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Abstract

Recent work in scientific machine learning has developed physics-informed neural1

network (PINN) models by incorporating domain knowledge as soft constraints2

on the loss function. We analyze several distinct situations of widespread physical3

interest including learning differential equations with diffusion or convection4

operators. We show that the PINN method only works for relatively easy parameter5

regimes (i.e. with low convection/diffusion coefficients, and/or small forcing terms),6

and that it fails to learn the relevant physical phenomena for even moderately more7

challenging regimes. In each case, the reason can be attributed to the implicit use8

of the Lagrange dual form of the optimization (which amounts to replacing the9

constrained optimization problem with a regularized unconstrained problem) and10

the fact that the regularization term in PINN models involves derivatives (i.e., it is11

a differential operator, and can introduce a number of subtle problems including12

making the problem ill-conditioned). We show that this makes the loss landscape13

difficult to optimize. Finally, we show that these issues are not necessarily caused14

by a lack of expressivity in the NN architecture. Instead, we discuss approaches15

such as warm starting the initialization and/or posing the problem as a sequence-to-16

sequence learning task may actually make the problem easier to learn rather than17

learning to predict the entire space-time at once.18

1 Introduction19

Partial differential equations (PDEs) describing real-world physical phenomena are conventionally20

solved by using numerical methods that iteratively update and improve a candidate solution until21

convergence. These PDEs are often derived by starting from governing first principles (e.g., con-22

servation of mass, energy, etc). For most applications, it is not possible to find analytical solutions23

to these PDEs, and as a result different numerical methods (e.g., the finite element method (FEM)24

[31], pseudo-spectral methods [6], etc.) are used to compute the solution. However, often times these25

PDEs are quite complex, and it is challenging to solve them numerically even on a supercomputer26

(e.g., turbulence simulations).27

The need for computational efficiency to solve such problems—coupled with the increasing quantities28

of data available in many scientific applications—has resulted in an interest in deep learning (DL)29

approaches to replace or augment the traditional numerical PDE solvers. As a result, the area of30

scientific machine learning (SciML), which aims to couple traditional scientific mechanistic modeling31

(differential equations) with DL has emerged. In this vein, there have been a number of DL approaches32

to incorporate scientific knowledge into such problems while keeping the automatic, data-driven33

estimates of the solution [11, 12, 22].34

While these SciML methods perform well in certain cases, we explore these models for several,35

broader scientific situations. For example, we look at scenarios such as forced convection which36
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describes the motion generated by an external source such as pumps, fans, or suction devices, and37

high viscosity diffusion which is present in many chemical and bioengineering applications including38

modeling polymeric solutions and microfluidic flow.39

In the case of scientific modeling, many problems fit the following formulation,40

F(u(x, t)) = 0, x ∈ Ω ⊂ Rd, t ∈ [0, T ], (1)

where F can be a differential equation, and u(x, t) is the state variable (i.e., parameter of interest).41

In the context of PDEs, F can be a parabolic, hyperbolic, or elliptic PDE. Quintessential examples42

of F include the diffusion equation (a parabolic PDE), where u(x, t) could be the temperature43

distribution over space and time, the convection equation (a hyperbolic PDE), where u(x, t) could be44

fluid movement (such as air or some liquid) over space and time, or Laplace’s equation (an elliptic45

PDE) where u(x) could model a steady-state diffusion equation (in the limit as t→∞).46

One possible approach to solve such a system is to obtain a large dataset u under different conditions47

and then train a neural network (NN) to directly predict the solution. Even with a large training48

dataset, it does not guarantee that the NN would obey the conservation laws or the governing equations49

of Eq. 1. In SciML problems, the constraints on the system matter, as they correspond to physical50

mechanisms of the system. For example, if energy is only approximately constrained, then the system51

being simulated may behave qualitatively differently or even fail to reach an answer.52

Thus, another possibility is to apply Eq. 1 as a hard constraint when training the NN on the data.53

This can be formulated as the following constrained optimization problem, where L(u) is the data-fit54

term (such as the initial condition), and F is a constraint on the residual of the PDE system under55

consideration (i.e. the “physics” knowledge is the equation itself),56

min
θ
L(u) = Lu0

+ Lub
, s.t. F(u) = 0, (2)

where Lu0
and Lub

measure the misfit to initial and boundary conditions (which are pre-57

specified/given as input data), and θ denotes the parameters of a NN model M that gets (x, t)58

(and possibly other inputs) and outputs u(x, t). The goal is to train this NN model to minimize the59

loss in Eq. 2 to best match the initial and boundary conditions and also satisfy the PDE constraint.60

Also note that in general, L and F are potentially non-linear and non-convex.61

It is often very difficult to directly solve Eq. 2 withF(u) as a hard constraint. However, the constrained62

optimization problem can be relaxed into an unconstrained one by imposing “soft constraints” (which63

can be viewed as a form of regularization) on the outputs of the NN that effectively aim to penalize64

the violations of F(u) for some λF ≥ 0:65

min
θ
L(u) + λFF(u), (3)

where λF is a regularization parameter. Here, the NN learns to minimize the loss function that66

includes both the objective and the constraint. This formulation has become one of the most common67

in physics-constrained machine learning, and in particular, physics-informed neural networks (PINNs)68

[18] is one of the most popular of such approaches.69

Our main contributions are as follows:70

• We first start by testing the physics-informed neural network (PINN) on simple, but widely71

used, problems of diffusion and convection. We find that the PINN fails to learn the relevant72

physics even for cases with simple analytical solutions. In particular, we find that the PINN73

achieves very high errors of almost 100% for PDEs with relatively large (but physically74

relevant) diffusion, or convection coefficients. The PINN also achieves high errors for75

strongly forced (but again, physically relevant) non-homogeneous PDEs (see § 3).76

• We analyze the PINN loss landscape and find that adding the PDE-based soft constraint77

makes it very complex and hard to optimize, especially for cases with large diffusion and78

convection coefficients. We also study how the loss landscape changes as the regularization79

parameter is changed. While we find that reducing the regularization parameter helps80

alleviate the complexity of the loss landscape, it does not solve the problem (see § 481

for details).82
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• We show that the problem arising from the PINN’s failures is not due to the limited capacity83

of the NN architecture. We do so by showing how a simple reinitialization technique to84

warm start the NN weights can resolve the failures for simple cases, which proves that85

the NN has the capacity to find a good solution. We argue that the failure to do so is due86

to the optimization difficulty associated with adding the PINN’s soft PDE constraint as87

regularization (see § 5 for details).88

• We show that changing the problem paradigm from learning to predict the entire space-time89

to a sequence-to-sequence problem can reduce the PINN error, without any change to the90

NN architecture (see § 5 for details).91

We note that this approach of incorporating physics-based regularization, where the regularization92

constraint, LF , corresponds to a differential operator, is very different than incorporating much93

simpler norm-based regularization (such as L1 or L2 regularization). Specifically, simple norm-based94

regularization is convex in nature. As a result, the loss function is convex. This means that the95

general formulation (in our case, f(x) is L(u) and g(x) is F(u)) of minx f(x) s.t. g(x) ≤ α and96

minx f(x) + λg(x) are equivalent in the sense that given λ > 0, there exists a α > 0 such that the97

optimal solutions to both the problems coincide.98

In contrast, LF is non-trivially structured. Therefore, when the loss function is non-convex, there is no99

such guarantee of equivalency between the two expressions. For a fixed α > 0, there may be solutions100

W ∗α of minx f(x) s.t. g(x) ≤ α for which there exists no λ > 0 such that W ∗α = W ∗λ [1]. This is101

problematic becauseLF corresponds to actual physical quantities, and there is an important distinction102

between satisfying the constraint exactly versus approximately (the soft constraint approach only103

doing the latter).104

As we will show, the procedure of training a PINN can lead to infeasible outputs for a number of105

common scientific use cases. The reasons we identify—having to do with hard versus soft constraints106

and using convex norms versus differential operators as regularization terms—are central to both ML107

and PDEs; and to deliver on the promise of SciML, it is important to couple them appropriately.108

2 Related work109

Deep learning and PDEs. DL approaches for PDE problems have been increasing rapidly in110

recent years [8, 13]. A number of tools and methodologies now exist to solve scientific problems111

via combining DL and domain insights [14, 17, 18, 26]. As mentioned earlier, a popular approach to112

combine DL and physical knowledge is to include aspects of the PDE term as part of the optimization113

process via regularization. A notable aspect of this approach is that the NN is only trained on data114

that comes from the governing equation(s) itself. This has garnered interest and shown successful115

results in a wide variety of problems and applications [2, 10, 19–21, 30].116

However, there have also been issues noticed with this formulation. For example, it did not work117

well for the stiff ordinary differential equations (ODEs) describing chemical kinetics [9]. Wang et al.118

attributed some problems found with PINNs to imbalanced back-propagated gradients in the loss119

function during training and proposed a learning-rate annealing scheme to mitigate some of these120

issues [23]. They also looked at the PINN model in the context of neural tangent kernels (i.e. towards121

the infinite width limit) to analyze the convergence [24, 25]. They found some cases where the model122

failed (such as if the target function exhibits “high frequency features”) and showed some preliminary123

solutions via the lens of the neural tangent kernel.124

Physical priors and constraints in NNs. Imposing physical priors and constraints on NN systems125

is common in scientific ML problems, as a way to try to enforce a relevant property of interest.126

Some approaches have focused on embedding specialized physical constraints into NNs, such as127

conservation of energy or momentum [3, 7]. While methods focusing on constraining the output of the128

NN are more common, it is difficult to exactly enforce such constraints in DL settings. Previous work129

has tried to impose hard constraints in DL (both within the context of scientific ML and otherwise)130

[4, 15, 16, 27], but this can be challenging.131
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3 Possible failure modes for physics-informed neural networks132

In this section, we highlight several examples where the physics-informed neural network formulation133

defined in Eq. 3 does not predict the solution well. We demonstrate this with two different types of134

simple, canonical PDE systems (for which we have an analytical solution), convection ( § 3.1) and135

diffusion ( § 3.2). While the PINN models work for easier parameter regimes (homogeneous PDEs136

with low convection or diffusion coefficients), we demonstrate that they fail to learn the relevant137

physical phenomena in the harder parameter regimes (which are relevant for a number of scientific138

problems) that deviate from the “easy” ones. As we see, while adding the physical constraint as a soft139

regularization may be easier to deploy and optimize with existing unconstrained optimization methods,140

it does come with trade-offs, including that in many cases the optimization problem becomes much141

more difficult to solve. Note, however, that getting a “bad” solution doesn’t mean the optimization142

problem was hard, and one can still get a “good” solution even if the optimization is hard.143

Experiment setup. We consider both homogeneous and non-homogeneous PDEs and vary the144

convection and diffusion coefficients. For each problem, we aim to minimize the loss function in Eq. 3.145

We use a 4-layer fully-connected NN with 50 neurons per layer, a hyperbolic tangent activation146

function, and randomly sample collocation points (x, t) on the domain. We train this network using147

the L-BFGS optimizer and sweep over learning rates from 1e−4 to 2.0. We run the models at least148

ten times with different preset random seeds and average the relative and absolute errors in u(x, t)149

over all trials. We list the error bars (standard deviations) in the Appendix ( § C) for all results.150

In § 3.1.1 and § 3.2.1, the systems have periodic boundary conditions. We enforce this through an151

extra term in the loss function that takes the difference between the predicted NN solution at each152

boundary. In § 3.1.2 and § 3.2.2, the initial and boundary terms are included in the same loss term,153

targeting the exact u value at those points.154

3.1 Learning convection155

We consider a one-dimensional convection equation, which is commonly used to model transport156

phenomena and is a standard example of a hyperbolic PDE:157

∂u

∂t
+ β

∂u

∂x
= q, x ∈ Ω, t ∈ [0, T ] (4)

u(x, 0) = h(x) x ∈ Ω.

Here, β is the convection coefficient, and h(x) is the initial condition. This problem has a simple158

analytical solution for constant β and period boundary conditions as:159

uanalytical(x, t) = F−1
(
F (h(x))e−iβkt

)
, (5)

where F is the Fourier transform and i =
√
−1. The general loss function for this problem is,160

L(θ) =
1

Nu

Nu∑
i=1

(
(û(θ, xi0, 0)− ui0)2

)
+

1

Nf

Nf∑
i=1

λi

(∂û(θ, xif , t
i
f )

∂t
+ β

∂û(θ, xif , t
i
f )

∂x
− q
)2

+LB,

(6)
where û =M(θ, x, t) is the output of the NN, and LB is the boundary loss. For periodic boundary161

conditions with Ω = [0, 2π) (as in § 3.1.1), this loss is:162

LB =
1

Nb

Nb∑
i=1

(
û(θ, 0, t)− û(θ, 0, 2π, t)

)2
(7)

3.1.1 Evaluating non-homogeneous (forced) PDEs for different speeds of propagation163

First, we consider the simplest case for Eq. 4, when the forcing function q is a constant. When q is164

non-zero, it acts as a forcing term, with the following simple initial and boundary conditions:165

u(x, 0) = sin(x),

u(0, t) = u(2π, t).
(8)
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Figure 1: Relative (left) and absolute (right) error for predicted solutions of u(x, t) against q, the forcing
term. Absolute error is on the log scale. Each line represents a value of β. The general trend is that 1) as q,
the forcing, is increased, the prediction error also increases and 2) the model does especially poorly at
high β, where the error is high even with no forcing.

We apply the PINN’s soft regularization to this problem and optimize the loss function in Eq. 6. After166

training, we measure the relative error between PINN’s predicted solution and the analytical solution167

and report it in Fig. 1. As one can see, the PINN model runs into two possible failure modes: 1) when168

q is large (forced convection), regardless of β, and 2) when β is large; in particular, the relative error169

is very high (almost 100%) when β = 10.0 and q = 0, i.e. in a situation with no forcing. Figure 2170

shows that in the latter case, the predicted solution predicts something close to zero (very different171

from what it should predict) past a certain time.172

3.1.2 Convection with an exact solution that does explicitly not depend on β173

In this section, we test another case where the solution does not explicitly depend on the convection174

coefficient. This eliminates the variability of large β affecting the solution (as we saw previously,175

large β was one of the harder regimes to learn), as now we learn the same solution for each value of176

β. We do this by imposing the following initial and boundary conditions:177

u(x, 0) = sin(πx),

u(−1, t) = 0.
(9)

By setting the forcing term to be q = −e−tsin(πx) + βπe−tcos(πx), the analytical solution will be:178

u(x, t) = sin(πx)e−t, (10)

which implies that the solution does not explicitly depend on β, and that β only affects the PDE179

residual term (i.e., LF ).180

Figure 3 shows the error after training as we vary β. Interestingly, the error still increases, even181

though the solution is not explicitly dependent on β.182
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Figure 2: Left: Heatmap of the exact solution to the 1D convection equation, Eq. 4, when β = 10.0 and
q = 0 (no forcing). Right: Physics-informed NN predicted solution: the network has difficulty predicting
the solution past a certain timestep. The average relative u error across all trials is 0.82.
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Figure 3: Relative (left) and absolute (right) error for predicted solutions of u(x, t) against β, the speed
of propagation, where u(x, t) = sin(πx)e−t. This time, the solution does not explicitly depend on β: the
high errors as β increases come from the regularization term. Error sharply increases when β > 1.0.

3.2 Learning diffusion183

We next consider the one-dimensional diffusion equation, which models how a quantity (of mass,184

heat, etc) diffuses through a given region. It is a prototypical example of a parabolic PDE; and it is an185

overarching equation in science and engineering. It is:186

∂u

∂t
− ν ∂

2u

∂x2
= q, x ∈ Ω, t ∈ (0, T ] (11)

u(x, 0) = h(x) x ∈ Ω.

Here, ν (ν > 0) is a constant representing viscosity, which can be thought of as a system’s “resistance”187

to deformation, and h(x) is the initial condition. Similar to the convection problem, this diffusion188

problem has a simple analytical solution. For constant ν and periodic boundary conditions, it is:189

uanalytical(x, t) = F−1
(
F (h(x))eiνkt

)
, (12)

The general loss function for this problem is,190

L(θ) =
1

Nu

Nu∑
i=1

(
(û(θ, xi0, 0)−ui0)2

)
+

1

Nf

Nf∑
i=1

λi

(∂û(θ, xif , t
i
f )

∂t
− ν

∂2û(θ, xif , t
i
f )

∂x2
− q
)2

+LB.

(13)

Similar to before, periodic boundary conditions can be enforced by an extra term in the loss (Eq. 7).191

3.2.1 Evaluating non-homogeneous (forced) PDEs for different viscosity192

We look at a simple case where solution does not depend on ν at all. We assume the following initial193

and boundary conditions,194

u(x, 0) = sin(x),

u(0, t) = u(2π, t).
(14)

We look at how well the NN predicts the solution for varying values of ν and q. Once again, as Fig. A.1195

shows, we see that the NN formulation has some possible failure modes including 1) increasing q196

increases error (when ν is also large, we could classify this is a stiff problem) and 2) high ν does197

poorly under all conditions (including when q is 0). Fig. 4 shows that in the latter case, the network198

largely mispredicts further timesteps and is also not able to capture the symmetry of the system.199

3.2.2 Diffusion with an exact solution that does not explicitly depend on ν200

As we did with the convection equation, we test another case where the solution does not depend on201

the viscosity coefficient at all, by imposing the following initial and boundary conditions:202

u(x, 0) = sin(πx),

u(−1, t) = u(1, t) = 0.
(15)
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Figure 4: Left: Heatmap of the exact solution to 1D diffusion equation, Eq. 11, when ν = 10.0 and q = 0.
Right: Physics-informed NN predicted solution. Note that the NN is not able to capture the symmetry of
the system. The average relative u error across all trials is 0.98.

By setting the forcing term to be q = −e−t sin(πx) + νπ2e−t sin(πx), the analytical solution is:203

u(x, t) = sin(πx)e−t. (16)

The solution does not explicitly depend on ν, i.e., ν is only present in the PDE residual term via q.204

We look at how the error varies as a function of different ν. It is clear from Fig. A.2 that once ν is205

greater than 0.1, the error starts to sharply increase.206

4 Diagnosing possible failure modes for physics-informed NNs207

As discussed above, PINN can result in high errors even for simple physics constraints. Here, we208

demonstrate that the underlying reasons for this have to do with the subtle problems introduced209

through the PDE-based soft constraint of LF which makes the loss landscape very difficult to210

optimize.211

4.1 Changing loss landscapes with respect to the loss or physical parameters212

Here, we analyze loss landscape changes for different regimes for the diffusion problem in § 3.2 and213

show that adding the soft constraint regularization may actually make the problem harder to optimize214

(see § D.1 for the corresponding convection results). We plot the loss landscape by perturbing the215

(trained) model across the first two dominant Hessian eigenvectors and computing the corresponding216

loss values. This tends to be more informative than perturbing the model parameters in random217

directions [28, 29].218

Figure 5 shows the loss landscape for the diffusion problem discussed in § 3.2.2, for different diffusion219

coefficients ν. Note that the analytical solution for this problem does not depend on ν ( Eq. 16).220

Interestingly, the loss landscape at a relatively low ν = 0.1 is rather smooth, but increasing ν further221

results in a complex and non-symmetric loss landscape. It is also evident that the optimizer has gotten222
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stuck in a local minima with a very high loss function for large ν values. This clearly shows that223

adding the PDE soft term results in not being able to add enough regularization to the optimization224

loss landscape. We also observe a similar behavior for the diffusion problem in § 3.2.1 (shown in225

§ D.2), and also for the convection problem in § 3.1.1 (shown in § D.3).226

One might perhaps argue that the amount of soft constraint added needs to be adjusted by changing227

its weight (i.e. the λ parameter in Eq. 3) [23]. However, we find that while tuning λ is helpful, it228

cannot resolve the problem, as shown in Fig. D.1. Interestingly, we observe that for small values229

of the regularization parameter, the relative/absolute prediction error is reduced in comparison to230

no PINN regularization. However, note that as the regularization parameter is increased, the loss231

landscape becomes increasingly more complex and harder to optimize (see the z-axis scale).232

Ill-conditioned regularization: Taking a step back, the behaviour that we are observing should233

not be surprising as the PDE based regularization operator (i.e., LF term) in the PINN is in fact234

ill-conditioned, which leads to unstable numerical behaviour. It is easy to show that the condition235

number for the regularization operator for the diffusion problem is O(νN2)2, where N is the grid236

size, and the square comes from the L2 loss term (see § E). Similarly, the condition number for the237

convection problem scales as O(βN)2 which is still quite high. As such, it is not surprising that this238

ill-conditioned behaviour would lead to instability which can manifest itself in large gradients, and/or239

poor convergence behaviour that was also reported in [23]. This also explains why in the original240

PINN work the NN was able to learn the physics, as a very small diffusion coefficient of ν = 0.003241

was used for learning Burger’s equation [18]. Future work should consider preconditioning the242

regularization operator and/or consider other penalty functions with a better condition number.243

As we see, adding the PDE regularization term as a soft constraint can introduce a number of244

subtle problems. Importantly, note that we do not observe these behaviors with simple norm-based245

regularization methods, such as ridge regression. Additionally, this is an area where the combination of246

a non-linear NN and PDE regularization can actually make the problem more challenging to optimize.247

5 Expressivity versus optimization difficulty248

In this section, we explore addressing some of the issues that we observed in the previous sections.249

One important counter argument could be that the NN architecture used in our experiments does not250

have enough expressivity/capacity to solve for high convection/diffusion coefficient cases in § 3.1.2251

and § 3.2.2. However, we provide two counter arguments. First, we show that the NNs that we252

considered in the previous section do have the capacity to minimize the loss function to a low253

loss value in § 5.1. Second, we show that changing the paradigm of having the NN output all the254

state-space can make the problem much harder. Instead, we argue that in some cases one may get255

much better performance (by to an order of magnitude better accuracy) by training the NN to predict256

one time step at a time in § 5.2.257

5.1 Does the NN have enough capacity?258

As mentioned above, one possible argument for the failure modes shown in § 3 could be that the259

NN does not have enough capacity. Here, we show that this is not necessarily the underlying issue260

(at least for the experiments that we considered). To illustrate this, we devise a simple method to261

warmup start the NN training by finding good initialization for the weights. To do so, we first solve262

the problem with relatively small coefficients (for either convection/diffusion). Note that from the263

previous experiments in § 3.1.2 and § 3.2.2, we observed that the PINN can achieve good accuracy264

for these cases. As such, we use the weights corresponding to this small coefficient case, to warm265

start the training for the larger coefficient experiments. Interestingly, the results show that using266

this warm start re-initialization does lead to very low errors, irrespective of the convection/diffusion267

coefficient as illustrated in Fig. 6. This clearly illustrates that the NN does have the capacity to learn268

this problem, but that the corresponding loss landscape becomes very hard to optimize (which is in269

line with the results in § 4.1).270

5.2 Sequence-to-sequence learning vs learning the entire space-time solution271

Another subtle issue in the PINN approach of [18] is that the NN is trained to learn to predict the272

entire space-time at once. That is, the NN has to predict the state variable u for all locations and273
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Figure 6: Convection (left) from § 3.1.2 and diffusion (right) from § 3.2.2 (from § 3.1.2 and § 3.2.2
respectively) relative errors for predicted solutions of u(x, t) for different values β and ν respectively. We
use the weights corresponding to a “good” model (i.e., a low β or low ν model that exhibits low error)
to warm start the training for the larger coefficient experiments. The model is now able to find low error
solutions for both high β and high ν.

time points. This is a very difficult task to learn, especially for an ill-conditioned problem. Here,274

we argue that it may be better to pose the problem as a sequence-to-sequence learning task, where275

the NN learns to predict the solution at the next time step, instead of all times as done in PINN [18].276

This way we can utilize a marching-in-time scheme to predict different sequences/time points. We277

test this scheme by using the exact same NN architecture as previous sections and report the results278

in Tab. F.1 for the convection problem and Tab. F.2 for the diffusion problem. Interestingly, we find279

that for both cases, posing the problem as learning to predict the sequence results in lower errors.280

Again this is somewhat expected since the problem is ill-conditioned and restricting the dimensions281

is indeed expected to help. This behaviour also has corollaries with numerical methods used in282

scientific computing, where space-time problems are typically harder to solve for as compared to283

time marching methods [5].284

6 Conclusions285

PINNs—and SciML more generally—hold great promise for expanding the scope of ML methodology286

to important problems in science and engineering. For these problems, however, integrating ML287

methods with PDE-based domain-driven constraints as a soft regularization term can lead to subtle288

and critical issues. In particular, we show that this approach can have fundamental limitations which289

results in failure modes for learning relevant physics commonly used in different fields of science.290

To show this, we picked two fundamental PDE problems of diffusion and convection and showed291

that the PINN only works for very simple cases, failing to learn the relevant physical phenomena292

for even moderately more challenging regimes. We then analyzed the problem to characterize the293

underlying reasons why these failures occur. In particular, we studied the PINN loss landscape294

behavior and found it becomes it becomes increasingly complex for large values of diffusion or295

convection coefficients, and with/without non-homogeneous forcing. Then we discussed that the296

problem is not necessarily due to the limited capacity of the NN, but that it is partly an optimization297

problem resulting in the PDE-based soft constraint used in PINNs. Furthermore, we showed that the298

PINN approach of solving for the entire space-time at once, may not be efficient, and instead posing299

the problem as a sequence-to-sequence learning task can provide lower error rates.300
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A Learning diffusion results416

We present the error plots for the cases described in ....417

A.1 Evaluating non-homogeneous (forced) PDEs for different viscosity418
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Figure A.1: Relative (left) and absolute (right) error for predicted solutions of u(x, t) for different values
of ν, the viscosity, against q, the forcing term. Absolute error is on the log scale. Each line represents a
value of ν. Similar to the convection case, we see a general trend that 1) error increases as q, the forcing,
increases and 2) at high ν, without any forcing, the relative error is almost 100% and stays high for other
values of q.

A.2 Diffusion with an exact solution that does not depend explicitly on ν419
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Figure A.2: Relative (left) and absolute (right) error for predicted solutions of u(x, t) against ν, the
viscosity, where u(x, t) = sin(πx)e−t. The solution does not explicitly depend on ν. The prediction error
steadily increases for ν > 0.1, where ν values only influence the regularization term (as ν is present in the
forcing term).
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B Exact and predicted results for different systems420

B.1 Convection, q421
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Figure B.1: Top left: Heatmap of the exact solution to the 1D convection equation, Eq. 4, when β = 10.0
and q = 0. Top right: Physics-informed NN predicted solution: the network has difficulty predicting
the solution past a certain timestep. The average relative u error across all trials is 0.82. Bottom left:
Heatmap of the exact solution to the 1D convection equation, Eq. 4, when β = 0.0001 and q = 600
(strongly forced). Bottom right: Physics-informed NN predicted solution. The average relative u error
across all trials is 0.32.

B.2 Diffusion, fixed u422
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Figure B.2: Left: Heatmap of the exact solution to 1D diffusion equation, Eq. 11, when ν = 5.0 and
u(x, t) = sin(πx)e−t. Right: Physics-informed NN predicted solution. The network predicts the solution
dissipation incorrectly, and also mispredicts at the boundaries.

C Error bars for experimental results423

For each experiment, we ran the models at least ten times with different preset random seeds and424

averaged relative and absolute errors in u(x, t) over all trials. In this section, we list all of the errors425

and standard deviations across trials.426

We ran all experiments on 1 GPU, GeForce RTX 3090.427

C.1 Changing loss landscapes428

We show the loss landscapes for the other use cases we showed in § 3.429
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D Loss landscapes for 1D diffusion with changing λ430

We include the loss landscape results for 1D diffusion with an exact solution.431
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Figure D.1: For the one-dimensional diffusion equation with an exact solution ( § 3.2.2), we vary the λ
parameter, train the NN model, and plot the loss landscape. For this experiment, we use ν = 5.0, as it is a
point at which the error starts to grow as shown in Fig. A.2. The relative and absolute errors for u in each
situation are also given: when the regularization term is overemphasized (10LF ), the prediction error is
the worst. As the regularization parameter is increased, the loss landscape becomes increasingly more
complex and harder to optimize (see the z-axis scale).

D.1 Loss landscapes for 1D convection that does not explicitly depend on β432

D.2 Loss landscapes for evaluating non-homogenous (forced) PDEs for different viscosity433

We show the loss landscapes for the problem setup described in § 3.2.1.434

D.3 Loss landscapes for evaluating non-homogenous (forced) PDEs for different speeds of435

propagation436

We show the loss landscapes for the problem setup described in § 3.1.1.437

E Derivation of Condition Number for PDE Regularization in PINN438

F Discretizing the mesh439
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λ Entire state space ∆t = 0.0001 ∆t = 0.001 ∆t = 0.01 ∆t = 0.1
0.0 1.09 0.019 0.024 0.074 0.644
0.0001 1.10 0.026 0.028 0.070 0.629
0.001 0.946 0.045 0.046 0.072 0.408
0.01 0.700 0.016 0.031 0.036 0.303
0.1 0.326 0.039 0.058 0.096 0.323
1.0 0.820 0.282 0.257 0.231 0.493

Table F.1: Predicting the relative error for u(x, t) at t = 0 + ∆t as a function of λ. This is shown for the
situation described in § 3.1.1, when β is 10.0. We also include the relative error for predicting the whole
state space for different values of λ. The lowest error for each ∆t (and the entire state space) is bolded.
The best space-time model has a relative error of 32.6%, while the best timestep model has a relative error
of 1.9%

λ Entire state space ∆t = 0.0001 ∆t = 0.001 ∆t = 0.01 ∆t = 0.1
0.0 2.23 0.019 0.024 0.073 0.576
0.0001 1.82 0.024 0.022 0.070 0.556
0.001 2.18 0.057 0.049 0.058 0.204
0.01 1.58 0.131 0.133 0.123 0.157
0.1 1.14 0.229 0.248 0.235 0.261
1.0 0.929 0.308 0.335 0.305 0.362

Table F.2: Predicting the relative error for u(x, t) at t = 0 + ∆t as a function of λ. This is shown for the
situation described in § 3.2.1, when ν is 10.0. We also include the relative error for predicting the whole
state space for different values of λ. The lowest error for each ∆t (and the entire state space) is bolded.
The best space-time model has a relative error of 96.7%, while the best timestep model has a relative error
of 1.6%.
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