
DTMD: Learning Improvement of Spiking Neural
Networks with Dynamic Thresholding Neurons and

Moderate Dropout

Anonymous Author(s)
Affiliation
Address
email

Abstract

Spiking Neural Networks (SNNs) have shown great promise in processing spatio-1

temporal data, mimicking biological neuronal mechanisms, and saving computa-2

tional power. However, most SNNs use fixed model regardless of their locations3

in the network. This limits SNNs’ capability of transmitting precise information4

in the network, which becomes worse for deeper SNNs. Some researchers try to5

use specified parametric models in different network layers or regions, but most6

still use preset or suboptimal parameters. Inspired by the neuroscience observation7

that different neuronal mechanisms exist in disparate brain regions, we propose a8

new spiking neuronal mechanism, named dynamic thresholding, to address this9

issue. Utilizing learnable threshold values, dynamic thresholding enables flexible10

neuronal mechanisms across layers, proper information flow within the network,11

and fast network convergence. In addition, we propose a moderate dropout method12

to serve as an enhancement technique to minimize inconsistencies between inde-13

pendent dropout runs. Finally, we evaluate the robustness of the proposed dynamic14

thresholding and moderate dropout for image classification with different initial15

thresholds for various types of datasets. Our proposed methods produce superior16

results compared to other approaches for almost all datasets with fewer timesteps.17

1 Introduction18

Modelled after the impulse communication between biological neurons, spiking neural network19

(SNN) is a new class of neural network with neurons exhibiting a distinctive binary output property.20

SNNs have shown great potential in event-driven data processing, computation reduction, and network21

biological plausibility enhancement. However, unoptimized learning algorithm and complex neuronal22

dynamics make it challenging to construct high-performance SNN models.23

Current SNN training approaches can generally be divided into two categories: ANN-to-SNN24

conversion and SNN direct training algorithms based on gradient descent. Both ways only focus25

on adjusting synaptic connections to minimize the error between a model’s output and target values26

with the same neuronal model being used across the whole network. However, it has been found27

from neuroscience observations that biological neurons’ dynamics vary with their relative locations28

in the brain especially for primates [1, 2]. Therefore, using the same neuronal model across the29

whole SNN may limit the SNN’s expression ability as compared to allowing heterogenous neuronal30

models to be used in the same SNN. Although some researchers have proposed many techniques31

to balance presynaptic inputs and neuronal behaviors, for example, threshold regularization [3]32

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

and spike-based normalization [4], they are either targeting at neuronal state distribution or only33

applicable for ANN-to-SNN conversion algorithms.34

Dropout [5, 6] is a commonly used regularization methodology to train neural networks. As dropping35

neurons are randomly selected, each run of network will lead to the input interacting with different36

sub-models, which will cause the results in different runs to deviate unpredictably. Consequently,37

a regularization technique is needed to minimize the inconsistencies between output probability38

distributions during the training phase to improve the performance.39

In this paper, we propose a new dynamic thresholding mechanism with a moderate dropout method40

to enhance the learning of modulated SNNs. The dynamic thresholding mechanism can be integrated41

with the backpropagation based SNN direct training algorithm so that neuronal parameters can be42

changed dynamically and self-optimize during training. We adapt the DenseNet architecture and43

modify the encoding and decoding layers to make the network suitable for diverse datasets. A new44

‘moderate dropout’ technique is developed to minimize inconsistencies between network sub-models45

generated in different runs. We demonstrate the proposed methods can enhance the SNN’s stability46

and performance through evaluation based on static and neuromorphic datasets. To the best of our47

knowledge, our proposed SNNs achieve the best or comparable accuracies for all the datasets tested48

compared to other state-of-the-art SNNs.49

2 Related Work50

2.1 ANN-to-SNN Conversion51

ANN-to-SNN conversion [7, 4, 8] aims to convert trained ANNs to SNNs by using rate coding52

scheme instead of ReLU activation to represent data flowing inside the network [9]. An ANN of the53

same structure will be trained first, followed by adjusting the trained synapses for spatio-temporal54

data. Many constraints such as bias term needs to be excluded, and only average pooling should be55

used, etc. need to be incorporated in the pre-training [10]. However, this indirect training approach56

poses a lot of problems, such as temporal information is disregarded during ANN training, long57

delay incurred for encoding presynaptic inputs, etc., which seriously limits the network’s application58

spectrum. Furthermore, this training method is inappropriate for neuromorphic datasets since only59

spatial data can be utilized.60

2.2 Direct-Trained Deep SNNs and Neuronal Model61

The other method is to train SNNs directly based on gradient descent by backpropagating errors [11]62

in both spatial and temporal dimensions. Various strategies have been proposed to realize gradient63

value calculation for non-differentiable spike activation. Some recent works apply pseudo derivative64

algorithm to replace the non-differentiable spike triggering part of membrane potential curves with65

an auxiliary function and report satisfactory results [12, 13, 14]. As both spatial and temporal66

information are used in network training, dataset restrictions will not blight direct training method67

as in the ANN-to-SNN conversion approach. In addition, simulation latency can be significantly68

shortened because data encoding can be freely used with gradient descent.69

The direct supervised learning methods train SNNs based on event-driven data and gradient descent,70

which is scalable and thus suitable for deep SNNs. In [15, 10, 16], several approaches to build71

deep SNN with direct learning methods are described. It is pointed out in [9] that information72

expressiveness loss attributes to step functional activation causes deep SNNs to suffer performance73

degradation. Multiple deep network architectures such as VGG [17], ResNet [18, 9], and DenseNet74

[19] have been leveraged to SNNs so that spiking neurons can maintain sufficient information for75

transmission.76

Spiking neuronal model plays a crucial role in controlling data transmission in SNNs. Inspired77

by biological neurons, some researchers add lateral effect to spiking neurons [20, 13]. Some use78

parametric neuronal models for different tasks by making time constant to be learnable [21, 22, 23].79

2

(a) Information transmission between neurons. (b) Potential responses with different thresholds.

Figure 1: Illustration of (a) spiking neuron membrane potential update in LIF model. (b) neuron
responses to the same input when using different threshold values.

One group proposes a network which contains neurons of adaptive thresholds [24], and another80

group makes the potential leaky process to be learnable [25]. Better accuracies and higher network81

robustness are demonstrated with these neuronal model improvements.82

2.3 Dropout83

One critical issue in using backpropagation to update synaptic connections is the gradient vanishing84

and exploding problem especially for deep networks. To reduce the degradation effect, numerous85

optimization techniques such as regularization [3, 6] and normalization [4, 16] have been designed.86

Dropout is one of the widely applied regularization methods to prevent overfitting in deep networks.87

Neurons will be retained randomly with certain probability and form multiple sub-networks for88

training, after which the trained network will be generated based on all these sub-networks. Some89

researchers modify dropout to make it suitable for spatio-temporal data and successfully apply it90

on SNNs. However, as spiking neurons have both spatial and temporal connections, this results in91

sub-models to exhibit high level of inconsistencies in different sub-model runs.92

3 Methods93

3.1 Leaky Integrate-and-Fire Model with Dynamic Thresholding94

Spiking neurons are the basic elements for information processing and transmission via alternating95

the membrane states in SNNs. Many neuronal models have been proposed by neuroscientists to96

simulate biological neurons’ behaviors on computers. Due to the complexity of neuronal dynamics in97

real nervous systems, there exists trade-offs between plausibility and computational cost in computer98

simulation. The Leaky Integrate-and-Fire (LIF) is a simple and pre-eminent mathematical model99

for modelling such neuronal behaviors as potential update, spike emission, and state reset. It can be100

described as101

τ
du(t)

dt
= −u(t) + I(t) (1)

where τ is a time constant which represents how fast a neuron’s potential will decay with time, u(t)102

and I(t) are the membrane potential and integrated presynaptic input at time t, respectively. In this103

work, we set neurons’ initial states and reset potentials to be zero. Fig. 1a illustrates a neuron’s104

behaviors under different presynaptic inputs.105

To suit computer simulation, we need to temporally discretize the LIF model and spiking neurons’106

states. The following numerical representation of a spiking neuron’s potential states can be derived107

from Eq. 1:108

ut,n
i = κut−1,n

i (1− ot−1,n
i) +

∑
j∈l(n−1)

Wijo
t,n−1
j (2)

ot,ni = f(ut,n
i) (3)

where ut,n
i is the membrane potential of postsynaptic neuron i located in layer n at time t, κ is109

the decay factor, ot,n−1
j is the output spike from presynaptic neuron j, and l(n− 1) represents all110

presynaptic neurons connected to target i. f(u) is the step functional activation to determine if the111

target neuron will fire at current timestep, and f(u) = 1 when u ≥ Vth, otherwise f(u) = 0. Eq. 2112

3

describes the membrane potential update and Eq. 3 introduces how spiking neurons emit new spikes.113

In the LIF model, a postsynaptic neuron’s state in the previous timestep and presynaptic inputs from114

preceding layers spatio-temporally govern the target neuron’s behaviors.115

As SNNs need to use backpropagation to update their parameters, we need to circumvent the obstacle116

of nondifferentiable activation function f(u). Hence, we adopt the idea of pseudo derivative and117

designate an auxiliary rectangular function to serve as the approximated gradient:118

f ′(u) =

{
1, |u− Vth| < 0.5

0, otherwise
(4)

By doing so, our SNNs is enhanced with the parameter optimization capability through backpropaga-119

tion.120

Our dynamic thresholding mechanism is based on the LIF model, and it is able to consider the121

diversities among spiking neurons even if they are in the same network. This means a neuron’s122

response depends not only on its internal state but also the threshold level. In order to investigate the123

effects of different threshold values on neuronal behaviors, we assume that two presynaptic neurons124

are connected with one postsynaptic neuron through synapses of weight w1 and w2, respectively.125

When the postsynaptic neuron receives input spikes from preceding layers, its internal state will126

change accordingly based on the weighted input spike trains and the preset thresholds. As illustrated127

in Fig. 1a, two presynaptic neurons are triggered at t = {40, 160} and {200, 240} respectively.128

According to Eq. 2, the weighted input to postsynaptic neuron is I(t) = w1

(
δ(t − 40) + δ(t −129

160)
)
+w2

(
δ(t− 200)+ δ(t− 240)

)
, where δ(t) represents the Dirac delta function. Fig. 1b depicts130

the postsynaptic neurons’ responses to the same input I(t) when using different threshold values,131

showing a trend of decreasing output spike number and lower system sensitivity to the external132

stimulations as threshold value becomes higher. The high sensitivity to the input helps the system to133

track small and instant input signals while low sensitivity can enhance the system’s noise tolerance.134

Thus, considering the effects of various threshold levels on spiking neurons’ behaviors, our dynamic135

thresholding mechanism can achieve optimal sensitivity using the following modified neuron response136

function:137

ot,ni = g(ut,n
i ,Mn) (5)

where Mn is the threshold value for neurons in the nth layer. g(u,m) = f(u−m), and f(x) is the138

same step function with zero valued threshold and follows Eq. 4.139

The main idea of dynamic thresholding is to analytically find the comprehensive gradient of the loss140

function, ∇E(W,M) = [∂E∂W , ∂E
∂M], and then simultaneously update synaptic connections W and141

the neuron’s threshold M until convergence. From Eq. 2, 4, and 5, derivatives of the loss function142
∂E
∂W and ∂E

∂M can be calculated by143

∂E

∂Wn
=

T∑
t=1

∂E

∂ot,n
∂ot,n

∂ut,n

∂ut,n

∂Wn
(6)

∂E

∂Mn
=

T∑
t=1

∂E

∂ot,n
∂ot,n

∂Mn
(7)

The term ∂ot,n

∂Mn in Eq. 7 represents the derivative of a neuron’s output with respect to its threshold.144

It can be shown that ∂ot,n

∂Mn = ∂f(ut,n−Mn)
∂Mn = −f ′(ut,n −Mn), whose value is determined by the145

auxiliary function’s gradient defined in Eq. 4. It can be seen from the above formulae that there is no146

restriction on the threshold value M . If the threshold becomes extremely low or high, a neuron will147

keep firing or stay silent when receiving the input from presynaptic neurons, causing difficulties in148

transmitting information. To ensure threshold values to stay within an appropriate region, we create a149

new parameter k to define M using hyperbolic tangent relation, formulated as M = tanh (k). This150

stabilizes neuronal activity by avoiding having too many or too few neurons to fire due to extreme151

threshold levels. With this, Eq. 7 can be expressed as:152

∂E

∂kn
=

T∑
t=1

∂E

∂ot,n
∂ot,n

∂Mn

∂Mn

∂kn
= −

T∑
t=1

∂E

∂ot,n
f ′(ut,n − tanh (kn)

)
sech2 (kn) (8)

4

With this enhancement, a neuron’s threshold M can be trained iteratively using the backpropagation153

method and takes a value within the range (−1, 1). Furthermore, the gradient of the hyperbolic154

tangent function becomes very small when k becomes infinitely large or small, ensuring that there155

will not be any sudden big change on the threshold value and thus achieves the stabilization effect.156

Although some recent works have treated threshold level as variable to introduce heterogeneity to157

SNN, grim prerequisites such as neuronal states transformation [26] or pre-defined firing count [27]158

are required. Some other STDP-based approaches only work on excitatory neurons [28], leading to159

slow convergence and heavy computational load to individually update every neuron’s threshold.160

Though setting a lower threshold level may have a similar effect as having higher synaptic weights,161

changing threshold values has other benefits, for example, the potential decay curve will not be162

stretched and the SNN will not overly depend on a subset of synapses for optimization. In this work,163

neurons in the same layer share the same threshold to reduce learnable parameters.164

3.2 Input Encoding and Network Architecture165

Since SNNs are inherently suitable for processing event-driven data, spike trains in neuromorphic166

datasets can be directly fed into SNNs without barrier. However, the situation becomes challenging167

for static datasets due to lack of temporal information. Rate coding scheme is widely applied in168

ANN-to-SNN conversion and some recent works [29, 6] aim to encode input into serial spikes169

generated with certain firing probability that is proportional to the original value. One spiking170

neuron can encode maximally T + 1 values into distinguishable spike trains of firing probabilities171

{0, 1
T , . . . , 1} within simulation window T . Therefore, the rate coding scheme suffers long latency172

due to the inevitably long simulation period for maintaining high precision among inputs of a wide173

range. In this work, the first layer serves as the encoding layer that directly receives input data and174

then, converts data into spike signals before transmitting to the second layer. In other words, there is175

no value-to-spike pre-processing step, inputs from dataset can be liberally fed into the network even176

if they are not in spike forms. In this way, we can significantly shorten the simulation window, which177

makes it possible to apply our SNN for real-time analysis.178

DenseNet is proposed in [19] where network layers are densely connected so that data from preceding179

layers can be transmitted to subsequent layers directly through dense connections between neurons.180

In this work, we leverage the idea and build our SNNs with DenseNet structure to retain information181

from degradation caused by the step activation. Our proposed dynamic thresholding method is applied182

to all neurons in the network and the normal dropout in fully-connected layers is replaced by our183

moderate dropout. A detailed structural illustration of our network is shown in Fig. 2.184

3.3 Output Decoding and Lateral Interaction185

Figure 2: Network architecture of the proposed
SNNs. The schematic represents data transmission
in one timestep, Nfc, Ndb, and αi(αdb) are the
number of fully-connected layers, total dense block
number, and layer iterations in each dense block.

In some works, the first firing neuron in the out-186

put layer indicates the predicted result of the187

network. However, as neurons’ states are tem-188

porally discretized in simulation, there exists a189

situation in which more than one output neurons190

will fire together at the same timestep. To avoid191

such a situation, we choose to use a neuron’s po-192

tential value instead of firing state for prediction.193

In this manner, a network will choose the neuron194

with the highest internal state as output even if195

multiple neurons are triggered simultaneously.196

A neuron’s internal state is determined by both197

environmental stimulus and local effects of its198

neighboring neurons. Excitatory and inhibitory199

interactions within the receptive field are termed200

as the lateral interaction property of neurons.201

5

Lateral interaction was first introduced to explain an optical phenomenon that color contrast will202

be exaggerated to form simultaneous contrast by visual systems when two color blocks of slightly203

different gray levels start to connect with each other. Lateral interactions can avoid information204

overload by dampening input from some neurons and enhancing input from others. In this respect, it205

is used to sharpen the image and enhance system noise tolerance capability. In this work, we consider206

the lateral interactions among neurons in fully-connected layers to enhance system robustness and207

plausibility. A neuron’s state is dominated by two components: potential update triggered by previous208

state or preceding neurons, and interaction with its neighboring neurons in the same layer. Membrane209

potential of spiking neurons in fully-connected layers and neuron’s output can be derived from Eq. 2210

and 3 as follows:211

ut,n
i = κut−1,n

i

(
1− f(ut−1,n

i)
)
+

∑
j∈lfc(n−1)

Wijo
t,n−1
j + ot−1,n

rf ·Wrf (9)

ot,n =

{
ut,n, n ∈ lfc
f(ut,n), otherwise

(10)

where the term ot−1,n
rf ·Wrf represents lateral interaction between the target neuron and its surrounding212

neurons, and lfc(n− 1) is a set of neurons connected to the target neuron i in fully-connected layer213

(n − 1). Wrf is a matrix of lateral interaction learnable weights, whose size defines the width of214

the receptive field. As aforementioned, the proposed network uses potential or spike as output in215

different layers, following Eq. 10. By integrating the lateral interaction mechanism, the robustness of216

the network will be ameliorated because the noise effect vanishes when neuron interactions in a larger217

area are considered, especially for neuromorphic datasets that suffer from greater noise disturbances.218

3.4 Moderate Dropout219

Noting that highly deviatory sub-networks generated by dropout will be integrated and scaled, which220

may inhibit the constructed SNN’s performance. In our SNN, the last-layer neurons’ time-averaged221

potentials can be treated as the probabilities of classifying input pattern to each potential class. As222

such, we propose the moderate dropout that aims to minimize inconsistencies between different223

sub-networks’ output probability distributions. The Kullback-Leibler (KL) divergence score is used224

to measure the inconsistence in the output probability distributions of different network runs as225

illustrated in Fig. 3. With P and Q being the averaged probability distributions over the entire226

simulation period on the same probability space, KL divergence is defined as227

DKL(P ∥ Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
(11)

We compare sub-networks’ output distributions and incorporate the divergence into the overall loss228

of the network to minimize the inconsistencies between output distributions. Therefore, the overall229

loss function comprises the loss of actual output distributions against the target labels and the KL230

divergence loss between different distributions output by the same model with moderate dropout.231

It can be observed from Eq. 11 that the KL divergence, depicting the relative entropy of P with respect232

Q, is asymmetric in nature, such that DKL(P ∥ Q) ̸= DKL(Q ∥ P). In this respect, we involve233

both divergences in the network loss calculation. Furthermore, we use one additional parameter γ to234

control the impact of moderate dropout in the overall loss function as follows:235

Eoverall =
1

2
(EP + EQ) + γ

(
DKL(P ∥ Q) +DKL(Q ∥ P)

)
(12)

From the discussion on dropout, it can be seen that the probability p in which neurons are obscured236

from the fully-connected layers are stipulated before training and will be kept fixed throughout237

the training phase when drawing from the Bernoulli distribution. However, this does not take into238

account the membrane potential values of the neurons before deciding to drop from the network,239

leading to possible scenarios where essential neurons with high potential are temporarily eliminated240

from the network. Especially in our SNNs, the potential values are directly used to represent the241

6

neurons’ states in fully-connected layers. The dropping probability of neurons should be accorded242

some flexibility for alteration taking into consideration the neuronal membrane potential values243

so that neurons processing larger membrane values can have smaller dropping probabilities. If a244

neuron i in fully-connected layer n has a membrane value of un
i , and un

i lies in a distribution with245

un
i ∈ (un

min, u
n
max), where un

min and un
max correspond to the minimum and maximum potential246

values of neurons in that layer respectively, we can derive the following equation to transform and247

scale up the potential value un
i and use it to compute the corresponding dropping probability pni .248

pni = pdrop ·
un
max − un

i

un
max − un

mean

(13)

Eq. 13 ensures that a neuron’s transformed dropping probability is inversely proportional to its249

membrane potential and the average dropping probability of all neurons in the same layer equals250

to the drop rate pdrop, which has been defined before training. In this regard, neuron dropping251

probabilities can be altered throughout the training phase, with larger potentials denoting smaller252

probabilities, rather than being preset before training in conventional dropout. With the creation of253

potential-dependent probability tensor, this can be subsequently placed into the Bernoulli distribution254

to generate binary masks for different sub-networks. KL divergence between the different output255

distributions from sub-network runs is incorporated into the loss function according to Eq. 12, with256

the overall objective being to minimize the loss, leading to increased consistencies among different257

runs of the network.258

4 Experiment259

Figure 3: Illustration of KL divergence between
different runs of SNN sub-models. Each row of
frames represents one sub-model’s temporally un-
folded architecture after neuron dropping. P and
Q are averaged sub-model output distributions over
the entire simulation period T .

We evaluate our proposed dynamic thresholding260

and moderate dropout by testing our deep SNNs261

of DenseNet architecture for classification tasks262

using both static and neuromorphic datasets. We263

demonstrate the superiority of our methods in264

terms of inference accuracies and simulation265

timesteps by comparing it with other state-of-266

the-art SNN approaches.267

4.1 Empirical Evaluation268

Due to the simplicity of MNIST, we spe-269

cially create an 8-layer fully-connected SNN270

(in-conv1-pool1-conv2-pool2-conv3-pool3-fc1-271

fc2-out) for this dataset. All the other datasets272

are tested with deep-layer SNNs of DenseNet273

architecture. Details of the DenseNet SNNs we274

build are listed in Tab. 1.275

We implement the proposed methods in our deep276

SNNs and test their accuracies for classification277

tasks on both static MNIST, CIFAR10 datasets, and neuromorphic N-MNIST, DVS-CIFAR10 datasets.278

We set the initial threshold parameter k = 0.5 and moderate dropout impact factor γ = 0.5 for all the279

datasets. Dataset description, network parameters, and setting details are given in Appendix. The280

results we obtained are shown in Tab. 2, it can be seen that our SNNs outperforms other state-of-281

the-art SNNs for all datasets except MNIST. Although our inference accuracy for MNIST is slightly282

lower than [42], our SNN achieves a comparable result with much fewer timesteps needed. This283

makes our proposed SNN suitable for processing real-time data. The number of timesteps used284

in previous works and ours are compared in Tab. 2. It can be seen from the table that our SNNs285

use much fewer timesteps in training and inferencing compared to other SNNs (whether based on286

ANN-to-SNN conversion or backpropagation) and our proposed methods can significantly improve287

7

Table 2: Classification accuracies comparison among proposed methods and state-of-the-art records
on various datasets. Number of timesteps and the highest accuracies achieved are highlighted in
italics (in parentheses) and bold.

Model Method MNIST CIFAR10 N-MNIST DVS-CIFAR10
[30] ANN-to-SNN 98.37% 82.95% - -
[7] ANN-to-SNN - 77.43% - -

[31] ANN-to-SNN - - 95.72% -
[32] ANN-to-SNN - 89.32% - -
[33] ANN-to-SNN 99.10% - - -
[34] ANN-to-SNN 99.44% 88.82% - -
[4] ANN-to-SNN - 91.55% - -

[35] ANN-to-SNN - 93.63% - -
[36] Random Forest - - - 31.00%
[37] SKIM - - 92.87% (360) -
[38] HATS - - - 52.40%
[39] DART - - - 65.78%
[40] Streaming rollout ANN - - - 66.75%
[3] Direct training - - 98.74% (300) -

[15] Hybrid direct training 99.28% (175) - - -
[12] Direct training 99.42% (30) 50.70% (30) 98.78% (30) -
[41] Hybrid direct training 99.49% (400) - 98.88% (500) -
[42] Direct training 99.62% (400) - - -
[10] Direct training - 90.53% (12) 99.53% (8) 60.50% (8)
[16] Direct training - 93.16% (6) - 67.80% (10)
[6] Direct training 99.59% (50) 90.95% (100) 99.09% (100) -

[13] Direct training 99.50% (20) - 99.45% (20) -
[43] Direct training 99.46% (25) - 99.39% (25) -
[44] Direct training - - 96.30% (120) 32.2% (80)
[9] Direct training - - - 70.2% (8)

DTMD Direct training 99.60% (4) 94.19% (4) 99.65% (15) 73.30% (7)

10 30 50 70

Epochs

99.3

99.4

99.5

99.6

A
cc

u
ra

cy

LIF

DT

DTMD

(a) MNIST.

80 160 240 320 400

Epochs

90

91

92

93

94

A
cc

u
ra

cy

LIF

DT

DTMD

(b) CIFAR10.

10 20 35 50 65

Epochs

98.8

99

99.2

99.4

99.6
99.7

A
cc

u
ra

cy

LIF

DT

DTMD

(c) N-MNIST.

30 50 100 150 200 250

Epochs

50

55

60

65

70

73
A

cc
u

ra
cy

LIF

DT

DTMD

(d) DVS-CIFAR10.

Figure 4: Inference accuracies with proposed methods implemented. Moving averages of 5 or 20
epoches are used in (a)/(c) and (b)/(d). Light-color curves are the original data.

the performance of SNNs in many few timesteps. As a result, our proposed SNNs not only have a288

faster respond time but also need less memory space due to reduced network computations.289

4.2 Simulation Study290

Table 1: SNN structural parameters.

Dataset Ndb α1 α2 α3 α4 Nfc

Static 3 12 12 24 - 2
Neuromorphic 4 6 12 24 16 2

In this section, we conduct a series of comprehensive291

simulation studies to evaluate the effects of the pro-292

posed dynamic thresholding and moderate dropout.293

We train SNNs with LIF and dynamic thresholding294

neurons respectively, followed by integrating moder-295

ate dropout. Then, we test and compare the proposed296

SNNs’ inference capabilities. As can be observed from Tab. 3 and Fig. 4, accuracies and convergence297

speed improve after using dynamic thresholding, and are further enhanced with moderate dropout.298

8

80 160 240 320 400

Epochs

89

90

91

92

93

94

A
cc

u
ra

cy

LIF

DT

(a) CIFAR10 with k =
0.5.

20 100 200 300 400

Epochs

70

75

80

85

90

94

A
cc

u
ra

cy

LIF

DT

(b) CIFAR10 with k = 0.

20 50 100 150 200 250

Epochs

35

45

55

65

73

A
cc

u
ra

cy

LIF

DT

(c) DVS-CIFAR10 with
k = 0.5.

20 50 100 150 200 250

Epochs

35

45

55

65

73

A
cc

u
ra

cy

LIF

DT

(d) DVS-CIFAR10 with
k = 0.

Figure 5: Inference accuracies of LIF and dynamic thresholding on different datasets with various
initial thresholds.

We show the change in network inference result during training to evaluate the effect of initial299

threshold value on our network performance. Fig. 5 shows the high robustness of our proposed SNNs300

that comprise dynamic thresholding neurons.301

Table 3: Inference results using proposed methods.

Dataset LIF DT DTMD
MNIST (step = 4) 99.53% 99.57% 99.60%

CIFAR10 (step = 2) 92.88% 93.51% 93.75%
N-MNIST (step = 15) 99.55% 99.58% 99.65%

DVS-CIFAR10 (step = 7) 71.30% 72.30% 73.30%

To analyze how thresholds change during302

network convergence, in Fig. 6, we use an303

8-layer fully-connected SNN with 4 differ-304

ent initial thresholds to classify CIFAR10305

dataset and plot the threshold update curves306

of neurons in different layers during train-307

ing. It can be seen from the figure that308

although different initial threshold values are used, the neurons’ threshold curves tend to converge309

after training with dynamic thresholding. This shows the robustness of SNNs with dynamic thresh-310

olding implemented to the initial threshold setting. Additionally, it can be seen that threshold values311

increase as the network goes deeper, indicating that information can pass through shallow-layer312

neurons to maintain sufficient data flow and be filtered by deep-layer neurons to extract useful313

information for classification.314

0 50 100 150 200 250

Epochs

0.2

0.4

0.6

0.7

A
cc

u
ra

cy

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 k = 0.7

 k = 0.5

 k = 0.35

 k = 0.1

Figure 6: Thresholds change of different layers during network training with different initial threshold
parameter k.

5 Conclusion315

In this work, we propose dynamic thresholding to endow spiking neurons with the ability of self-316

optimizing their threshold values during training and moderate dropout to enhance model stability by317

minimizing inconsistencies between output probability distributions in different runs. We construct318

deep SNNs based on DenseNet architecture and incorporate the aforementioned methods and obtain-319

ing promising results. Our proposed SNNs achieve higher accuracies for almost all the test datasets320

with significantly fewer timesteps required, which reflect their excellent classification capability and321

low system latency. We demonstrate higher robustness and faster convergence to the initial threshold322

for the dynamic thresholding mechanism compared to using normal LIF neurons. Last but not least,323

we show that SNNs with dynamic thresholding neurons have higher thresholds in deep layers to324

constraint the number of firing neurons, which helps to reduce the amount of computation.325

References326

[1] Deco, G., J. Cruzat, M. L. Kringelbach. Brain songs framework used for discovering the relevant timescale327

of the human brain. Nature communications, 10(1):1–13, 2019.328

9

[2] Wang, S., T. H. Cheng, M. H. Lim. A hierarchical taxonomic survey of spiking neural networks. Memetic329

Computing, pages 1–20, 2022.330

[3] Lee, J. H., T. Delbruck, M. Pfeiffer. Training deep spiking neural networks using backpropagation.331

Frontiers in neuroscience, 10:508, 2016.332

[4] Sengupta, A., Y. Ye, R. Wang, et al. Going deeper in spiking neural networks: VGG and residual333

architectures. Frontiers in neuroscience, 13:95, 2019.334

[5] Srivastava, N., G. Hinton, A. Krizhevsky, et al. Dropout: A simple way to prevent neural networks from335

overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.336

[6] Lee, C., S. S. Sarwar, P. Panda, et al. Enabling spike-based backpropagation for training deep neural337

network architectures. Frontiers in neuroscience, page 119, 2020.338

[7] Cao, Y., Y. Chen, D. Khosla. Spiking deep convolutional neural networks for energy-efficient object339

recognition. International Journal of Computer Vision, 113(1):54–66, 2015.340

[8] Yu, Q., C. Ma, S. Song, et al. Constructing accurate and efficient deep spiking neural networks with341

double-threshold and augmented schemes. IEEE Transactions on Neural Networks and Learning Systems,342

2021.343

[9] Fang, W., Z. Yu, Y. Chen, et al. Deep residual learning in spiking neural networks. Advances in Neural344

Information Processing Systems, 34, 2021.345

[10] Wu, Y., L. Deng, G. Li, et al. Direct training for spiking neural networks: Faster, larger, better. In346

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pages 1311–1318. 2019.347

[11] Thiele, J. C., O. Bichler, A. Dupret. Spikegrad: An ann-equivalent computation model for implementing348

backpropagation with spikes. arXiv preprint arXiv:1906.00851, 2019.349

[12] Wu, Y., L. Deng, G. Li, et al. Spatio-temporal backpropagation for training high-performance spiking350

neural networks. Frontiers in neuroscience, 12:331, 2018.351

[13] Cheng, X., Y. Hao, J. Xu, et al. LISNN: Improving spiking neural networks with lateral interactions for352

robust object recognition. In IJCAI, pages 1519–1525. 2020.353

[14] Perez-Nieves, N., D. Goodman. Sparse spiking gradient descent. Advances in Neural Information354

Processing Systems, 34, 2021.355

[15] Lee, C., P. Panda, G. Srinivasan, et al. Training deep spiking convolutional neural networks with STDP-356

based unsupervised pre-training followed by supervised fine-tuning. Frontiers in neuroscience, 12:435,357

2018.358

[16] Zheng, H., Y. Wu, L. Deng, et al. Going deeper with directly-trained larger spiking neural networks. arXiv359

preprint arXiv:2011.05280, 2020.360

[17] Simonyan, K., A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv361

preprint arXiv:1409.1556, 2014.362

[18] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In Proceedings of the IEEE363

conference on computer vision and pattern recognition, pages 770–778. 2016.364

[19] Huang, G., Z. Liu, L. Van Der Maaten, et al. Densely connected convolutional networks. In Proceedings365

of the IEEE conference on computer vision and pattern recognition, pages 4700–4708. 2017.366

[20] She, X., S. Dash, D. Kim, et al. A heterogeneous spiking neural network for unsupervised learning of367

spatiotemporal patterns. Frontiers in Neuroscience, 14:1406, 2021.368

[21] Fang, W., Z. Yu, Y. Chen, et al. Incorporating learnable membrane time constant to enhance learning of369

spiking neural networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,370

pages 2661–2671. 2021.371

[22] Zimmer, R., T. Pellegrini, S. F. Singh, et al. Technical report: Supervised training of convolutional spiking372

neural networks with PyTorch. arXiv preprint arXiv:1911.10124, 2019.373

[23] Yin, B., F. Corradi, S. M. Bohté. Effective and efficient computation with multiple-timescale spiking374

recurrent neural networks. In International Conference on Neuromorphic Systems 2020, pages 1–8. 2020.375

10

[24] Bellec, G., D. Salaj, A. Subramoney, et al. Long short-term memory and learning-to-learn in networks of376

spiking neurons. Advances in neural information processing systems, 31, 2018.377

[25] Rathi, N., K. Roy. DIET-SNN: Direct input encoding with leakage and threshold optimization in deep378

spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.379

[26] Meng, Q., M. Xiao, S. Yan, et al. Training High-Performance Low-Latency Spiking Neural Networks by380

Differentiation on Spike Representation. In Proceedings of the IEEE/CVF Conference on Computer Vision381

and Pattern Recognition, pages 12444–12453. 2022.382

[27] Kim, T., S. Hu, J. Kim, et al. Spiking neural network (SNN) with memristor synapses having non-linear383

weight update. Frontiers in computational neuroscience, 15:646125, 2021.384

[28] Hao, Y., X. Huang, M. Dong, et al. A biologically plausible supervised learning method for spiking neural385

networks using the symmetric STDP rule. Neural Networks, 121:387–395, 2020.386

[29] Yu, Q., H. Tang, K. C. Tan, et al. A brain-inspired spiking neural network model with temporal encoding387

and learning. Neurocomputing, 138:3–13, 2014.388

[30] Hunsberger, E., C. Eliasmith. Spiking deep networks with LIF neurons. arXiv preprint arXiv:1510.08829,389

2015.390

[31] Neil, D., S.-C. Liu. Effective sensor fusion with event-based sensors and deep network architectures. In391

2016 IEEE International Symposium on Circuits and Systems (ISCAS), pages 2282–2285. IEEE, 2016.392

[32] Esser, S. K., P. A. Merolla, J. V. Arthur, et al. Convolutional networks for fast, energy-efficient neuromor-393

phic computing. Proceedings of the national academy of sciences, 113(41):11441–11446, 2016.394

[33] Diehl, P. U., G. Zarrella, A. Cassidy, et al. Conversion of artificial recurrent neural networks to spiking395

neural networks for low-power neuromorphic hardware. In 2016 IEEE International Conference on396

Rebooting Computing (ICRC), pages 1–8. IEEE, 2016.397

[34] Rueckauer, B., I.-A. Lungu, Y. Hu, et al. Conversion of continuous-valued deep networks to efficient398

event-driven networks for image classification. Frontiers in neuroscience, 11:682, 2017.399

[35] Han, B., G. Srinivasan, K. Roy. RMP-SNN: Residual membrane potential neuron for enabling deeper400

high-accuracy and low-latency spiking neural network. In Proceedings of the IEEE/CVF Conference on401

Computer Vision and Pattern Recognition, pages 13558–13567. 2020.402

[36] Orchard, G., C. Meyer, R. Etienne-Cummings, et al. HFirst: A temporal approach to object recognition.403

IEEE transactions on pattern analysis and machine intelligence, 37(10):2028–2040, 2015.404

[37] Cohen, G. K., G. Orchard, S.-H. Leng, et al. Skimming digits: Neuromorphic classification of spike-405

encoded images. Frontiers in neuroscience, 10:184, 2016.406

[38] Sironi, A., M. Brambilla, N. Bourdis, et al. HATS: Histograms of averaged time surfaces for robust407

event-based object classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern408

Recognition, pages 1731–1740. 2018.409

[39] Ramesh, B., H. Yang, G. Orchard, et al. DART: Distribution aware retinal transform for event-based410

cameras. IEEE transactions on pattern analysis and machine intelligence, 42(11):2767–2780, 2019.411

[40] Kugele, A., T. Pfeil, M. Pfeiffer, et al. Efficient processing of spatio-temporal data streams with spiking412

neural networks. Frontiers in Neuroscience, 14:439, 2020.413

[41] Jin, Y., W. Zhang, P. Li. Hybrid macro/micro level backpropagation for training deep spiking neural414

networks. arXiv preprint arXiv:1805.07866, 2018.415

[42] Zhang, W., P. Li. Spike-train level backpropagation for training deep recurrent spiking neural networks.416

Advances in neural information processing systems, 32, 2019.417

[43] Fang, H., A. Shrestha, Z. Zhao, et al. Exploiting neuron and synapse filter dynamics in spatial temporal418

learning of deep spiking neural network. arXiv preprint arXiv:2003.02944, 2020.419

[44] Liu, Q., H. Ruan, D. Xing, et al. Effective AER object classification using segmented probability-420

maximization learning in spiking neural networks. In Proceedings of the AAAI Conference on Artificial421

Intelligence, vol. 34, pages 1308–1315. 2020.422

11

Checklist423

1. For all authors...424

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s425

contributions and scope? [Yes]426

(b) Did you describe the limitations of your work? [Yes] Our methods will induce a bit427

more computational load, please see Appendix A.5428

(c) Did you discuss any potential negative societal impacts of your work? [No] There is429

no potential negative societal impacts of this work430

(d) Have you read the ethics review guidelines and ensured that your paper conforms to431

them? [Yes]432

2. If you are including theoretical results...433

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.434

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3.1, 3.3,435

and 3.4.436

3. If you ran experiments...437

(a) Did you include the code, data, and instructions needed to reproduce the main experi-438

mental results (either in the supplemental material or as a URL)? [Yes] See the pseudo439

code provided in Appendix A.1.440

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they441

were chosen)? [Yes] Hyperparameters settings are provided in Appendix A.2.5, A.2.6,442

and A.2.7. Full details can be found in code.443

(c) Did you report error bars (e.g., with respect to the random seed after running experi-444

ments multiple times)? [Yes] We ran experiments for multiple times and please see445

Tab. 5 in Appendix A.3 for details.446

(d) Did you include the total amount of compute and the type of resources used (e.g., type447

of GPUs, internal cluster, or cloud provider)? [Yes] Number and type of GPUs used in448

this work are listed in Tab. 4 in Appendix A.2.8.449

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...450

(a) If your work uses existing assets, did you cite the creators? [N/A]451

(b) Did you mention the license of the assets? [N/A]452

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]453

454

(d) Did you discuss whether and how consent was obtained from people whose data you’re455

using/curating? [N/A]456

(e) Did you discuss whether the data you are using/curating contains personally identifiable457

information or offensive content? [N/A]458

5. If you used crowdsourcing or conducted research with human subjects...459

(a) Did you include the full text of instructions given to participants and screenshots, if460

applicable? [N/A]461

(b) Did you describe any potential participant risks, with links to Institutional Review462

Board (IRB) approvals, if applicable? [N/A]463

(c) Did you include the estimated hourly wage paid to participants and the total amount464

spent on participant compensation? [N/A]465

12

	Introduction
	Related Work
	ANN-to-SNN Conversion
	Direct-Trained Deep SNNs and Neuronal Model
	Dropout

	Methods
	Leaky Integrate-and-Fire Model with Dynamic Thresholding
	Input Encoding and Network Architecture
	Output Decoding and Lateral Interaction
	Moderate Dropout

	Experiment
	Empirical Evaluation
	Simulation Study

	Conclusion

