
DOBF: A Deobfuscation Pre-Training Objective for

Programming Languages

Anonymous Author(s)

Affiliation
Address
email

Abstract

Recent advances in self-supervised learning have dramatically improved the state1

of the art on a wide variety of tasks. However, research in language model pre-2

training has mostly focused on natural languages, and it is unclear whether models3

like BERT and its variants provide the best pre-training when applied to other4

modalities, such as source code. In this paper, we introduce a new pre-training5

objective, DOBF, that leverages the structural aspect of programming languages6

and pre-trains a model to recover the original version of obfuscated source code.7

We show that models pre-trained with DOBF significantly outperform existing8

approaches on multiple downstream tasks, providing relative improvements of up9

to 12.2% in unsupervised code translation, and 5.3% in natural language code10

search. Incidentally, we found that our pre-trained model is able to deobfuscate11

fully obfuscated source files, and to suggest descriptive variable names.12

1 Introduction13

Model pre-training with self-supervised methods such as BERT [18], RoBERTa [40], XLM [32] or14

XLNet [57], has become ubiquitous in Natural Language Processing (NLP), and led to significant15

improvements in many tasks. These approaches are based on the Masked Language Modeling (MLM)16

objective, which consists in randomly masking words from an input text, and training a model to17

recover the original input. In the original approach proposed by Devlin et al. [18], a fraction of18

selected masked words is replaced by masked tokens, another is replaced by random words, and19

another remains unchanged. Since then, a myriad of studies have proposed to modify the MLM20

objective, either by masking contiguous spans of text [47, 27], masking named entities and phrases21

[48], sampling masked words according to their frequencies [32], replacing words with plausible22

alternatives [16], etc. Overall, most of these pre-training objectives boil down to denoising auto-23

encoding tasks with different methods to add noise to the input, using arbitrary noise functions. In24

our case, we are interested in pre-training deep learning models for programming languages. As in25

natural language, pre-training was shown to be effective for source code [20, 46]. However, these26

studies both rely on the original MLM objective proposed by Devlin et al. [18], which was initially27

designed for natural languages and does not leverage the particular structure of source code. We28

argue that this objective is actually suboptimal in the context of programming languages, and propose29

a new objective based on code obfuscation.30

Code obfuscation consists in modifying source code in order to make it harder for humans to31

understand, or smaller while keeping its behaviour unchanged. In some ancient interpreted languages,32

name minimization could also reduce the memory usage of the program. Today, it is used to protect33

intellectual property by preventing people from understanding and modifying the code, to prevent34

malware detection, and to compress programs (e.g. Javascript code) to reduce network payload sizes.35

Moreover, C compilers discard variable names, and current rule-based and neural-based decompilers36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

generate obfuscated C code with uninformative variable names [21]. Obfuscators typically apply37

several transformations to the code. While some operations can be reversed (e.g. dead code injection),38

the obfuscation of identifier names—renaming every variable, method and class with uninformative39

names—is irreversible and has a substantial impact on code comprehension [22, 50, 35].40

By analyzing the overall structure of an obfuscated file, an experienced programmer can always, with41

time, understand the meaning of the obfuscated code. For instance, in the obfuscated example in42

Figure 1, one can recognize the function and guess that it implements a breadth-first search algorithm.43

We also expect neural networks, that excel in pattern recognition, to perform well on this task. We44

propose to pre-train a model to revert the obfuscation function, by training a sequence-to-sequence45

(seq2seq) model to convert obfuscated functions, where names of functions and variables have been46

replaced by uninformative names, back to their original forms. Suggesting proper variable and47

function names is a difficult task that requires to understand what the program does. In the context48

of source code, it is a more sensible, but also a more difficult task than MLM. Indeed, we observe49

(c.f. Figure 1) that predicting the content of randomly masked tokens is usually quite simple, as it50

often boils down to making syntax related predictions (e.g. predicting that was has been masked51

out is a parenthesis, a semi-column, etc.). These simple predictions actually provide little training52

signal to the model. In practice, MLM also masks out variable names, but if a given variable appears53

multiple times in a function, it will be easy for the model to simply copy its name from one of the54

other occurrences. Our model does not have this issue, as all occurrences of masked variables are55

replaced by the same VAR_i special tokens.56

In this paper, we make the following contributions:57

• We present DOBF, a new pre-training objective based on deobfuscation, and show its58

effectiveness on multiple programming languages.59

• We show that DOBF significantly outperform MLM (e.g. BERT) on multiple tasks such60

as code search, code summarization or unsupervised code translation. We show that pre-61

training methods based on DOBF outperform all existing pre-training methods on all the62

considered tasks.63

• We show that, by design, models pre-trained with DOBF have interesting applications and64

can be used to understand functions with uninformative identifier names. Besides, the model65

is able to successfully deobfuscate fully obfuscated source files.66

Our method improves other machine learning methods for programming languages. Automatic deob-67

fuscation and identifier name proposal can also make code more accessible, and facilitate innovation68

and malware detection. Conversely, automatic deobfuscation could facilitate theft of proprietary code,69

therefore hindering the distribution of software and reducing investments in innovative softwares.70

As our model does not reverse all the transformations done by adversarial obfuscators, we think its71

direct societal impact will be mostly positive.72

2 Related work73

Masked Language Modeling pre-training. Large pre-trained transformers such as BERT [18]74

or RoBERTa [40] led to significant improvements in the majority of natural language processing75

tasks. The quality of pre-training mainly comes from the MLM objective (i.e. the cloze task), that76

allows the model to make predictions by leveraging left and right contexts, unlike causal language77

modeling (CLM) where the model predictions are only conditioned on previous words. In MLM,78

the model takes as input a sentence and uniformly selects 15% of its tokens. Of the selected tokens,79

80% are replaced by a special symbol [MASK], 10% are left unchanged, and the remaining 10%80

are replaced by random tokens from the vocabulary. The MLM objective consists in recovering the81

initial sentence given the corrupted one. Lample and Conneau [32] noticed that the masked words are82

often easy to predict, and proposed to sample the 15% masked words according to their frequencies83

instead of uniformly. This way, rare words are sampled more often, making the pre-training task84

more difficult for the model, which results in a better learning signal and faster training. Sun et al.85

[48] also noticed that recovering the tokens masked by MLM is too simple in some contexts (e.g.86

predicting the two tokens “Harry Potter” is much harder than predicting only “Harry” if you know87

the next word is “Potter”). To address this issue, they proposed to mask phrases and named entities88

instead of individual tokens. Joshi et al. [27] and Song et al. [47] made a similar observation and89

2

Figure 1: Illustration of the MLM and DOBF objectives. Given an input function, the masked language
modeling (MLM) task randomly samples tokens to mask out. With source code, a large fraction of these tokens
are related to the language syntax (e.g. commas, parentheses, etc.) that are trivial for the model to predict, and
provide a poor training signal. Instead, we propose to obfuscate the code by masking the name of functions and
variables, and to train the model to recover the original function by deobfuscating the code (DOBF). When a
variable is masked out, we mask all occurrences of this variable with the same mask symbol (e.g. all occurrences
of “visited” are replaced by “V0”) to prevent the model from copying names. The DOBF objective is more
difficult and provides a better learning signal.

proposed to mask random spans of text. They showed that this simple modification improves the90

performance on many downstream NLP tasks.91

Alternative objectives. Other pre-training objectives have been proposed in addition to MLM.92

For instance, Devlin et al. [18] also uses the next sentence prediction (NSP) objective, a binary93

classification task that consists in predicting whether two input sentences follow each other in94

the original corpus. The NSP objective was originally designed to improve the performance on95

downstream NLP tasks, but recent studies [32, 40] showed that training MLM on stream of sentences96

to leverage longer context, and removing the NSP objective improves the quality of pre-training.97

To improve the sample-efficiency of MLM (where only 15% of tokens are predicted), Electra [16]98

proposed to replace (and not mask) some tokens with plausible alternatives, and to train a network99

to detect the tokens that have been replaced. They showed that this new Replaced Token Detection100

(RTD) objective matches the performance of RoBERTa while using four times less computational101

resources. Dong et al. [19] proposed a model that combines multiple pre-training tasks, including102

bidirectional, but also left-to-right and right-to-left language modeling objectives. Lewis et al. [36]103

also proposed different pre-training objectives, to detect whether input sentences have been permuted,104

whether tokens have been deleted or inserted, etc.105

Code Generation Pre-training. Recent studies showed that pre-training methods developed for106

natural language processing are also effective for programming languages. For instance, Feng et al.107

[20] proposed CodeBERT, a RoBERTa-based model trained on source code using the MLM and RTD108

objectives. With GraphCodeBERT [24], the MLM objective is complemented by an edge-prediction109

objective, in which the model predicts edges in the data flow graph to make the model understand110

the structure of the code. In Jain et al. [26], a model is trained on javascript code using a contrastive111

loss ensuring that the representations are robust to some semantic-preserving transformations. They112

showed that their model performs well on downstream code generation tasks and outperforms previous113

pre-training approaches. Kanade et al. [28] applied MLM and the next sentence prediction objectives114

to pre-train models on Python code. More recently, Roziere et al. [46] applied the unsupervised115

machine translation principles of Lample et al. [33, 34] to monolingual source code from GitHub.116

They showed that the resulting model, TransCoder, was able to translate source code between Python,117

Java, and C++, in a fully unsupervised way. In this paper, we propose to use a code-specific objective118

to better pre-train models designed to be fine-tuned on code generation tasks: code deobfuscation.119

Machine learning is frequently used on tasks involving programming languages, including code120

3

completion [37, 39, 29, 49], bug detection and code repair [54, 15, 42], code summarization [8, 25],121

clone detection [56, 2, 55], code search [23, 13] and code translation [14, 46]. Most of these tasks122

can benefit from pre-trained models that capture the semantics of the code.123

Code deobfuscation. Empirical studies show that naming conventions and the use of informative124

identifier names make code more understandable, easier to maintain and lead to fewer bugs [50, 38,125

12]. It motivated other works studying deobfuscation of identifier names and identifier name proposal126

using n-grams [4, 5], probabilistic models [45, 11, 51, 7], and recurrent neural networks [10, 31].127

Alon et al. [7] extract features from Abstract Syntax Tree (AST) paths and train a Conditional Random128

Field to predict variable and method names, and infer types for several languages. DIRE [31] uses a129

commercial decompiler to obtain C code with uninformative identifier names from binaries. They130

also use AST features, which go through a Graph Neural Network trained jointly with a LSTM model131

on the sequence of C tokens to retrieve relevant identifier names. More recently, David et al. [17]132

used a transformer together with augmented representations obtained from static analysis to infer133

procedure names in stripped binary files. These models are already used to understand obfuscated134

and compiled source code. However, none of these studies investigated the use of deobfuscation for135

model pre-training.136

3 Model137

3.1 MLM for Programming Languages138

A countless number of pre-training objectives have been introduced in the literature [18, 16, 36, 40,139

19]. Most of them rely on hyper-parameters and seemingly arbitrary decisions (Should we mask140

individual tokens or spans? Which fraction of them? What do we do with masked out tokens?141

etc.). These choices are typically based on intuition and validated empirically on natural language142

processing tasks. However, source code is much more structured than natural language, which makes143

predicting masked tokens much easier for programming languages.144

The first row in Figure 1 shows an example of input / output for the MLM objective. We can see that145

the majority of tokens are composed of Python keywords or symbols related to syntax: , [while146

= if) return. These symbols are easy to recover, and a model will quickly learn to predict them147

with perfect accuracy. This effect is accentuated by the verbosity of the language. For instance,148

we would see significantly more of these tokens in Java. Retrieving the obfuscated graph token149

is also relatively simple: the model only needs to retrieve the most relevant variable in the scope.150

More generally, retrieving an identifier name is often easy when given its full context, including its151

definition and usages. Overall, we suspect that the MLM objective is too simple in programming152

languages and we introduce a new objective, DOBF, which encourages the model to learn a deeper153

understanding of code semantics.154

3.2 Deobfuscation Objective155

Instead of MLM, we propose a new pre-training objective, DOBF, that leverages the particular156

structure of programming languages. We obfuscate code snippets by replacing class, function and157

variable names with special tokens, and train a model to recover the original names. When an158

identifier is selected, all of its instances in the code are replaced by the same special token. This159

differs from MLM where the name of a variable can appear multiple times while being masked160

a single time. For instance, in Figure 1, DOBF will replace the two occurrences of node by the161

same symbol V5, while MLM will only mask one of these occurrences. As a result, the fraction of162

meaningful tokens masked by the objective is language independent: for more verbose languages163

(e.g. Java), the less informative syntax-related tokens will not be masked out by the DOBF objective.164

Each identifier is replaced with probability pobf 2 [0, 1]. We ensure that the original input is modified:165

if no identifier is replaced, we draw a random one to obfuscate. When pobf = 0, we always obfuscate166

exactly one random identifier in the input. When pobf = 1, we obfuscate all the identifiers defined in167

the file. We ensure that the obfuscated code has the same behavior as the original. The second row in168

Figure 1 shows an example of obfuscated code with pobf = 1, where we obfuscate a function bfs169

which implements a breadth-first search. The function append is not obfuscated as it is a standard170

Python function not defined in the file. The model is given the obfuscated code as input and has to171

4

restore the original name of each special token CLASS_i, FUNC_i and VAR_i. In other words, the172

model needs to output a dictionary mapping special tokens to their initial values.173

Finding informative names for obfuscated identifiers requires the model to learn a deep understanding174

of code semantics, which is desirable for a pre-training task. MLM will mask only some of the175

occurrences of the identifiers and leave the other ones unchanged so that the model can simply copy176

identifier names. In Figure 1, with MLM masking, the model can simply notice that a variable177

named queue is called on the fourth line. Since the variable is not defined, the model can easily178

guess that queue has to be defined on the third line, and infer the value of the corresponding [MASK]179

token. With the deobfuscation objective, the model needs to analyze code patterns and understand180

the semantics of the variable to infer that, since its elements are popped with .pop(0), the variable181

V3 implements a queue. If its elements were popped with .pop(), our model would name it stack182

instead of queue (c.f. Figure 7 in the appendix).183

3.3 Implementation184

Overall, the deobfuscation objective operates like a supervised machine translation objective, where a185

seq2seq model is trained to map an obfuscated code into a dictionary represented as a sequence of to-186

kens. At inference time, the model is able to suggest meaningful class, function and variable names for187

a piece of code with an arbitrary number of obfuscated identifiers. Obfuscated classes, functions, and188

variables, are replaced with associated special tokens: CLASS_0 . . . CLASS_N, FUNC_0 . . . FUNC_N189

and VAR_0 . . . VAR_N. We serialize the output dictionary as a sequence of tokens where the entries190

are separated by a delimiter symbol |. 1191

4 Experiments192

We train DOBF with the deobfuscation objective. First, we evaluate our model on two straightforward193

deobfuscation applications. Then, we show its performance on multiple downstream tasks.194

4.1 Deobfuscation195

We evaluate our model on two applications of the deobfuscation task: when pobf = 0 (the model has196

to retrieve a single identifier name), and pobf = 1 (the model has to retrieve all the identifier names).197

Deobfuscating a single identifier When pobf = 0, only one identifier is obfuscated. In that case,198

the model has to propose a relevant name for that identifier using the rest of the non-obfuscated file199

as context. It can be used as a tool that suggests relevant variable names. Integrated development200

environments (e.g. PyCharm or IntelliJ) already perform this task, often using simple handcrafted201

rules.202

Deobfuscating all identifiers Obfuscators are commonly used to make code smaller and more203

efficient or to protect it by making it more difficult to understand and reuse. They typically apply204

several transformations, one of them being to replace every identifier name with short and uninfor-205

mative names (e.g. a, b, c). In our work, such a transformation corresponds to obfuscating a file206

with pobf = 1. To measure our model’s ability to revert the obfuscation operation, we evaluate its207

accuracy when obfuscating all identifier names. Another application would be to help understand208

source code written with uninformative variable names.209

Evaluation metric We evaluate the ability of our model to retrieve identifier names from the210

original non-obfuscated code. We report the accuracy, which is the percentage of recovered tokens211

that exactly match the ground truth. Following previous works [5, 6, 7, 9], we also report the subtoken212

score, a more flexible metric which computes the precision, recall, and F1 scores for retrieving the213

original case-insensitive subtokens. Each token is broken into subtokens using uppercase letters for214

camlCase and underscores for snake_case. For instance, decoderAttention would be considered215

to be a perfect match for decoder_attention or attentionDecoder. attention would have a216

perfect precision but a recall of 0.5, so a F1 score of 66.7. crossAttentionDecoder would have217

1In the obfuscated example given in Figure 1, the model is trained to generate: FUNC_0 bfs | VAR_0
graph | VAR_1 root | VAR_2 visited | VAR_3 queue | VAR_4 neighbor | VAR_5 node.

5

a perfect recall but a precision of 2
3 , corresponding to a F1 score of 80.0. We compute the overall218

subtoken precision, recall and F1 scores averaged over each recovered token.219

4.2 Fine-tuning on downstream tasks220

In order to evaluate DOBF as a pre-training model, we fine-tune DOBF on TransCoder and on221

three tasks from CodeXGLUE [1], a benchmark for programming languages. The data, code and222

models from CodeXGLUE and TransCoder are available respectively under the MIT and the Creative223

Commons license. We only consider the Java and Python tasks with an encoder in the model224

architecture for which the training, validation, and test sets are publicly available.225

CodeXGLUE Clone Detection This task is a binary classification problem where the model has to226

predict whether two code snippets are semantically equivalent. It is evaluated using the F1 score. The227

model is composed of a single encoder and a classification layer. An input consists in two snippets of228

code, which are concatenated before being fed to the model. This task is available in Java.229

CodeXGLUE Code Summarization Given a code snippet, the model is trained to generate the230

corresponding documentation in natural language. The architecture is a sequence-to-sequence231

transformer model evaluated using BLEU score [43]. The dataset includes both Java and Python232

source code.233

CodeXGLUE NL Code Search Given a code search query in natural language the model has to234

retrieve the most semantically related code within a collection of code snippets. This is a ranking235

problem evaluated using the Mean Reciprocal Rank (MRR) metric. The model is composed of two236

encoders. The natural language query and the code are encoded separately, and we compute the dot237

product between the first hidden states of the encoders’ last layers. This task is available in Python.238

TransCoder TransCoder [46] is an unsupervised machine translation model which translates func-239

tions and methods between C++, Java, and Python. A single seq2seq model is trained for all languages.240

In the original work, TransCoder is pre-trained with MLM, and trained with denoising auto-encoding241

and back-translation. TransCoder is evaluated using the Computational Accuracy metric, which242

computes the percentage of correct solutions according to series of unit tests. We only consider a243

single model output (CA@1), with beam sizes of 1 and 10.244

4.3 Experimental details245

Model Architecture We consider a seq2seq model with attention, composed of an encoder and246

a decoder using a transformer architecture [52]. We train models with the same architecture and247

tokenizer as CodeBERT [20] and GraphCodeBERT [24] in order to provide fair comparisons: 12248

layers, 12 attention heads and a hidden dimension of 768.249

Training dataset As in Roziere et al. [46], we use the GitHub public dataset available on Google250

BigQuery and select all Python and Java files within the projects with licenses authorizing use for251

research purposes. Following Lopes et al. [41] and Allamanis [3], we remove duplicate files. We also252

ensure that each fork belongs to the same split as its source repository. We obfuscate each file and253

create the corresponding dictionary of masked identifier names, resulting in a parallel (obfuscated file254

- dictionary) dataset of 19 GB for Python and 26 GB for Java. We show some statistics about this255

dataset in Table 3 in the appendix. For comparison purposes, we apply either the BPE codes used by256

Roziere et al. [46] or by Feng et al. [20]. In practice, we train only on files containing less than 2000257

tokens, which corresponds to more than 90% and 80% of the Java and Python files respectively.258

Training details We train DOBF to translate obfuscated files into lists of identifier names. During259

DOBF training, we alternate between batches of Java and Python composed of 3000 tokens per260

GPU. We optimize DOBF with the Adam optimizer [30] and an inverse square-root learning rate261

scheduler [52]. We implement our models in PyTorch [44] and train them on 32 V100 GPUs for eight262

days. We use float16 operations to speed up training and to reduce the memory usage of our models.263

We try different initialization schemes: training from scratch and with a Python-Java MLM model264

following Roziere et al. [46]. We train DOBF with three different obfuscation probability parameters:265

pobf 2 {0, 0.5, 1}. For each pobf value, we train models with multiple initial learning rates ranging266

from 10�4 to 3.10�4 and select the best one using the average subtoken F1 score computed on the267

validation dataset.268

6

def FUNC_0(VAR_0, VAR_1):

VAR_2 = [VAR_1]

VAR_3 = [VAR_1]

while VAR_3:

VAR_4 = VAR_3.pop(0)

for VAR_5 in VAR_0[VAR_4]:

if (VAR_5 not in VAR_2):

VAR_2.add(VAR_5)

VAR_3.append(VAR_5)

return VAR_2

def bfs(graph, start):

visited = [start]

queue = [start]

while queue:

node = queue.pop(0)

for neighbor in graph[node]:

if (neighbor not in visited):

visited.add(neighbor)

queue.append(neighbor)

return visited

Figure 2: Full deobfuscation of a breadth-first-search function by DOBF. The code on top has been fully
obfuscated. The code on the bottom was recovered using DOBF by replacing the function name and every
variable name using the generated dictionary. DOBF is able to suggest relevant function and variable names. It
makes the code much more readable and easier to understand.

Fine-tuning details Depending on the fine-tuning tasks, we consider different model architectures:269

seq2seq models with encoder and decoder, architectures with two encoders or a single encoder. In270

all cases, we initialize the encoders of these models with the encoder of DOBF and fine-tune all271

parameters. For fair comparison, we rerun all baselines, and train models with the same architectures,272

number of GPUs, batch sizes and optimizers. For CodeXGLUE, we noticed that the tasks are quite273

sensitive to the learning rate parameter used during fine-tuning. We perform a grid search on five274

learning rate parameters ranging from 5.10�6 to 10�4 and we select the best parameter on the275

validation dataset. For TransCoder, we use a learning rate of 10�4 as in Roziere et al. [46] and we276

train the models for 22 epochs (about two days) on 32 Tesla V100 GPUs.277

5 Results278

5.1 Deobfuscation279

In Table 1, we evaluate the ability of our model to recover identifier names, either when only one280

identifier is obfuscated (pobf = 0) or when all identifiers are obfuscated (pobf = 1), for models281

trained with pobf 2 {0, 0.5, 1}. Even when evaluating with pobf = 0, training with pobf = 0 is282

less efficient than pobf = 0.5 since the model is only trained to generate a single variable for each283

input sequence. Training with pobf = 0.5 is a more difficult task that requires the model to learn and284

understand more about code semantics. Forcing the model to understand the structure of the code285

may be useful even when testing with pobf = 0, as some identifier names cannot be guessed only286

from the names of other identifiers. When DOBF has to recover a fully obfuscated function, it obtains287

the best accuracy when trained with pobf = 1. It manages to recover 45.6% of the initial identifier288

names. We also observe that, for every configuration, initializing DOBF with MLM improves the289

performance.290

Figure 2 shows an example of a fully obfuscated function recovered by our model. DOBF successfully291

manages to understand the purpose of the function and to predict appropriate variable names. Figure 3292

shows examples of function name proposal by DOBF for functions implementing matrix operations in293

Python. We observe that DOBF manages to identify the key tokens and to properly infer the purpose294

of similar but very different functions. Figures 4, 5, and 6 in the appendix show additional examples295

of function name proposals by DOBF in Java and Python. Figure 7 in the appendix shows additional296

examples where we show that DOBF also leverages non-obfuscated identifier names to understand297

the meaning of input functions. Figures 8 and 9 in the appendix show examples of deobfuscation298

of fully obfuscated Python code snippets using DOBF. It is able to understand the semantics and299

purposes of a variety of obfuscated classes and functions, including a LSTM cell.300

5.2 Downstream tasks301

For fine-tuning, we considered models pre-trained with pobf = 0.5 and pobf = 1. Since they gave302

very similar results on downstream tasks, we only use models pre-trained with pobf = 0.5 in the rest303

of the paper. We initialize DOBF with MLM as it leads to better performance on our deobfuscation304

metrics. We still consider DOBF initialized randomly as a baseline in Table 2. We also consider a305

version where DOBF is trained together with a denoising auto-encoding (DAE) objective [53], which306

was shown to be effective at learning code representations in Roziere et al. [46]. With DAE, the model307

is trained to recover the original version of a sequence which has been corrupted (by removing and308

7

Input Code Function Name Proposals
def FUNC_0 (m1, m2):

assert m1.shape == m2.shape

n, m = m1.shape

res = [[0 for _ in range(m)] for _ in range(n)]

for i in range(n):

for j in range(m):

res[i][j] = m1[i][j] + m2[i][j]

return res

matrix_add
matrixAdd
matrixadd
matrix_sum
matrix_addition

25.9%
22.5%
18.8%
16.7%
16.1%

def FUNC_0 (m1, m2):

assert m1.shape == m2.shape

n, m = m1.shape

res = [[0 for _ in range(m)] for _ in range(n)]

for i in range(n):

for j in range(m):

res[i][j] = m1[i][j] - m2[i][j]

return res

matrix_sub
matrix_subtract
matrix_subtraction
sub
sub_matrix

26.1%
21.5%
19.7%
17.6%
15.0%

def FUNC_0 (matrix):

n, _ = matrix.shape

for i in range(n):

for j in range(i,n):

matrix[i][j], matrix[j][i] = \

matrix[j][i], matrix[i][j]

transpose
rotate
rotate_matrix
symmetric
rotate_matrix_by_row

36.7%
29.5%
17.1%
8.9%
7.7%

def FUNC_0 (m1, m2):

n1, m1 = m1.shape

n2, m2 = m2.shape

assert n2 == m1

res = [[0 for _ in range(m2)] for _ in range(n1)]

for i in range(n1):

for j in range(m2):

res[i][j] = sum([m1[i][k] * m2[k][j]

for k in range(n2)])

return res

matrix_product
mat_mult
matmul_mat
matprod
matrixProduct

28.8%
23.8%
17.0%
16.0%
14.4%

Figure 3: Additional examples of function name proposals for matrix operations in Python. DOBF is
able to find the right name for each matrix operation, showing that it learned to attend to the most important parts
of the code. Even when the function only differs by one token (e.g. a subtraction instead of an addition operator),
DOBF successfully and confidently (c.f. scores) understands the semantics of the function and its purpose.

shuffling tokens). As baselines, we consider a randomly initialized model and a model pre-trained309

with MLM only. For CodeXGLUE tasks, we also consider CodeBERT as a baseline. We compare310

results for DOBF trained from scratch and DOBF initialized with MLM, and report results in Table 2.311

The randomly initialized model is useful to measure the importance of pre-training on a given task.312

Pre-training is particularly important for the NLCS task: without pre-training, the model achieves a313

performance of 0.025 MMR while it goes up to 0.308 with MLM pre-training. The main differences314

between our MLM baseline and CodeBERT, are that 1) CodeBERT was trained on a different dataset315

which contains functions with their documentation, 2) it uses an additional RTD objective, and 3)316

is initialized from a RoBERTa model. Although code summarization and NL code search involve317

natural language and may benefit from CodeBERT’s dataset that contains code documentation, we318

obtained very similar results on this task using a simpler dataset. However, our MLM baseline did319

not match their performance on clone detection. We also tried to initialize our MLM model with320

RoBERTa, but did not observe any substantial impact on the performance on downstream tasks.321

The models based on DOBF obtain state-of-the-art results on all downstream tasks, outperforming322

GraphCodeBERT, CodeBERT and MLM. The deobfuscation objective is already effective as a323

pre-training task. Even when initialized randomly, it leads to results comparable to MLM on most324

tasks and is much more effective on clone detection. The DOBF+DAE model outperforms MLM on325

all downstream tasks, the major improvement being for NL code search, which is also the task that326

benefited the most from MLM pretraining For unsupervised translation, DOBF+DAE increases the327

computational accuracy by 1.9% when translating from Python to Java, and by 6.8% when translating328

from Java to Python with beam size 10. Also, DOBF beats CodeBERT by a wide margin on NL329

code search and code summarization, showing that programming language data aligned with natural330

language is not necessary to train an effective model on those tasks. DOBF initialized with MLM331

8

Table 1: Results on partial and full deobfuscation. Token accuracy and subtoken F1 score of DOBF evaluated
with pobf = 0 (i.e. name proposal, where a single token is obfuscated) and pobf = 1 (i.e. full deobfuscation,
where all tokens are obfuscated). We consider models trained with different obfuscation probabilities pobf .
DOBF0.5 performs well for both tasks, and it even performs better than DOBF0 for Identifier Name Proposal.
DOBF0 and DOBF1 perform poorly when evaluated on other pobf parameters. Pre-training DOBF with MLM
further improves the performance.

Eval pobf = 0 Eval pobf = 1

Acc F1 Acc F1

DOBF0 56.3 68.0 0.4 0.9
DOBF0.5 61.1 71.2 41.8 54.8
DOBF1 18.1 27.0 45.6 58.1

DOBF0.5 init MLM 67.6 76.3 45.7 58.0
DOBF1 init MLM 20.0 28.3 49.7 61.1

Table 2: Results on downstream tasks for different pre-training configurations. Models pre-trained with
DOBF initialized with MLM significantly outperform both CodeBERT and models trained with MLM only.
DOBF+DAE outperforms other models on every task but clone detection, on which CodeBERT scores much
higher than our MLM. It outperforms GraphCodeBERT by 0.02 MRR (+5.3%) on natural language code search
(NLCS), and by 4.6% in Java ! Python computational accuracy with beam size 10 (+12.2% correct translations).
The tasks where MLM provides large improvements over the transformer baseline (first row, no pre-training) are
also the tasks where DOBF provides the largest gains (e.g. clone detection, natural language code search, and
unsupervised translation).

Clone Det Code Sum Java Code Sum Python NLCS Python!Java Java!Python
(F1 score) (BLEU) (BLEU) (MRR) (CA@1) (CA@1)

k=1 k=10 k=1 k=10

Transformer 88.14 16.58 16.43 0.025 24.0 28.4 29.0 29.7
MLM 91.89 18.59 17.95 0.308 44.8 45.4 34.5 35.6
CodeBERT 96.50 18.25 18.22 0.315 40.8 45.6 36.5 36.7
GraphCodeBERT 96.38 18.78 18.51 0.377 44.3 44.1 35.6 37.8
DOBF init scratch 96.52 18.19 17.51 0.272 43.9 44.1 35.2 34.7
DOBF 95.87 19.05 18.24 0.383 43.5 44.1 38.7 40.0
DOBF+DAE 95.82 19.36 18.58 0.397 46.6 47.3 40.6 42.4

and combined with DAE yields higher scores than both DOBF alone initialized randomly and MLM,332

on most tasks. It shows that objectives such as MLM and DAE that provide unstructured noise are333

complementary to DOBF.334

6 Conclusion335

In this paper, we introduce a new deobfuscation objective and show that it can be used for three336

purposes: recover fully obfuscated code, suggest relevant identifier names, and pre-train transformer337

models for programming language related tasks. Although it does not require any parallel corpora338

of source code aligned to natural language, methods based on DOBF outperform GraphCodeBERT,339

CodeBERT and MLM pre-training on multiple downstream tasks, including clone detection, code340

summarization, natural language code search, and unsupervised code translation. These results show341

that DOBF leverages the particular structure of source code to add noise to the input sequence in a342

particularly effective way. Other noise functions or surrogate objectives adapted to source code may343

improve the performance further. For instance, by training model to find the type of given variables,344

the signature of a method, or to repair a piece of code which has been corrupted.345

Since models pretrained on source code benefit from structured noise, it would be interesting to see346

whether these findings can be applied to natural languages as well. Although ambiguous, natural347

languages also have an underlying structure. Leveraging the constituency or dependency parse trees348

of sentences (as opposed to abstract syntax trees in programming languages) may help designing349

better pre-training objectives for natural languages.350

9

References351

[1] Codexglue: An open challenge for code intelligence. arXiv, 2020.352

[2] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam, and Bilal353

Maqbool. A systematic review on code clone detection. IEEE Access, 7:86121–86144, 2019.354

[3] Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of355

code. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,356

New Paradigms, and Reflections on Programming and Software, pages 143–153, 2019.357

[4] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Learning natural cod-358

ing conventions. In Proceedings of the 22nd ACM SIGSOFT International Symposium on359

Foundations of Software Engineering, pages 281–293, 2014.360

[5] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Suggesting accurate361

method and class names. In Proceedings of the 2015 10th Joint Meeting on Foundations of362

Software Engineering, pages 38–49, 2015.363

[6] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for364

extreme summarization of source code. In International conference on machine learning, pages365

2091–2100, 2016.366

[7] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based representation367

for predicting program properties. ACM SIGPLAN Notices, 53(4):404–419, 2018.368

[8] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from369

structured representations of code. ICLR, 2019.370

[9] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed371

representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1–29,372

2019.373

[10] Rohan Bavishi, Michael Pradel, and Koushik Sen. Context2name: A deep learning-based374

approach to infer natural variable names from usage contexts. arXiv preprint arXiv:1809.05193,375

2018.376

[11] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical deobfuscation377

of android applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer378

and Communications Security, pages 343–355, 2016.379

[12] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Relating identifier naming380

flaws and code quality: An empirical study. In 2009 16th Working Conference on Reverse381

Engineering, pages 31–35. IEEE, 2009.382

[13] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. When383

deep learning met code search. In Proceedings of the 2019 27th ACM Joint Meeting on384

European Software Engineering Conference and Symposium on the Foundations of Software385

Engineering, pages 964–974, 2019.386

[14] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.387

In Advances in neural information processing systems, pages 2547–2557, 2018.388

[15] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshy-389

vanyk, and Martin Monperrus. Sequencer: Sequence-to-sequence learning for end-to-end390

program repair. IEEE Transactions on Software Engineering, 2019.391

[16] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training392

text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.393

[17] Yaniv David, Uri Alon, and Eran Yahav. Neural reverse engineering of stripped binaries394

using augmented control flow graphs. Proceedings of the ACM on Programming Languages, 4395

(OOPSLA):1–28, 2020.396

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of397

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.398

[19] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming399

Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural language under-400

standing and generation. arXiv preprint arXiv:1905.03197, 2019.401

10

[20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,402

Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and403

natural languages. arXiv preprint arXiv:2002.08155, 2020.404

[21] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushanfar, and405

Jishen Zhao. Coda: An end-to-end neural program decompiler. In Advances in Neural406

Information Processing Systems, pages 3703–3714, 2019.407

[22] Edward M Gellenbeck and Curtis R Cook. An investigation of procedure and variable names408

as beacons during program comprehension. In Empirical studies of programmers: Fourth409

workshop, pages 65–81. Ablex Publishing, Norwood, NJ, 1991.410

[23] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In 2018 IEEE/ACM 40th411

International Conference on Software Engineering (ICSE), pages 933–944. IEEE, 2018.412

[24] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,413

Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with414

data flow. arXiv preprint arXiv:2009.08366, 2020.415

[25] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation. In Proceedings416

of the 26th Conference on Program Comprehension, pages 200–210, 2018.417

[26] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E Gonzalez, and Ion Stoica.418

Contrastive code representation learning. arXiv preprint arXiv:2007.04973, 2020.419

[27] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.420

Spanbert: Improving pre-training by representing and predicting spans. Transactions of the421

Association for Computational Linguistics, 8:64–77, 2020.422

[28] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating423

contextual embedding of source code. In International Conference on Machine Learning, pages424

5110–5121. PMLR, 2020.425

[29] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction by feeding trees426

to transformers. arXiv preprint arXiv:2003.13848, 2020.427

[30] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint428

arXiv:1412.6980, 2014.429

[31] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire Le Goues,430

Graham Neubig, and Bogdan Vasilescu. Dire: A neural approach to decompiled identifier nam-431

ing. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering432

(ASE), pages 628–639. IEEE, 2019.433

[32] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. arXiv434

preprint arXiv:1901.07291, 2019.435

[33] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsuper-436

vised machine translation using monolingual corpora only. ICLR, 2018.437

[34] Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.438

Phrase-based & neural unsupervised machine translation. In EMNLP, 2018.439

[35] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. What’s in a name? a study440

of identifiers. In 14th IEEE International Conference on Program Comprehension (ICPC’06),441

pages 3–12. IEEE, 2006.442

[36] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,443

Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence444

pre-training for natural language generation, translation, and comprehension. arXiv preprint445

arXiv:1910.13461, 2019.446

[37] Jian Li, Yue Wang, Michael R Lyu, and Irwin King. Code completion with neural attention and447

pointer networks. IJCAI, 2018.448

[38] Ben Liblit, Andrew Begel, and Eve Sweetser. Cognitive perspectives on the role of naming in449

computer programs. In PPIG, page 11, 2006.450

[39] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. A self-attentional neural archi-451

tecture for code completion with multi-task learning. In Proceedings of the 28th International452

Conference on Program Comprehension, pages 37–47, 2020.453

11

[40] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike454

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining455

approach. arXiv preprint arXiv:1907.11692, 2019.456

[41] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani,457

and Jan Vitek. Déjàvu: a map of code duplicates on github. Proceedings of the ACM on458

Programming Languages, 1(OOPSLA):1–28, 2017.459

[42] Vijayaraghavan Murali, Lee Gross, Rebecca Qian, and Satish Chandra. Industry-scale ir-based460

bug localization: A perspective from facebook. arXiv preprint arXiv:2010.09977, 2020.461

[43] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic462

evaluation of machine translation. In Proceedings of the 40th annual meeting on association for463

computational linguistics, pages 311–318. Association for Computational Linguistics, 2002.464

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,465

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative466

style, high-performance deep learning library. In Advances in neural information processing467

systems, pages 8026–8037, 2019.468

[45] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties from" big469

code". ACM SIGPLAN Notices, 50(1):111–124, 2015.470

[46] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsu-471

pervised translation of programming languages. Advances in Neural Information Processing472

Systems, 33, 2020.473

[47] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mass: Masked sequence474

to sequence pre-training for language generation. In International Conference on Machine475

Learning, pages 5926–5936, 2019.476

[48] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang477

Zhu, Hao Tian, and Hua Wu. Ernie: Enhanced representation through knowledge integration.478

arXiv preprint arXiv:1904.09223, 2019.479

[49] Alexey Svyatkovskoy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Franco, and480

Miltiadis Allamanis. Fast and memory-efficient neural code completion. arXiv preprint481

arXiv:2004.13651, 2020.482

[50] Armstrong A Takang, Penny A Grubb, and Robert D Macredie. The effects of comments and483

identifier names on program comprehensibility: an experimental investigation. J. Prog. Lang.,484

4(3):143–167, 1996.485

[51] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. Recovering clear, natural iden-486

tifiers from obfuscated js names. In Proceedings of the 2017 11th Joint Meeting on Foundations487

of Software Engineering, pages 683–693, 2017.488

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,489

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural490

information processing systems, pages 5998–6008, 2017.491

[53] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and492

composing robust features with denoising autoencoders. In Proceedings of the 25th international493

conference on Machine learning, pages 1096–1103, 2008.494

[54] Ke Wang, Rishabh Singh, and Zhendong Su. Dynamic neural program embedding for program495

repair. arXiv preprint arXiv:1711.07163, 2017.496

[55] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. Detecting code clones with graph neural497

network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International Conference498

on Software Analysis, Evolution and Reengineering (SANER), pages 261–271. IEEE, 2020.499

[56] Huihui Wei and Ming Li. Supervised deep features for software functional clone detection500

by exploiting lexical and syntactical information in source code. In IJCAI, pages 3034–3040,501

2017.502

[57] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V503

Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in504

neural information processing systems, pages 5753–5763, 2019.505

12

Checklist506

The checklist follows the references. Please read the checklist guidelines carefully for information on507

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or508

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing509

the appropriate section of your paper or providing a brief inline description. For example:510

• Did you include the license to the code and datasets? [Yes] See Section 4.2511

• Did you include the license to the code and datasets? [No] The code and the data are512

proprietary.513

• Did you include the license to the code and datasets? [N/A]514

Please do not modify the questions and only use the provided macros for your answers. Note that the515

Checklist section does not count towards the page limit. In your paper, please delete this instructions516

block and only keep the Checklist section heading above along with the questions/answers below.517

1. For all authors...518

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s519

contributions and scope? [Yes]520

(b) Did you describe the limitations of your work? [Yes] We explain clearly that our work521

provides good identifier names but is not enough to reverse all the transformations done522

by code obfuscators. Moreover, our metrics and examples show the limitations of our523

model.524

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss525

it at the end of the introduction. Our method is provides good pre-trained models526

for downstream tasks and proposes adequate variable names but is not sufficient to527

reverse all the transformations done by adversarial code obfuscators. While automatic528

deobfuscation has some negative societal impact, we believe that direct applications of529

our model will have a mostly positive societal impact.530

(d) Have you read the ethics review guidelines and ensured that your paper conforms to531

them? [Yes]532

2. If you are including theoretical results...533

(a) Did you state the full set of assumptions of all theoretical results? [N/A] The results534

are empirical.535

(b) Did you include complete proofs of all theoretical results? [N/A] The results are536

empirical.537

3. If you ran experiments...538

(a) Did you include the code, data, and instructions needed to reproduce the main experi-539

mental results (either in the supplemental material or as a URL)? [Yes] We included540

our code with a ReadMe to reproduce our results in the supplementary materials.541

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they542

were chosen)? [Yes] We provided the details about the model architecture, data splits543

and hyperparameters in Section 4.3.544

(c) Did you report error bars (e.g., with respect to the random seed after running experi-545

ments multiple times)? [No] The experiments take several gpu-days to run. Running546

bootstraps to compute error bars would be prohibitively expensive.547

(d) Did you include the total amount of compute and the type of resources used (e.g.,548

type of GPUs, internal cluster, or cloud provider)? [Yes] We provide some details in549

Section 4.3: we train our model using 32 V100 GPUs for 8 days.550

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...551

(a) If your work uses existing assets, did you cite the creators? [Yes] We used the datasets552

provided by the CodeXGlue [1] benchmark and the TransCoder [46] paper and cite553

both.554

(b) Did you mention the license of the assets? [Yes] We mention in 4.2 that the assets555

from CodeXGLUE is available under the MIT license and that of TransCoder under556

the Creative Commons license.557

13

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]558

We added some examples of generations and more information in the supplemental559

materials. We also included our code in the supplemental material.560

(d) Did you discuss whether and how consent was obtained from people whose data you’re561

using/curating? [Yes] In Section 4.3, we mention that we created our dataset from562

github repositories with licenses authorizing use for research purposes.563

(e) Did you discuss whether the data you are using/curating contains personally identifiable564

information or offensive content? [N/A] The data we are using contains open-source565

code available on github. It does not contain personal information about github users.566

5. If you used crowdsourcing or conducted research with human subjects...567

(a) Did you include the full text of instructions given to participants and screenshots, if568

applicable? [N/A] No human subjects.569

(b) Did you describe any potential participant risks, with links to Institutional Review570

Board (IRB) approvals, if applicable? [N/A] No human subjects.571

(c) Did you include the estimated hourly wage paid to participants and the total amount572

spent on participant compensation? [N/A] No human subjects.573

14

	Introduction
	Related work
	Model
	MLM for Programming Languages
	Deobfuscation Objective
	Implementation

	Experiments
	Deobfuscation
	Fine-tuning on downstream tasks
	Experimental details

	Results
	Deobfuscation
	Downstream tasks

	Conclusion

