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and479

Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022. 2, 3, 5, 6, 7, 9, 17, 18480

[49] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can make one strong481

gan, and that can scale up. Advances in Neural Information Processing Systems, 34, 2021. 1482

[50] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,483

Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. arXiv484

preprint arXiv:1705.06950, 2017. 3485

[51] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Master’s486

thesis, Department of Computer Science, University of Toronto, 2009. 6487

[52] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a large488

video database for human motion recognition. In IEEE/CVF International Conference on Computer Vision,489

2011. 6, 7490

[53] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.491

arXiv preprint arXiv:2104.08691, 2021. 2, 3492

[54] Kunchang Li, Yali Wang, Gao Peng, Guanglu Song, Yu Liu, Hongsheng Li, and Yu Qiao. Uniformer:493

Unified transformer for efficient spatial-temporal representation learning. In International Conference on494

Learning Representations, 2022. 3495

[55] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv496

preprint arXiv:2101.00190, 2021. 2, 3, 5497

[56] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image498

restoration using swin transformer. In IEEE/CVF International Conference on Computer Vision, 2021. 3499

[57] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches are500

what you need: Expediting vision transformers via token reorganizations. arXiv preprint arXiv:2202.07800,501

2022. 3502

[58] Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt tuning503

can be comparable to fine-tuning universally across scales and tasks. arXiv preprint arXiv:2110.07602,504

2021. 2505

[59] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin506

transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF507

International Conference on Computer Vision, 2021. 1, 3, 5, 17508

12

[60] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer.509

arXiv preprint arXiv:2106.13230, 2021. 16, 17510

[61] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint511

arXiv:1608.03983, 2016. 16512

[62] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin513

Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised pretraining. In514

European Conference on Computer Vision, 2018. 3515

[63] Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei Liu. Videomoco: Contrastive video516

representation learning with temporally adversarial examples. In IEEE/CVF Conference on Computer517

Vision and Pattern Recognition, 2021. 3518

[64] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor519

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,520

Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie521

Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In522

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in523

Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. 6, 19524

[65] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:525

Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020. 2526

[66] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun527

Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. arXiv preprint528

arXiv:2007.07779, 2020. 2529

[67] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish530

Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from531

natural language supervision. In International Conference on Machine Learning, 2021. 3532

[68] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for the533

masses. arXiv preprint arXiv:2104.10972, 2021. 3534

[69] Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch535

size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018. 18536

[70] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness537

of data in deep learning era. In IEEE/CVF International Conference on Computer Vision, 2017. 3538

[71] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and539

momentum in deep learning. In International conference on machine learning, pages 1139–1147. PMLR,540

2013. 16541

[72] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-efficient542

learners for self-supervised video pre-training. arXiv preprint arXiv:2203.12602, 2022. 1, 3, 6, 16543

[73] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé544

Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint545

arXiv:2012.12877, 2020. 1546

[74] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning547

research, 9(11), 2008. 9548

[75] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz549

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems,550

2017. 1, 2, 3551

[76] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:552

A multi-task benchmark and analysis platform for natural language understanding. In International553

Conference on Learning Representations, 2019. 1554

[77] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and555

Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions.556

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 568–578, 2021. 1, 5557

[78] Zhendong Wang, Xiaodong Cun, Jianmin Bao, and Jianzhuang Liu. Uformer: A general u-shaped558

transformer for image restoration. arXiv preprint arXiv:2106.03106, 2021. 3559

13

[79] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer. Masked560

feature prediction for self-supervised visual pre-training. arXiv preprint arXiv:2112.09133, 2021. 1561

[80] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:562

Simple and efficient design for semantic segmentation with transformers. Advances in Neural Information563

Processing Systems, 2021. 1, 3564

[81] Ruihan Yang, Minghao Zhang, Nicklas Hansen, Huazhe Xu, and Xiaolong Wang. Learning vision-guided565

quadrupedal locomotion end-to-end with cross-modal transformers. In International Conference on566

Learning Representations, 2022. 1567

[82] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet:568

Generalized autoregressive pretraining for language understanding. Advances in neural information569

processing systems, 32, 2019. 1570

[83] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv571

preprint arXiv:1708.03888, 2017. 16572

[84] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi Feng,573

and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. In574

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 558–567, 2021. 1, 5575

[85] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:576

Regularization strategy to train strong classifiers with localizable features. In IEEE/CVF International577

Conference on Computer Vision, 2019. 6578

[86] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for579

transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021. 2, 3580

[87] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In581

CVPR, 2022. 1582

[88] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk583

minimization. arXiv preprint arXiv:1710.09412, 2017. 6584

[89] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In585

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16259–16268, 2021. 3586

[90] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng587

Feng, Tao Xiang, Philip Torr, and Li Zhang. Rethinking semantic segmentation from a sequence-to-588

sequence perspective with transformers. In CVPR, 2021. 1589

[91] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image590

bert pre-training with online tokenizer. International Conference on Learning Representations (ICLR),591

2022. 1592

[92] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable593

transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020. 1, 3594

14

Checklist595

1. For all authors...596

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s597

contributions and scope? [Yes]598

(b) Did you describe the limitations of your work? [Yes] Shown in Conclusion Section.599

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Shown in600

Conclusion Section.601

(d) Have you read the ethics review guidelines and ensured that your paper conforms to602

them? [Yes]603

2. If you are including theoretical results...604

(a) Did you state the full set of assumptions of all theoretical results? [N/A]605

(b) Did you include complete proofs of all theoretical results? [N/A]606

3. If you ran experiments...607

(a) Did you include the code, data, and instructions needed to reproduce the main exper-608

imental results (either in the supplemental material or as a URL)? [Yes] As a URL609

shown in the abstract.610

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they611

were chosen)? [Yes] Shown in supplementary materials.612

(c) Did you report error bars (e.g., with respect to the random seed after running experi-613

ments multiple times)? [N/A]614

(d) Did you include the total amount of compute and the type of resources used (e.g., type615

of GPUs, internal cluster, or cloud provider)? [Yes] Please see Section 4.1616

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...617

(a) If your work uses existing assets, did you cite the creators? [Yes]618

(b) Did you mention the license of the assets? [Yes] Shown in supplementary materials.619

(c) Did you include any new assets either in the supplemental material or as a URL? [No]620

(d) Did you discuss whether and how consent was obtained from people whose data you’re621

using/curating? [Yes] We used publicly available datasets whose licenses allow research622

usage.623

(e) Did you discuss whether the data you are using/curating contains personally identifiable624

information or offensive content? [No] To the best of our knowledge, the data we used625

contains no personally identifiable information or offensive content.626

5. If you used crowdsourcing or conducted research with human subjects...627

(a) Did you include the full text of instructions given to participants and screenshots, if628

applicable? [N/A]629

(b) Did you describe any potential participant risks, with links to Institutional Review630

Board (IRB) approvals, if applicable? [N/A]631

(c) Did you include the estimated hourly wage paid to participants and the total amount632

spent on participant compensation? [N/A]633

15

A Appendix634

In this supplementary material, we will include the details about the pre-training and fine-tuning635

processes, the extensive experiments of AdaptFormer on hierarchical vision transformers (e.g.,636

AdaptFormer-Swin), and the pseudo-code of AdaptMLP in a PyTorch-like style.637

A.1 Experimental Settings638

A.1.1 Pre-training Approaches639

Image. We use MAE [40] as our self-supervised pre-training method in the image domain, a simple640

yet effective method that first masks nearly 75% patches of the input image and then reconstructs the641

missing pixels. Specifically, we directly adopt the checkpoint4of ViT-B/16 for convenience, which is642

pre-trained on ImageNet-1K [25] for 800 epochs.643

Video. We use VideoMAE [72] as our self-supervised pre-training method in the video domain,644

which is an direct extension of MAE to the video domain. VideoMAE utilizes the plain ViT [29]645

architecture of joint space-time attention mechanism [2, 60] and an extremely high proportion646

of masking ratio (i.e., 90% to 95%) for pre-training. We also directly use the publicly available647

checkpoint5, which is pre-trained on Kinetics-400 [15].648

A.1.2 Implementation Details of Fine-tuning649

Table 4: Fine-tuning settings. We present the shared configurations, like the optimizer and the base
learning rate, the upper part, and show the seperated ones in the lower part.

Configuration Image Video
optimizer SGD
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 1024 images/frames
learning rate schedule cosine decay [61]
GPU numbers 8 64
warmup epochs 20 10
training epochs 100 90
augmentation RandomResizedCrop [40] MultiScaleCrop [72]

The implementation details are summarized in Table 4. The video experiments are conducted on650

64 Tesla V100 GPUs, while the image experiments are performed on 8 Tesla V100 GPUs. For651

the optimizer, different from [83] that adopts LARS, we leverage SGD [71] for stable training on652

small-scale dataset (e.g., CIFAR10). The actual learning rate is calculated by: lr = base_lr×batchsize653

/ 256 following the linear lr scaling rule [35]. More detailed training configurations are presented in654

Table 4, including the batchsize, learning rate schedule and etc.655

The experimental settings of image and video mainly follow the ones utilized in MAE [40] and656

VideoMAE [72], respectively. We insert an extra BatchNorm layer [46] without affine transforma-657

tion (i.e. affine=False) before the final fully connected layer, following the common practice to658

normalize the pre-trained features [27, 40]. In addition, there is no flip augmentation during the659

fine-tuning stage for video data.660

4https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth
5https://drive.google.com/file/d/1tEhLyskjb755TJ65ptsrafUG2llSwQE1/view?usp=

sharing

16

https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth
https://drive.google.com/file/d/1tEhLyskjb755TJ65ptsrafUG2llSwQE1/view?usp=sharing
https://drive.google.com/file/d/1tEhLyskjb755TJ65ptsrafUG2llSwQE1/view?usp=sharing

A.2 More Supplementary Results661

A.2.1 AdaptFormer with Supervised Pre-training662

In addition to the self-supervised pre-training presented in the main paper, we also evaluate Adapt-663

Former with the supervised pre-trained model. The results in Table 5 show that AdaptFormer664

still outperforms linear probe and VPT obviously. In addition, AdaptFormer surpasses full-tuning665

on four benchmarks (CIFAR100, SVHN, SSv2, HMDB51) with only 1.46% parameters. On the666

remaining benchmark (Food-101), AdaptFormer achieves an almost comparable performance to667

full-tuning (90.89% v.s. 90.96%).668

Table 5: Fine-tuning with supervised pre-trained model. We report the tunable parameters
percentage in the brackets. Besides, we report the top-1 accuracy on different dataset with the
absolute value and the gap value relative to the full-tuning regime.

Method
Avg. Image Video

Params (M) CIFAR-100 SVHN Food-101 SSv2 HMDB51
Full-tuning 86.04 (100%) 89.12 95.41 90.96 53.62 59.38
Linear 0.07 (0.08%) 85.95 (-3.17) 55.36 (-40.05) 88.14 (-2.82) 35.49 (-18.13) 70.31 (+10.93)
VPT [48] 0.08 (0.09%) 90.97 (+1.85) 92.77 (-2.64) 90.16 (-0.80) 55.22 (+1.60) 71.56 (+12.18)

AdaptFormer-64 1.26 (1.46%) 91.86 (+2.73) 97.29 (+1.88) 90.89 (-0.07) 60.18 (+6.56) 73.21 (+13.83)

A.2.2 AdaptFormer on Swin Transformer669

Settings. We further demonstrate the effectiveness of AdaptFormer on hierarchical vision transform-670

ers, e.g., Swin [59, 60]. We name AdaptFormer applied to Swin as AdaptFormer-Swin, to distinguish671

plain AdaptFormer (without any suffix) which is applied to the vanilla ViT [29]. It is noted that we672

can adopt AdaptMLP to Swin easily without any special modification as Swin and ViT share the673

same MLP architecture. However, VPT [48] needs additional handcraft designs to be suitable for674

the shifted local windows in the prevalent hierarchical vision transformers, which hinders its general675

applications.676

We utilize Swin-B [59] and the video counterpart [60] for image and video. Similarly, we also677

directly use the officially provided checkpoints6, which are pre-trained on ImageNet-21K [25] and678

Kinetics-600 [14].679

Table 6: Fine-tuning with Swin Transformer. We utilize Swin-B [59] and Video Swin-B [60] for
image and video experiments, respectively. Parameter percentage and performance difference are
reported relative to full-tuning schedule.

Method
Avg. Image Video

Params (M) CIFAR-100 SVHN Food-101 SSv2 HMDB51
Full-tuning 87.19 (100%) 89.95 97.03 91.43 52.92 68.73
Linear 0.11 (0.13%) 89.07 (-0.88) 69.06 (-27.97) 90.64 (-0.79) 28.32 (-24.61) 74.00 (+5.27)

AdaptFormer-Swin 1.25 (1.43%) 91.88 (+1.93) 97.31 (+0.28) 91.86 (+0.43) 54.09 (+1.17) 74.65 (+5.92)

Results. Since VPT is not applicable in Swin, we do not report its performance. Table 6 shows680

AdaptFormer-Swin performs well compared with other tuning strategies. For image benchmarks, our681

method can outperform full-tuning approach with only 1.43% parameters. Moreover, AdaptFormer-682

Swin surpasses linear probing by a significant margin, especially on the challenging dataset, SSv2.683

The results validate that AdaptFormer is able to generally boost the transferability of various vision684

Transformer variants.685

6Image: https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_
base_patch244_window877_kinetics600_22k.pth

Video: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_
base_patch4_window7_224_22k.pth

17

https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window877_kinetics600_22k.pth
https://github.com/SwinTransformer/storage/releases/download/v1.0.4/swin_base_patch244_window877_kinetics600_22k.pth
https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth

A.3 Multi-Label Classification686

We further conduct experiments on dataset with larger scale and diversity. Specifically, we evaluate687

AdaptFormer on NUS-WIDE [23] for multi-label classification. NUS-WIDE contains 269,648688

images collected from Flicker, which are annotated with 81 visual concepts. Since some images are689

not available on Flicker, we only use 220,000 images following [7, 30]. We utilize mean average690

precision (mAP) as performance metric.691

Settings: Our training settings mainly follow ASL [7]. Specifically, We trained all models for 40692

epochs using Adam optimize and 1-cycle learning rate policy [69]. The maximal learning rate is693

0.001.694

Table 7: AdaptFormer for multi-label classification.
Method Params (M) NUS-WIDE [23]
Full-tuning 85.86 (100%) 61.26
Linear 0.06 (0.08%) 51.19 (-27.25)
VPT [48] 0.07 (0.09%) 57.08 (-7.56)

AdaptFormer-1 0.09 (0.12%) 57.51 (-4.08)
AdaptFormer-4 0.15 (0.17%) 58.14 (-2.13)
AdaptFormer-64 1.25 (1.46%) 59.07 (-0.06)

A.4 Possible Architectures695

We explore other possible architectures utilized in AdaptFormer. Specifically, we further replace the696

MLP architectures within the AdaptMLP module by the convolution layer, depthwise convolution697

layer, and LayerNorm layer. For fair comparisons, we carefully design the above modules to meet the698

comparable number of parameters (1̃.3M). The experimental results of different adapter modules are699

shown in Table 8, which validates that the simple MLP modules are simple yet effective compared700

with the other architectures. For example, our AdaptMLP module surpasses the AdaptConv module701

by 0.55% Top1 accuracy on SSv2 dataset.702

Table 8: Fine-tuning with different adapter modules. We use AdaptConv to denote the designed
adapter module with convolution layers, while AdaptDepthwise-Conv is utilized to denote the
designed adapter module with depthwise convolution layers. Besides, we also replace the MLP
architectures with LayerNorm layer as AdaptLayerNorm-In.

Methods Avg Parameters SSv2 Top1 NUS-WIDE mAP CIFAR100 Top1
AdaptMLP 1.28 59.02 59.07 85.93

AdaptConv 1.39 58.47 58.86 85.42
AdaptDepthwise-Conv 1.29 58.15 58.73 85.37
AdaptLayerNorm-In 1.30 57.85 58.51 85.71

A.5 Evaluation on ImageNet-1k datasets703

To further conduct the evaluation on the ImageNet dataset, we directly load the weights pre-trained704

on ImageNet-21K, and evaluate the AdaptFormer on ImageNet-1k. The results in Table 9 validate705

that the performance of AdaptFormer is comparable to the full fine-tuning strategy with only 1.5%706

tunable parameters. Meanwhile, our AdaptFormer outperforms the linear probe and VPT by 0.81%707

and 0.14% , respectively.708

A.6 Extended experiments on middle dimension709

We conduct the extended ablation studies on the middle dimension design in this sub-section. We710

aim to seek for a trade-off between model capacity (i.e., potential) and adaptation efficiency. In fact,711

the middle dimension has a main influence on the parameter size of adapter. The higher dimension712

18

Table 9: Fine-tuning with AdaotFormer on ImageNet-1k dataset. We load the weights pretrained
on ImageNet-21K and evaluate the classification performance on ImageNet-1K.

Methods Parameters (M) ImageNet-1k Top1 (%)
Full Fine-tuning 86.57 82.26

Liner 0.77 80.95
VPT 0.78 81.68
AdaptFormer 1.96 57.85

brings more parameters while the efficiency and storage are limited. As shown in Table 10, we713

evaluate several numbers of middle dimension and found that using 64 is optimal to achieve accuracy,714

light-weight storage, and efficiency.715

Table 10: AdaptFormer ablation experiments with ViT-B/16 on SSv2. The experimental results on
middle dimension are investigated.

Middle Dimension Parameters (M) SSv2 Top1 (%) NUS-WIDE mAP (%)
1 0.16 50.03 57.51
4 0.22 54.70 58.14
16 0.44 57.62 59.00
32 0.73 58.27 59.09
64 1.32 59.02 59.07
128 2.51 58.95 59.49
256 4.87 58.87 59.62
512 9.59 58.98 59.82

A.7 Analysis on the fine-tuning time and inference latency716

To analysis the computational efficiency, we compare the fine-tuning time and inference time on a717

single NVIDIA A100-40G GPU. We utilize SSv2 video classification for this part. For fine-tuing,718

we experiment with batchsize of 32. For inference, we test the latency with multiple batch sizes719

to get a comprehensive comparison under various inference scenarios. All the time is measured in720

milliseconds averaged over 100 trials. The results are summarized in Table 11 and Table 12. As721

shown in Table 11, AdaptFormer only costs less than a half of the fine-tuning time compared with the722

full-tuning. Moreover, AdaptFormer significantly outperforms linear probing in terms of accuracy723

with a slight longer fine-tuning time. For inference, AdaptFormer introduce a negligible FLOPs and724

latency compared with the Linear/Full-tuning.

Table 11: Fine-tuning time of a single forward-backward step averaged over 100 trials.
Methods Latency (B=32)
Full-tuning 355.0 ms
Linear 140.2 ms
VPT 210.3 ms
AdaptFormer 162.2 ms

725

A.8 Implementation726

The core part of AdaptFormer is replacing the original MLP with AdaptMLP, which consists of the727

frozen original MLP and newly introduced Down → ReLU → Up layers, which are tunable at the728

fine-tuning stage. Algorithms 1 provides the implementation of AdaptMLP written in PyTorch [64].729

For more implementation details, please refer to the provided source code.730

19

Table 12: Inference time of a single forward step averaged over 100 trials.
Methods Flops (B=1) Latency (B=1) Latency (B=16) Latency (B=32)
Linear/Full-tuning 78.915G 11.1 ms 22.4 ms 42.3 ms
VPT 79.029G 11.3 ms 22.9 ms 42.4 ms
AdaptFormer 79.840G 11.9 ms 23.2 ms 42.8 ms

Algorithm 1 Implementation of AdaptMLP in PyTorch-like style.

class AdaptMLP(nn.Module):
def __init__(self, original_mlp, in_dim, mid_dim, dropout=0.0, s=0.1):

super().__init__()
self.original_mlp = original_mlp # original MLP block
down --> non linear --> up
self.down_proj = nn.Linear(in_dim, mid_dim)
self.act = nn.ReLU()
self.up_proj = nn.Linear(mid_dim, in_dim)
self.dropout = nn.Dropout(dropout)
self.scale = s # scaling factor
initialization
nn.init.kaiming_uniform_(self.down_proj.weight)
nn.init.zeros_(self.up_proj.weight)
nn.init.zeros_(self.down_proj.bias)
nn.init.zeros_(self.up_proj.bias)
freeze original MLP
for _, p in self.original_mlp.named_parameters():

p.requires_grad = False

def forward(self, x):
down = self.down_proj(x)
down = self.act(down)
down = self.dropout(down)
up = self.up_proj(down)
output = self.original_mlp(x) + up * self.scale
return output

20

	Introduction
	Related Works
	Transformer in Vision
	Efficient Transfer learning for Transformers

	Approach
	Preliminary and Notation
	AdaptFormer
	Discussion

	Experiments
	Experimental Settings
	Main Properties and Analysis
	Scaling Tunable Parameters Up
	Ablation Studies
	Towards Visual Recognition Generalist Agent
	Visualization

	Conclusion
	Appendix
	Experimental Settings
	Pre-training Approaches
	Implementation Details of Fine-tuning

	More Supplementary Results
	AdaptFormer with Supervised Pre-training
	AdaptFormer on Swin Transformer

	Multi-Label Classification
	Possible Architectures
	Evaluation on ImageNet-1k datasets
	Extended experiments on middle dimension
	Analysis on the fine-tuning time and inference latency
	Implementation

