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Abstract

Goal-conditioned reinforcement learning (RL) is a promising direction for train-1

ing agents that are capable of solving multiple tasks and reach a diverse set of2

objectives. How to specify and ground these goals in such a way that we can both3

reliably reach goals during training as well as generalize to new goals during eval-4

uation remains an open area of research. Defining goals in the space of noisy and5

high-dimensional sensory inputs poses a challenge for training goal-conditioned6

agents, or even for generalization to novel goals. We propose to address this by7

learning factorial representations of goals and processing the resulting representa-8

tion via a discretization bottleneck, for coarser specification of goals, through an9

approach we call DGRL. We show that applying a discretizing bottleneck can im-10

prove performance in goal-conditioned RL setups, by experimentally evaluating11

this method on tasks ranging from maze environments to complex robotic navi-12

gation and manipulation tasks. Additionally, we prove a theorem lower-bounding13

the expected return on out-of-distribution goals, while still allowing for specifying14

goals with expressive combinatorial structure.15

1 Introduction16

Reinforcement Learning is a popular and highly general framework [25, 57] focusing on how to17

select actions for an agent to yield high long-term sum of rewards. An important question is how18

to control the desired behavior of an RL agent during both training and evaluation [24]. One way19

to control this behavior is by specifying a reward signal [49, 53]. While this approach is very20

general, the reward signal can be hard to design and may not be the most informative form of21

feedback. The credit assignment problem in RL can become difficult when the reward signal is22

sparse [59, 60, 33, 34, 54], such as policy gradients becoming nearly flat in regions where reward is23

almost never achieved. Generalization can also suffer if the agent only learns one way to achieve a24

high reward rather than learning a diverse set of skills for coping with novel challenges [19].25

One potential way to flexibly specify and ground the desired behavior of RL agents is by training26

agents that receive a reward when they reach a goal specified explicitly to them [22]. In this ap-27

proach, called Goal-Conditioned RL, a single agent is trained to reach a diverse set of goals, and28

is given a reward only when it reaches the goal that it was instructed to reach [58, 45, 41]. This29

provides a richer signal for the agent than simply collecting more samples oriented around a single30

goal, as reaching multiple goals requires the agent to learn a more diverse and robust set of skills. It31

also allows for more flexible and tightly constrained control over the desired behavior of a learned32

agent [11, 4, 27]. Moreover, the diversity of goals seen during training should help improve both33

credit assignment and generalization [45, 40].34
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While this framework is promising, it introduces two new challenges: goal grounding [7, 1] and35

goal specification [3]. Goal grounding refers to defining the goal space and goal specification refers36

to selecting what goal the agent should try to reach in a given context. The agent is only rewarded37

in goal-conditioned RL when it reaches the reward which it was specified to reach, whereas in goal-38

free RL a reward is provided regardless of any such specification, which makes the nature of the39

agent’s task fundamentally different.40

Figure 1: Illustration of learning discrete and factorial
goal representations.

What makes grounding and specifying goals41

challenging? Consider trying to train a goal-42

conditioned RL agent to pick up various43

fruits from a table. For example, we may44

want it to pick up a red apple or a green45

pear (illustrated in Figure 1). The number46

of possible goals of interests may be fairly47

small, such as the set of all valid combi-48

nations of fruits and their colors, while the49

number of possible observations of goals is50

extremely large when working in a rich ob-51

servation space (e.g images from a camera).52

Goal Grounding refers to this challenge of53

relating high-dimensional observations and54

the space of relevant goals. Goal Specification refers to picking a suitable goal for the agent to55

reach and computing an appropriate reward when it is reached. It also implies specifying goals56

reachable in the agent’s current context [36, 26]. Goal specification could be done either manu-57

ally by a developer or by another RL agent, such as a high-level agent which generates goals that58

a lower-level agent tries to reach [11, 4, 27, 21]. Goals specified in language are an excellent fit59

for these desiderata, as language is a compressed discrete representation which is useful for out-of-60

distribution generalization, while being compositional and expressive [18, 10, 21, 16]. At the same61

time, connecting language feedback for an agent is non-trivial (requiring special assumptions or a62

labeling framework) [8].63

We propose to learn the goal representations with self-supervised learning (either by itself, or trained64

jointly with the downstream RL objective) while forcing the goal representations to be discrete and65

factorial. To perform this discretization, we use Vector-Quantization [61, 44, 30] which discretizes a66

continuous representation using a codebook of discrete and learnable codes. The approach proposed67

here (called DGRL) serves two complementary purposes. First, it provides a structured represen-68

tation of the raw visual goals. By representing the visual goals as a composition of discrete codes69

from a learned dictionary, it makes it easier to ground unseen goals (i.e., goals not seen during train-70

ing) using (novel) compositions of the discrete codes learned during the training process. We show71

empirically that this improves generalization performance of goal-reaching policies to unseen goals72

while remaining expressive enough. Second, the learned discrete codes can be used by another agent73

(like a higher-level policy in hierarchical RL) to specify sub-goals to an agent (i.e.. a lower-level74

policy) to complete the task (i.e., reach the goal). In this case goal-inference is learned end-to-end.75

The effectiveness of goal-conditioned HRL relies on the specification of semantically meaningful76

sub-goals. Using factorial discrete sub-goals allows the higher-level policy to specify semantically77

meaningful objectives to the lower-level policy.78

2 Preliminaries79

Goal-conditioned RL. We consider a goal-conditioned Markov Decision Process, where the goals80

G lie in the state space S, i.e., G = S (or in observation space O). We denote a goal-81

conditioned policy as π(a|s, g) (either stochastic or deterministic), and its expected total return as82

J(π) = E
[∑T

t=0 R(st, g, a)
]

where the goal g is either sampled from a distribution ρg or provided83

by another higher level policy πhθh(g | s). The value function V π is additionally conditioned on84
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goals, and is trained to predict the expected sum of future rewards conditioned on states and goals;85

V π(s, g) = E
[∑T

t=0 R(st, g, a) | s0 = s;π
]
. As in standard RL, the objective in goal-conditioned86

RL is to maximize the expected discounted returns induced by the goal-conditioned policy.87

Hierarchical Reinforcement Learning. We consider goal-conditioned settings in which the goals88

are specified in the observation space. In the hierarchical reinforcement learning (HRL) setup, goals89

are provided by a higher level policy πhθh(g|st). The higher level policy operates at a coarser time90

scale and chooses a goal gt ∼ πhθh(g|st) to reach for the lower level policy every K steps. The91

lower level policy executes primitive actions πlθl(a|st, gt) to reach the goals specified by the high-92

level policy and is trained to maximize the intrinsic reward provided by the high-level policy. The93

higher level policy is trained to maximize the external reward i.e., the reward function specified by94

the MDP. Both the higher and lower level policies can be trained with any standard RL algorithms,95

such as Deep Q-Learning (DQN) [33] or policy optimization based algorithms [47, 48]. Alternately,96

one can also consider another setup for goal-conditioned RL, where the goals are provided by the97

environment g1, . . . gL and are part of the state or observation space. At each episode of training,98

one of the goals is sampled from the distribution of goals ρg and the policy is trained to reach the99

sampled goal. At test time, the agent can be evaluated either on its ability to reach goals within the100

distribution ρg , or for its out-of-distribution generalization capability to reach new kinds of goals.101

In this work, we consider both the HRL and goal-conditioned setups, and evaluate the significance102

of learning a factorial representation of discrete latent goals in a series of complex goal-conditioned103

tasks.104

Vector Quantized Representations. VQ-VAE [61, 44, 30] discretizes the bottleneck representation105

of an auto-encoder by adding a codebook of discrete learnable codes. The input is passed through an106

encoder. The output of the encoder is compared to all the vectors in the codebook, and the codebook107

vector closest to the continuous encoded representation is fed to the decoder. The decoder is then108

tasked with reconstructing the input from this quantized vector.109

Self-supervised learning of representations. Several papers [28, 55, 50, 31] have demonstrated110

the benefits of using a pre-training stage where the representations of raw observations are learned111

using self-supervised objectives in a task-agnostic fashion. After the pre-training stage, the represen-112

tations can be used for (and potentially also fine-tuned on) downstream tasks. These self-supervised113

representations have been shown to improve sample efficiency.114

3 Discrete Goal-Conditioned Reinforcement Learning (DGRL)115

In this section, we provide technical details on the proposed framework, DGRL, which consists of116

three parts: (a) learning representations of raw visual observations through self-supervised repre-117

sentation objectives, (b) processing the resulting representations via a learned dictionary of discrete118

codes, and (c) using the resulting discrete representations for downstream goal-conditioned and HRL119

tasks. With the learnt discrete goal representations, we describe in Section 5 how they can accelerate120

learning in complex navigation and manipulation tasks. The goal representation can be learned at121

the same time as the downstream-RL objective or pre-trained with self-supervised learning and then122

used as a fixed representation for RL.123

3.1 Self-Supervised Goal Representation Learning124

One can use any off-the shelf self-supervised method for learning representations of the raw state and125

the goal observations. We denote by ϕ the encoder network that takes as input the raw observation126

and maps it to a continuous embedding: ze = ϕ(ot). Here, we explore two different self-supervised127

techniques for learning representations. For simpler environments, we use a simple autoencoder with128

the reconstruction objective. For more complex environments, we use the Deep InfoMax approach129

[31] which optimizes for a contrastive objective as a proxy to maximize the mutual information130

between representations of nearby states in the same trajectory.131
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Figure 2: Summary of Proposed DGRL Model for improving goal grounding and goal specifica-
tion by making goal representations discrete and factorial. We learn a latent representation for both
observations and goals using a self-supervised learning method (sec. 3.1). We convert the learnt
latent representation into discrete latents based on a VQ-VAE quantization bottleneck with multiple
factor outputs (sec. 3.2). We use the resulting discrete representations for downstream RL tasks:
(i) to train a goal-conditioned policy or value function, and (ii) in the context of goal-conditioned
hierarchical reinforcement learning (sec. 3.3).

3.2 Processing continuous representations via a discrete codebook132

We learn discrete representations by using the vector-quantization method from the VQ-VAE pa-
per [61] and follow the multi-factor setup used in Discrete-Value Neural Communication [30]. The
discretization process for each vector ze ∈ H ⊂ Rm is described as follows. First, vector ze is
divided into G segments c1, c2, . . . , cG with ze = CONCATENATE(c1, c2, . . . , cG), where each seg-
ment ci ∈ Rm/G (such that m is divisble by G). Each continuous segment ci is mapped separately
to a discretized latent vector e ∈ RL×(m/G) where L is the size of the discrete latent space (i.e., an
L-way categorical variable):

eoi = DISCRETIZE(ci), where oi = argmin
j∈{1,...,L}

||ci − ej ||.

These discrete codes, which we call the factors of the continuous representation ze, are concatenated133

to obtain the final discretized vector zq:134

zq = CONCATENATE(DISCRETIZE(c1), DISCRETIZE(c2), ..., DISCRETIZE(cG)). (1)

The loss for vector quantization is: Ldiscretization = β
G

∑G
i ||ci − sg(eoi)||22.135

The training procedure closely follows both [30] and [61]. Here, sg refers to a stop-gradient op-136

eration that blocks gradients from flowing into eoi , and β is a hyperparameter which controls how137

strongly we move the codes toward the encoded values. Unlike [30], we used a moving average to138

update the code embeddings rather than learning them directly as parameters. We update eoi with139

an exponential moving average to encourage it to become close to the selected output segment ci.140

This update sets the new value of eoi to be equal to ηeoi + (1− η)ci, where the value of η is a fixed141

hyperparameter controlling how quickly the moving average updates. The term
∑G
i ||ci−sg(eoi)||22142

is the commitment loss, which only applies to the target segment ci and trains the encoder that out-143

puts ci to make ci stay close to the chosen discrete latent vector eoi . We trained the VQ-quantization144

process together with other parts of the model by gradient descent. When there were multiple ze145

vectors to discretize in a model, the mean of the codebook and commitment loss across all ze vectors146

was used.147
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Summary. The multiple steps described above can be summarized by zq = q(ze, L,G), where q(·)148

is the whole discretization process using the codebook, L is the codebook size, and G is the number149

of factors per vector. We train the representations for both the state and goal observations with a150

discretization bottleneck on the continuous representations resulting from the self-supervised pre-151

training. The number of factors G is a hyper-parameter. In our experiments, we try with different152

number of discrete factors G = 1, 2, 4, 8, 16, and found that G = 16 worked the best. Using153

discretization with more factors slightly increases computation but reduces the number of model154

parameters due to the codebook embeddings being reused across the different factors.155

3.3 Using representations for downstream RL156

We use the discrete representations for downstream RL tasks: (i) to train a goal-conditioned policy,157

and (ii) in the context of hierarchical reinforcement learning.158

Goal-conditioned RL. Defining goals in the space of noisy, high-dimensional sensory inputs poses159

a challenge for generalization to novel goals because the encoder that maps the goal observations to160

the low dimensional latent representation may fail to generalize. One way to address this is to embed161

the continuous latent representation into a discrete representation such that the representation of the162

novel goal is mapped to the fixed set of latent discrete codes, and hence facilitate generalization163

to new combinations of these codes while making it easy for downstream learning to figure out164

the meaning of each discrete code. In this setup instead of feeding the continuous state and goal165

embedding we used their discretized versions, thus grounding goal representations in the input space.166

We use the resulting representations for training a goal-conditioned policy at ∼ πlθl(a|st, gt) or a167

goal-conditioned action value function Q(st, at, gt). At each episode of training, a goal is sampled168

from the distribution of goals ρg and the agent gets rewarded for reaching the sampled goal. This169

reward can either be an extrinsic reward which is defined as part of the environment or an intrinsic170

reward which is defined as part of the algorithm. In DGRL, we define the intrinsic reward as the171

fraction of discrete factors which match in the respective representations of the goal observation172

and the state observation. At test time, the agent can either be evaluated to reach goals within the173

distribution ρg , or for its generalization capability to reach goals not seen during training.174

Hierarchical RL. The higher level policy gt ∼ πhθh(g | st) outputs a continuous representation175

of goals g by conditioning on the states every K time-steps, it can also output a sub-goal sg by176

conditioning on both states s and environment goals g, i.e., πhθh(sg | st, gt). The effectiveness of177

goal-conditioned HRL relies on the specification of semantically meaningful sub-goals. Learned178

codebooks (section 3.2) consisting of a set of discrete codes can be used by a higher level policy to179

specify which goal to reach to a lower level policy. The use of learned codebooks ensures that the180

goal specified by the higher level policy is grounded in the space of raw-observations.181

In section 5, we empirically show the benefits of the proposed approach for training goal-reaching182

policies or goal-conditioned value functions, as well as in a goal-conditioned hierarchical RL setup.183

4 Theoretical Analysis184

In this section, the goal discretization is shown to improve generalization to novel goals by enhanc-185

ing the concentration of the goal distribution within each neighborhood of discretized goal values;186

i.e., by decomposing the goal probability p(g) into p(g) =
∑
k p(g|g ∈ Gk)p(g ∈ Gk) with the187

neighborhood set {Gk}k, it improves the overall performance in p(g) by increasing the concentra-188

tion in p(g|g ∈ Gk). Intuitively, this is because the discretization removes varieties of possible goal189

values g ∈ Gk for each neighborhood Gk. To state our result, we define φθ(g) = Es0 [V π(s0, g)],190

where θ ∈ Rm is the vector containing model parameters learned through n goals observed dur-191

ing training phase, g1, . . . , gn. We denote the discretization of g by q(g), and the identity function192

by id as id(g) = g. Let Q = {q(g) : g ∈ G} and d̂ be a distance function. We use Qi to de-193

note the i-th element of Q (by ordering elements of Q with an arbitrary ordering). We also define194

[n] = {1, . . . , n}, Gk = {g ∈ G : k = argmini∈[|Q|] d̂(q(g),Qi)}, Ik = {i ∈ [n] : gi ∈ Gk}, and195

IQ = {k ∈ [|Q|] : |Ik| ≥ 1}. We denote by c a constant in (n, θ,Θ, δ, S).196
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The following theorem (proof in Appendix D) shows that the goal discretization improves the lower197

bound of the expected sum of rewards for unseen goals Eg∼ρg [(φθ ◦ ς)(g))] by the margin of ω(θ):198

Theorem 1. For any δ > 0, with probability at least 1− δ, the following holds for any θ ∈ Rm and199

ς ∈ {id, q}:200

Eg∼ρg [(φθ ◦ ς)(g))] ≥
1

n

n∑
i=1

(φθ ◦ ς)(gi)− c

√
2 ln(2/δ)

n
− 1{ς = id}ω(θ)

where ω(θ) = 1
n

∑
k∈IQ

|Ik|
(

1
|Ik|

∑
i∈Ik

φθ(gi)− Eg∼ρg [φθ(g)|g ∈ Gk]
)

. Moreover, for any

compact Θ ⊂ Rm, if φθ(g) is continuous at each θ ∈ Θ for almost all g and is dominated by a
function χ as |φθ(g)| ≤ χ(g) for all θ ∈ Θ with Eg[χ(g)] < ∞, then the following holds:

sup
θ∈Θ

|ω(θ)| P−→ 0 when n → ∞.

Proof. Detailed proof provided in the appendix D201

Without the goal discretization, we incur an extra cost of ω(θ), which is expected to be strictly202

positive since 1
|Ik|

∑
i∈Ik

φθ(gi) is maximized during training while Eg∼ρg [φθ(g)|g ∈ Gk] is not.203

Thus, the goal discretization can improve the expected sum of rewards for unseen goals by the degree204

of ω(θ), which measures the concentration of the goal distribution in each neighborhood. This extra205

cost ω(θ) goes to zero when the number of goal observations n approaches infinity.206

5 Experiments207

The main goal of our experiments is to show that goal discretization can lead to sample efficient208

learning and generalization to novel goals, in goal-conditioned RL. First, we directly study this209

by training on environments with a set of goals (such as 8 positions within a gridworld) and then210

evaluating the agent’s ability to reach a position within the gridworld which it was not tasked with211

reaching during training. Second, we consider hierarchical goal-conditioned RL, in which a higher-212

level agent generates goals that a lower-level agent is tasked with reaching. In this case, the task213

of reaching novel goals occurs organically as the higher-level model selects new goals. This setup214

also shows the advantages of DGRL for goal specification. A secondary goal of our experiments is215

to show that using many discrete factors is often critical for optimal performance, which proves the216

value of factorization in grounding goals.217

We evaluate our proposed method DGRL by integrating it into existing state-of-the-art goal-218

conditioned and hierarchical RL tasks. Experimentally, we analyse DGRL on several challeng-219

ing goal-conditioned testbeds that have previously been used in the goal-conditioned RL commu-220

nity. DGRL in principle can be applied to any existing downstream goal-conditioned RL tasks, we221

demonstrate improvements on five distinct goal-conditioned RL tasks. We consider maze navigation222

tasks where images are used as observations and we show improved generalization to novel goals.223

We integrate DGRL to an existing goal-conditioned baseline for navigating procedurally-generated224

hard exploration Minigrid environments [9] and find that it outperforms state-of-the-art exploration225

baselines. We also show improvements with DGRL on continuous control (Ant) navigation and226

manipulation tasks, where goals come from a high-level controller. Finally, we show that discrete227

representations also significantly improve sample efficient learning on a challenging vision-based228

robotic manipulation environment.229

Learning to Reach Diverse and Novel Goals. We study a gridworld navigation task in which an230

agent is trained to reach a goal from a small finite set of training goals, and during evaluation is231

tasked with reaching a novel goal unseen during training. This is a navigation task with a pixel-level232

observation space showing the position of the agent and the goal in a gridworld. We consider two233

mazes spiral and single-loop topology. Experiment setup given in Appendix C.1.234
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For this task, we train a goal-conditioned Deep Q-Learning (DQN) agent, and use a pre-trained235

representation ϕ(·) where the encoder is trained using data from a random rollout policy. Because236

the gridworld is small the random rollout policy achieves good coverage of the state space, so we237

found this was sufficient for learning a good goal representation. At each episode, a specific goal is238

randomly sampled from a distribution of goals, and the DQN agent is trained to reach the specified239

goal for that episode. During evaluation, we test the learned agent on goals either from the training240

distribution, or not seen during training.241

Furthermore, for this task, we additionally use an intrinsic reward for exploration of the goal-DQN242

agent. Since we learn a discrete factorial representation of the goal, we compute an exploration243

bonus based on the discrete latent codebooks; i.e., we embed the states and goals using the learned244

codes and then compute an intrinsic exploration bonus based on the fraction of learned factors that245

match. For the baseline goal-DQN agent, we provide an additional reward bonus based on the246

cosine distance between continuous embeddings of the state observation and goal. Figure 3 shows247

that DGRL significantly outperform a continuous baseline goal DQN agent, when trained on either248

four goals or eight goals. We evaluate generalization to 4 novel goals unseen during training (Figure249

4) and demonstrate improved generalization to novel goals.250
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Figure 3: Loopworld maze environment. We show that for different discrete factors of 4, 8, 16,
DGRL outperforms a goal-DQN baseline agent with continuous goal representations. As we in-
crease the number of factors G to 16, the expressivity of the discrete goal representation increases,
lowering the odds of the factors being the same. This provides a better intrinsic reward signal for
exploration, resulting in faster convergence for DGRL integrated on a goal-DQN agent.
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Figure 4: SpiralWorld environment (left). Generalization to test distribution of 4-goals in a Spiral-
World environment (left). We show the total number of steps to solve all test set goals, when trained
on either an 8-goal or 16-goal training distribution.

In the previous experiment, we evaluated the generalization ability of DGRL by showing that learn-251

ing discrete factorial representations of goals can improve generalization to novel goals. Now, we252

consider various setups in which a goal generating agent specifies goals using the learned codebook253

and the goal-conditioned agent is tasked with reaching the goals specified by the goal generating254

agent. We test various settings, where the goal generating agents is parameterized as an adversarial255

teacher [5], or as a higher-level policy in the case of hierarchical RL.256

Procedurally Generated MiniGrid Exploration Task. We follow the experimental setup of [5]257

and [43] and evaluate DGRL on procedurally generated MiniGrid environments [9]. In [5], a goal-258

generating teacher proposes goals to train a goal-conditioned “student” policy. We integrate DGRL259
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Figure 5: Performance comparison of the Amigo
baseline [5] with adversarially intrinsic goals,
and adding DGRL for discretization of the
goals.

Model KCmedium
AMIGO + DGRL, G=16 .96± .01
AMIGO + DGRL, G=8 .70± .16

AMIGO .93± .06
RIDE .90± .00
RND .89± .00
ICM .42± .21

Table 1: We added DGRL on top of the
Amigo baseline implementation provided
by the authors.
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Figure 6: In KeyChest, the
agent (A) starts from a random
stochastic position, picks up the
key (K) and then uses the key
to open the chest (C). We find
DGRL improved sample effi-
ciency over the HRAC baseline.

on top of AMIGO [5] and compare DGRL on a hard exploration task with state-of-the-art ex-260

ploration baselines. Experimental results are summarized in Table 1 and more details provided in261

Appendix C.3. Note that unlike RIDE and RND, we do not provide an additional exploration bonus262

to DGRL, and find that DGRL can still solve this hard exploration task more efficiently.263

Goal Grounding in KeyChest Maze Navigation Domain. We consider a simple discrete state264

action KeyChest maze navigation task, following [68], where discrete goals in the state space are265

provided by a higher level policy. For this task, to integrate DGRL, we learn an embedding ϕ(·) of266

the goals, then discretize the representation with a learned codebook. We compare with a baseline267

HRAC [68] agent (details in Appendix C.2). Figure 6 shows an illustration of the KeyChest environ-268

ment and a performance comparison of DGRL with different group factors G. Using fewer factors269

(G = 4) performs worse than the HRAC baseline, whereas using a larger number of factors (G = 8270

or G = 16) improves the sample efficiency of the goal reaching agent, providing evidence for the271

benefits of factorization.272

Ant Manipulation Control Domains. We employed DGRL on three different continuous control273

tasks: AntMazeSparse, AntFall and AntPush task. We emphasize that these tasks are the more274

challenging counterparts of AntGather and AntMaze tasks, typically used in the hierarchical RL275

community [35, 37]. Figure 7 provides illustration of these tasks. We evaluate goal discretization276

by integrating DGRL to the state-of-the-art HRAC baseline. Details of the experimental setup are277

provided in Appendix 5. Figure 7 shows that specifying the goals using the learned codebook helps278

DGRL achieve a higher success rate compared to the HRAC baseline.279

Ant Navigation Maze Tasks. We consider Ant navigation tasks that require extended temporal rea-280

soning, following the setup in Reinforcement learning with Imagined Subgoals [6, RIS]: a U-shaped281

maze, and an S-shaped maze (the S-shaped maze is shown in Figure 8). The ant navigating in the282

maze is trained to reach any goal in the environment. The agent is evaluated for generalization in283

an extended temporal setting with a difficult configuration, we compare the success rate of DGRL284

integrated on top of RIS with several baselines. We emphasize the difficulty of these tasks, where285

existing baselines like soft actor critic [19, SAC] and temporal difference models [42, TDM] fail286

completely. Results in Figure 8 show that DGRL improves the sample efficiency over the RIS base-287

line. Additional experimental setup and environment configurations are provided in Appendix C.5.288

289
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Figure 7: Comparison of DGRL with baseline HRAC [68] on 3 different navigation tasks.
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Figure 8: Performance comparison with the success rate of reaching goal positions during evaluation
in an extended temporal configuration of the U-shaped and maze-shaped Ant navigation tasks. We
find that integrating DGRL with RIS can lead to more sample efficient convergence on these tasks,
while baselines such as SAC and TDM (not shown) fail completely on both AntU and AntMaze as
reported by [6]. The RIS baseline is based on raw data provided by the authors.

Vision Based Robotic Manipulation. Finally, we assess DGRL on a hard vision-based robotic290

manipulation task, and use the same setup as in section 5 to integrate DGRL with the state-of-the-291

art RIS baseline on the Sawyer task in Figure 9. This manipulation task is adapted from [39], where292

the baseline RIS is already shown to be superior to previous goal conditioning methods. The task293

of the agent is to control a 2-DoF robotic arm from image input and move a puck positioned on294

the table. The Sawyer task is designed for training and generalization. At test time, it evaluates the295

agent’s success at placing the puck in desired positions in a temporally extended configuration. This296

is a challenging vision-based complex motor task, since test time generalization requires temporally297

extended reasoning. Results in Figure 9 show that DGRL improves the sample efficiency over the298

RIS baseline. Details of the experimental setup is provided in Appendix C.6.299
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Figure 9: Sawyer
Robotic Manipula-
tion Task. Integrating
DGRL with RIS
(with a larger num-
ber of factors, G=8
and G=16, while
G=4 fails), improves
over the RIS baseline

6 Conclusion300

Our work provides direct evidence that performance of goal-conditioned RL can be improved when301

the representations of the goals are both discrete and factorial. We show that an instantiation of302

this idea using multi-factor discretization significantly improves performance on a diverse set of303

benchmarks. An interesting question that arises from our work is how to theoretically ground and304

specify goals, which might be helpful for efficient structured exploration in tasks where goal seeking305

is crucial.306
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