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ABSTRACT

Most applications of transformers to mathematics, from integration to theorem
proving, focus on symbolic computation. In this paper, we show that transformers
can be trained to perform numerical calculations with high accuracy. We consider
problems of linear algebra: matrix transposition, addition, multiplication, eigen-
values and vectors, singular value decomposition, and inversion. Training small
transformers (up to six layers) over datasets of random matrices, we achieve high
accuracies (over 90%) on all problems. We also show that trained models can gen-
eralize out of their training distribution, and that out-of-domain accuracy can be
greatly improved by working from more diverse datasets (in particular, by training
from matrices with non-independent and identically distributed coefficients). Fi-
nally, we show that few-shot learning can be leveraged to re-train models to solve
larger problems.

1 INTRODUCTION

Since their introduction by Vaswani et al. (2017), transformers, originally designed for machine
translation, were applied to various problems, from text generation (Radford et al., 2018; 2019) to
image processing (Carion et al., 2020) and speech recognition (Dong et al., 2018) where they soon
achieved state-of-the-art performance (Dosovitskiy et al., 2021; Wang et al., 2020b). In mathematics,
transformers were used for symbolic integration (Lample & Charton, 2019), theorem proving (Polu
& Sutskever, 2020), formal logic (Hahn et al., 2021), SAT solving (Shi et al., 2021), symbolic regres-
sion (Biggio et al., 2021) and dynamical systems (Charton et al., 2020). All these problems pertain
to symbolic mathematics, or involve a large amount of symbolic computation. When working on
these tasks, transformers manipulate mathematical symbols, just like words in natural language.

But mathematics are not limited to symbol manipulation: many practical applications involve nu-
merical calculations, either exact (e.g. arithmetic) or approximate (e.g. function evaluation, nu-
merical solutions of equations). The use of transformers for numerical computation has been less
studied, and many early experiments with arithmetic have proved disappointing (Nogueira et al.,
2021). This is, nevertheless, an important question: most problems in mathematics and science in-
volve both symbolic and numerical computations. If we want transformers to solve these problems
end-to-end, they need to be able to perform numerical calculations with high accuracy.

In this paper, we train transformers to compute solutions of problems of linear algebra: basic opera-
tions on matrices, matrix inversion, eigenvalue and singular value decompositions. These operations
are fundamental building blocks for a large number of scientific problems. We introduce and dis-
cuss four encodings to represent problems and solutions as sequences that transformers can process,
and train small transformers (up to 6 layers, 10 to 50 million trainable parameters) over generated
datasets of random matrices. Trained models can compute approximate solutions to these problems
(to a few percents of their L1 norm) with over 90% accuracy (over 99% in most cases). We also
show that they can generalize out of their training distribution, and be retrained to extrapolate to
larger problems than the ones they were trained on. We believe these results pave the way for using
transformers as end to end solvers for problems of mathematics and science.

After introducing the problems of linear algebra we are studying and presenting the encodings we
use to represent them as sequences that can be used by our models, we discuss data generation,
architecture and experimental settings. Then, we present our experiments on nine different problems,
and discuss out-of-distribution generalization and few shot learning for eigenvalue computation.
Finally, we discuss our results and future directions for research, and present related works.

1



Under review as a conference paper at ICLR 2022

2 PROBLEMS AND DATASETS

Let M and N be m×n matrices and V ∈ Rm . We study nine problems of linear algebra:

• matrix transposition: find MT , a n×m matrix,
• matrix addition: find M +N , a m× n matrix,
• matrix-vector multiplication: find MTV , a vector in Rn,
• matrix multiplication: find MTN , a n× n matrix,
• eigenvalues: M symmetric, find its n (real) eigenvalues, sorted in descending order,
• eigenvectors: M symmetric, find D diagonal and Q orthogonal such that M = QTDQ,

set as a (n+ 1)× n matrix, with eigenvalues as its first line,
• singular values: find the n eigenvalues of MTM , sorted in descending order,
• singular value decomposition: find orthogonal U, V and diagonal S such that M = USV ,

set as a (m+ n+ 1)×min(m,n) matrix,
• inversion: M square and invertible, find its inverse P , such that MP = PM = Id.

These problems range from basic operations on individual coefficients of the input matrices (transpo-
sition and addition), to computations involving several arithmetic operations over many coefficients
(multiplication), to complex nonlinear transformations involving the whole matrix, with cubic com-
plexity (decompositions and inversion). For each problem, we generate datasets of pairs of matrices
(N,O), by sampling random input matrices N (see section 2.2), and computing the output O with a
linear algebra package (NumPy linalg). When a problem has several input or output matrices, they
are concatenated into one (for instance, the two m × n operands of the addition task are concate-
nated into one m × 2n matrix N ). All coefficients in N and O are set in base ten floating-point
representation, and rounded to three significant digits in the mantissa.

2.1 ENCODING MATRICES AS SEQUENCES

The input and output to our problems are matrices. To be processed by transformers, they need to be
converted into sequences of tokens. We encode a m×n matrix by first coding its dimensions as two
symbolic tokens (Vm and Vn), followed by its mn coefficients, encoded as sequences. Through this
paper, we will use four encoding schemes for matrix coefficients: P10, P1000, B1999, and FP15.

In base 10 positional encoding (P10), a number is represented as a sequence of five tokens : one sign
token (+ or -), 3 digits (from 0 to 9) for the mantissa, and a symbolic token (from E-100 to E+100)
for the exponent. For instance 3.14 will be represented as 314.10−2, and encoded as [+, 3, 1,
4, E-2]. P1000 (positional base 1000) provides a more compact representation by encoding the
mantissa as a single token (from 0 to 999), and representing a number as the triplet (sign, mantissa,
exponent). B1999 (balanced base 1999) pushes this one step further by encoding together the sign
and mantissa (from -999 to 999). Finally, FP15 encodes each floating point number x = m10b

as a unique token FPm/b (with b ∈ [−8, 8] and m ∈ [−999, 999]). Table 1 provides examples of
encodings.

Encoding 3.14 −6.02.1023 Tokens / coefficient Vocabulary

P10 [+, 3, 1, 4, E-2] [-, 6, 0, 2, E21] 5 210
P1000 [+, 314, E-2] [-, 602, E21] 3 1100
B1999 [314, E-2] [-602, E21] 2 2000
FP15 [FP314/-2] [FP-602/21] 1 30000

Table 1: Four encodings for matrix coefficients.

Choicing an encoding is a trade-off. Long encodings (P10, P1000) embed knowledge about num-
bers. For instance, two numbers can be crudely compared by looking at their signs and mantissas,
and multiplication and addition can be learned by memorizing small tables. Compact encodings, on
the other hand, result in shorter sequences that are easier to learn with transformers. In P10, a 20×20
matrix is a sequence of 2002 tokens, close to the practical limit of most transformer implementations
(that use a quadratic attention mechanism). In FP15, it is only 402 token long.
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2.2 RANDOM MATRIX GENERATION

In most experiments, models are trained on datasets of random matrices with uniformly distributed
coefficients over [−A,A] (setting A = 10). Occasionally, we sample gaussian coefficients with
the same standard deviation (σ = A/

√
3). In the symmetric case, these matrices are known as

Wigner matrices. Their eigenvalues have a centered distribution with standard deviation σ =
√
ns,

where s is the standard deviation of the coefficients (s = A/
√
3 in the uniform case) (Mehta, 2004).

As n increases, the distribution converges to the semi-circle law (p(λ) =
√
4σ2 − λ2/2πσ2 ) for

all coefficient distributions with bounded variance. If the coefficients are gaussian, the associated
eigenvectors are uniformly distributed over the unit sphere.

When investigating out-of-distribution generalization for the eigenvalue problem, we will need to
generate random symmetric matrices with different distributions of their eigenvalues (correspond-
ing to random matrices with non iid coefficients). To this effect, we randomly sample symmetric
matrices with gaussian coefficients, compute their eigenvalue decomposition PDPT , with P the or-
thogonal matrix of eigenvectors (uniformly distributed over the unit sphere since the coefficients are
gaussian), replace D, the diagonal of eigenvalues, by with D′, sampled from another distribution,
and recompute M = PD′PT . This allows us to generate symmetric matrices with any eigenvalue
distribution, while keeping their eigenvectors uniformly distributed over the unit sphere.

3 MODELS AND EXPERIMENTAL SETTINGS

We use the standard transformer architecture introduced in Vaswani et al. (2017), with an encoder
and a decoder connected by a cross-attention mechanism. Most of our models have 512 dimensions,
8 attention heads and up to 6 layers. We experiment with different number of layers, and attention
heads in the encoder and decoder. Training is supervised. We minimize the cross-entropy between
model prediction and the correct solution, using the Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 10−4, an initial warm-up phase of 10000 steps and cosine scheduling (Loshchilov
& Hutter, 2016). Training data is generated on the fly, in batchs of 64.

Every 300, 000 examples, 10, 000 random problems are generated and used to evaluate the model.
When evaluating, we consider that a predicted sequence seqP is a correct solution to the problem
(N,O) (N and O the input and output matrices) if it can be decoded as a valid matrix P (several
matrices for singular and eigen decomposition) that approximates the correct solution to a given
tolerance τ (τ ∈ {5, 2, 1, 0.5%}) . For addition, transposition, multiplication, eigen and singular
values we check that P verifies ‖P − O‖ < τ‖O‖, with the L1 norm (‖A‖ =

∑
i,j |ai,j |, if A =

(ai,j)). For eigenvalue decomposition, we check that the solution (Q,D) predicted by the model
can reconstruct the input matrix, i.e. ‖QTDQ − N‖ < τ‖N‖. For singular value decomposition,
we check that ‖USV −M‖ < τ‖M‖. For matrix inversion, we check that ‖PN − Id‖ < τ (since
‖Id‖ = 1). The choice of the L1 norm is important: norms like L2 and L∞ favor models that
correctly predict the largest coefficients in the solution. For eigen or singular value problems, this
amounts to predicting the largest values, an easier problem than the one we want to solve.

We consider different tolerances for different problems. Since we round numbers to three sig-
nificant digits, a number x with mantissa 1.00 is subject to a maximal rounding error of 0.5%
(x ∈]1.005, 0.995]), which may accumulate when several (rounded) numbers are summed, and
increase again when nonlinear operations are considered. When discussing results, we consider
tolerances of 0% for transposition, which involves no arithmetic, 1% for basic matrix operations
(addition, multiplication), and 2 or 5% for non linear operations (decomposition, inversion), but we
usually provide results for all tolerance levels.

Most of our experiments focus on 5 × 5 square matrices, or rectangular matrices with as many co-
efficients (6 × 4, 2 × 13 ). This allows for comparison between encodings (for larger dimensions,
varying sequence lengths complicate the analysis). We also study scaled-up versions of these prob-
lems (from 8 × 8 to 15 × 15), and datasets with matrices of variable dimensions (5-10 or 5-15). In
this paper, we limit ourselves to problem that can be solved using small models (with up to 6 layers).
Scaling to larger problems, and leveraging deeper architectures is left for future research.
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4 EXPERIMENTS AND RESULTS

4.1 TRANSPOSITION

Learning to transpose a matrix amounts to learning a permutation of its elements,. For a square
matrix, the permutation is composed of cycles of two elements. It becomes more complex for a
rectangular matrix. This task involves no arithmetic operations: tokens from the input sequence
are merely copied to the output, in different positions. We investigate two formulations of this
problems: a fixed-size case, where all matrices in the dataset have the same dimension, and only
one permutation is to be learned, and a variable-size case, where the dataset includes matrices of
different dimensions, with as many different permutations to learn. We train transformers with one
layer, 256 or 512 dimensions and 8 attention heads in the encoder and decoder, over datasets using
our four encoding schemes. All models learn to predict the exact solution (with 0% tolerance) in
more than 99% of test cases, for fixed-size matrices, square or rectangular, with dimensions up to
30 × 30. This holds for all encodings, and for input or output sequences up to 2000 tokens long.
Similar accuracies are achieved for variable-size datasets: (over 99% for 5−15 and 96% for 5−20),
with the rectangular cases proving more difficult to train. Table 2 summarizes our findings.

Fixed dimensions Variable dimensions
Square Rectangular

5x5 10x10 20x20 30x30 5x6 7x8 9x11 5-15 5-20 5-15 5-20

P10 100 100 100 - 100 100 100 100 - 97.0 -
P1000 100 100 99.9 - 100 100 100 99.9 - 98.4 -
B1999 100 100 99.9 100 100 100 100 100 96.6 99.6 91.4
FP15 99.8 99.5 99.4 99.8 99.8 99.5 99.3 99.8 99.6 99.4 96.1

Table 2: Exact prediction of matrix transposition for different matrix dimensions.

4.2 ADDITION

Learning to add two m× n matrices amounts to learning the correspondence between the positions
of input and output (as in the transposition task) and the algorithm for adding two numbers in floating
point representation, which will be performed on mn pairs of elements. We train transformers with
1 or 2 layers, 8 attention heads and 512 dimensions. Sum of fixed-size matrices with dimensions up
to 10, both square and rectangular, are predicted with over 99% accuracy within 1% tolerance (and
over 98% within 0.5%), with all four encodings. As dimensions increase, models using the P10
and P1000 encodings become more difficult to train as input sequences grow longer: adding two
15 × 15 matrices involves 450 input coefficients, a sequence of 1352 tokens in P1000 and 2252 in
P10. Nevertheless, FP15 models achieve 99.5% accuracy within 0.5% tolerance for 15×15 matrices
and B1999 models 89.7% accuracy with 1% tolerance on 20 × 20 matrices. Variable-size matrices
with dimensions up to 10 are predicted by 2-layer transformers using the B1999 encoding with over
99.5% accuracy within 1% tolerance. Over matrices with large dimensions (5-15), shallow models
with 1 or 2 layers struggle, and their accuracy drops to 48 and 37% in the square and rectangular
case. This can be mitigated by using deeper decoders: models with one layer in the encoder and 6
in the decoder achieve 77 and 87% accuracy on the same datasets. Table 3 summarizes our results.

Fixed dimensions Variable dimensions
Square Rectangular

Size 5x5 6x4 3x8 10x10 15x15 20x20 5-10 5-15 5-15 5-10 5-15 5-15
Layers 2/2 2/2 2/2 2/2 2/2 1/1 2/2 1/1 1/6 2/2 2/2 1/6

5% 100 99.9 99.9 100 100 98.8 100 63.1 99.3 100 72.4 99.4
2% 100 99.5 99.8 100 100 98.4 99.8 53.3 88.1 99.8 50.8 94.9
1% 100 99.3 99.7 100 99.9 87.9 99.5 47.9 77.2 99.6 36.9 86.8
0.5% 100 98.1 98.9 100 99.5 48.8 98.9 42.6 72.7 99.1 29.7 80.1

Table 3: Accuracies of matrix sums, for different tolerances.
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4.3 MULTIPLICATION

Multiplication of a matrix M of dimension m × n by a vector V ∈ Rn amounts to computing the
m dot products between V and the lines of M . Each calculation features n multiplications and
n − 1 additions, and involve one row in the matrix and all coefficients in the vector. The model
must now learn the position of the 2n elements in the computation, and two operations (add and
multiply). Experimenting with models with 1 or 2 layers, over 5× 5 matrices, we observe that only
models using the P10 and P1000 encoding can be trained to high accuracy. The P1000 encoding
performs best, with little difference between two and one layer models. Accuracies over 99.9%, at
1% tolerance, are achieved by 2-layer transformers using the P1000 encoding for 5× 5 and 10× 10
square matrices. Comparable accuracies are achieved when multiplying rectangular matrices by
vectors with the same overall number of coefficients (30). Experiments with datasets of matrices
with variable size (from 5 to 10) achieve non-trivial performance (from 48% with 1% tolerance, to
72% with 5% tolerance, for square matrices). Results are sumarized in table 4.

P10 Variable 5-10
5x5 5x5 10x10 14x2 9x3 4x6 2x10 Square Rectangular

5% 100 100 100 99.3 99.9 100 100 72.0 41.7
2% 99.9 100 100 99.0 99.7 100 99.8 66.9 35.0
1% 98.5 99.9 99.9 98.7 99.5 99.9 99.2 47.6 20.1
0.5% 81.6 99.5 98.4 98.1 99.0 98.6 94.5 16.2 4.4

Table 4: Accuracies of matrix-vector products, for different tolerances. All models are P1000 unless
indicated. Fixed-size models have 1 or 2 layers, variable-size have 2 or 4.

Multiplication of matricesM and P is a scaled-up version of the matrix-vector multiplication, which
is now performed for every column in matrixP . As previously, only models using the P10 and P1000
encoding can be trained to predict to high accuracy. Over 5×5 matrices and rectangular matrices of
similar size, trained model accuracy is the same as vector-multiplication (over 99% at 1% tolerance,
see table 5), but deeper decoders (with 4 to 6 layers) are needed.

Square matrices Rectangular matrices
5x5 5x5 2x13 2x12 3x8 4x6 6x4 8x3 12x2 13x2

P10 2/2 layers 1/4 4/4 4/4 2/6 1/4 1/6 1/6 1/6 1/4

5% 100 100 100 100 100 100 100 100 100 99.9
2% 100 100 100 100 100 100 100 100 99.7 99.8
1% 99.8 100 99.9 100 100 99.9 100 99.9 99.3 99.8
0.5% 64.5 99.9 97.1 98.5 99.6 99.7 99.5 99.5 99.0 99.8

Table 5: Accuracy of matrix multiplication, for different tolerances. Fixed-size matrices with 24 − 26
coefficients. All encodings P1000 unless specified.

4.4 EIGENVALUES

We now turn to non-linear computations, usually solved with iterative algorithms. We train models
with 4 or 6 layers in the encoder or the decoder. Over samples of 5×5 matrices, we reach 100%
accuracy at 5% tolerance, and 98.5% at 1% for all four encodings. For 8×8 matrices, we have
accuracies of 100 and 85% at 5 and 1% tolerance. Larger problems, however, prove difficult to
learn: on 10×10 matrices, 25% accuracy at 5% tolerance is reached after 360 million examples. As
a comparison, 5×5 models train to maximum accuracy in about 40 million examples, 8×8 models
in about 60.

This limitation disappears once we train models on variable-size datasets. On samples of matrices
with 5-10, 5-15 and 5-20 dimensions, we achieve 100% accuracy at 5% tolerance, and 88, 94 and
45% at 1%. Using the 5-15 model, the eigenvalues of 10×10 matrices can be predicted with 100%
accuracy at 2% tolerance, and 73% at 1%. Table 6 summarizes our results.
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Fixed dimensions Variable dimensions
5x5 5x5 5x5 5x5 8x8 8x8 10x10 5-10 5-15 5-20

Encoding P10 P1000 B1999 FP15 P1000 FP15 FP15 FP15 FP15 FP15
Layers 6/6 4/1 6/6 6/1 6/1 1/6 1/6 4/4 6/6 4/4

5% 100 100 100 100 100 100 25.3 100 100 100
2% 100 99.9 100 100 99.2 97.7 0.4 99.8 100 75.5
1% 99.8 98.5 98.6 99.7 84.7 77.9 0 87.5 94.3 45.3
0.5% 93.7 88.5 73.0 91.8 31.1 23.9 0 37.2 40.6 22.5

Table 6: Accuracy of eigenvalues for different tolerances and dimensions. All models have 8 attention
heads, except the 10x10 model, which has 12.

4.5 EIGENVECTORS

This is an expanded version of the previous task: together with the eigenvalues, we predict the
orthogonal matrixQ of eigenvectors. Over 5×5 matrices, models using the P10 and P1000 encoding
achieve 97.0 and 94.0% accuracy with 5% tolerance. FP15 models fare less well, with an accuracy
of 51.6%, but asymmetric models, with 6-layer FP15 encoder and 1-layer P1000 decoder, achieve
93.5% accuracy at 5% and 67.5% at 1% tolerance. The eigenvectors of 6 × 6 matrices can be
predicted by P1000 models with an accuracy of 81.5%. Table 7 summarizes our results.

5x5 6x6

P10 P1000 FP15 FP15/P1000 P1000
4/4 layers 6/6 1/6 6/1 6/1

5% 97.0 94.0 51.6 93.5 81.5
2% 83.4 77.9 12.6 87.4 67.2
1% 31.2 41.5 0.6 67.5 11.0
0.5% 0.6 2.9 0 11.8 0.1

Table 7: Accuracies of eigenvectors, for different tolerances and dimensions.

4.6 INVERSION

Inversion of 5×5 matrices proves a difficult task for transformers, with accuracies at 5% tolerance of
73.6% for P10 models, and 80.4 for P100 models (all with 6-layer encoders and 1-layer decoders).
Increasing the number of attention heads to 10 and 12 brings no improvement in accuracy, but allows
for faster training: 8 head models are trained to 75% accuracy in about 250 million examples, 10 and
12 head models in only 120. The best performances (89.4%) are achieved by asymmetric models: a
6-layer FP15 encoder with 12 attention heads, and a 1-layer P1000 decoder with 4 attention heads.

P10 P1000 FP15/P1000
8/8 heads 8/8 heads 10/8 heads 12/8 heads 10/4 heads 12/4 heads

5% 73.6 80.4 78.8 76.9 87.0 89.4
2% 46.9 61.0 61.7 52.5 74.2 79.9
1% 15.0 30.1 34.2 16.2 49.6 57.8
0.5% 0.2 3.1 5.9 0.1 16.0 24.0

Table 8: 5x5 matrix inversion. All models have 6/1 layers, except P1000 10 heads, which has 6/6.

4.7 SINGULAR VALUE DECOMPOSITION

Whereas this task related to eigen decomposition (the singular values of a symmetric matrix are
the absolute values of its eigenvalues), it proves more difficult to learn: transformers with up to 6
layers, using the P10 or P1000 encoding, can predict the singular decomposition of 4×4, but not
5×5 matrices. Accuracies remain high, 100 and 86.7% for singular values (5 and 1% tolerance),
and 98.9 and 73.5% for the full decomposition.
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5% 2% 1% 0.5%

Singular values
P10 2/2 layers 100 98.5 84.5 41.1
P1000 4/4 layers 100 99.8 86.7 39.8
Singular vectors
P10 1/6 layers 66.1 11.2 0.2 0
P1000 6/6 layers 98.9 95.6 73.5 5.5

Table 9: Accuracies of SVD for 4x4 matrices.

5 OUT-OF-DOMAIN GENERALIZATION AND RETRAINING

In this section, we focus on the prediction of eigenvalues of symmetric matrices. The random n×n
matrices used to train our models have independent and identically distributed (iid) coefficients,
sampled from a uniform distribution over [−A,A]. They belong to a common class of random ma-
trices, known as Wigner matrices. As n becomes large, their eigenvalues are distributed according
to a semi-circle law (see 2.2). For small values of n, their eigenvalue distribution is centered and has
standard deviation σ =

√
ns, where s is the standard deviation of the coefficients (s = A/

√
3 when

uniform). Whereas Wigner matrices appear in many problems of science, random matrices with dif-
ferent distributions of eigenvalues (and non iid coefficients) are also found in many practical cases.
For instance, statistical covariance matrices have all their eigenvalues positive, and the adjacency
matrices of scale-free and other non-Erdos-Renyi graphs have centered but non semi-circle distri-
butions of eigenvalues (Preciado & Rahimian, 2017). It is, therefore, interesting to study how our
models, trained on Wigner matrices, perform on matrices with different distributions of eigenvalues.

To this effect, we generate test sets of 10000 matrices with different distributions. We first gener-
ate test matrices with uniform iid coefficients (same distribution as the training set), but different
standard deviation: σtest ∈ [0.1σtrain, 1.5σtrain]. Over these test sets, our trained models achieve
over 96% accuracy (2% tolerance) for σtest ∈ [0.6σtrain, σtrain]. However, accuracy drops below
0.6σtrain: 54% for 0.4σtrain, and 0% for 0.2σtrain, and over σtrain: 26% for 1.1σtrain and 2% for
1.3σtrain. Out-of-distribution generalization takes place so long the variance of the test set is lower,
and not too different from that of the training set.

We then generate test sets of matrices with positive eigenvalues (Wigner matrices with eigenvalues
replaced by their absolute values), and with eigenvalues distributed according to the uniform, gaus-
sian and Laplace law (generated as per 2.2), with standard deviation σtest ∈ [0.6σtrain, 1.2σtrain].
For σtest = σtrain, accuracies are 26% for Laplace, 25 for gaussian, 19 for uniform, and 0% for
positive. Test results are slightly better for lower standard deviations (σtest = 0.6σtrain): 28, 44, 60,
and 0%, but out-of-distribution accuracies remain low, and the eigenvalues of matrices with positive
eigenvalues cannot be predicted at all.

To improve out-of-distribution accuracy, we create new datasets with different distributions, train
models on them, and evaluate them on our test sets. First, we generate a dataset of matrices with
uniform coefficients, but variable standard deviation (by randomly choosing A ∈ [1, 100] for each
matrice). Unsurprisingly, models trained on this dataset achieve high accuracies on samples with
high or low variance. Performance on gaussian, uniform and Laplace-distributed eigenvalues is also
improved, but matrices with positive eigenvalues still cannot be predicted. Training models over
a mixture of matrices with uniform coefficients (semi-circle eigenvalues) and positive eigenvalues
results in better prediction of positive eigenvalues, but degrades results on all other tests sets. Mixing
matrices with semi-circle and gaussian eigenvalues, or semi-circle and Laplace eigenvalues, on the
other hand, results in high accuracies for all test sets, as does training on a dataset of matrices with
Laplace eigenvalues only, or a mixture of uniform, gaussian and Laplace eigenvalues. The results of
these experiments are presented in table 10.

This is an important result, because it suggests that Wigner matrices, which are often considered the
default model for random matrices, might not be the best choice for training transformers. Models
trained on matrices with non-iid coefficients (i.e. with eigenvalues not following a semicircle law)
generalize to matrices with iid coefficients. As we have seen, the reverse is not true. Overall,
this confirms that out-of-distribution generalization is possible if particular attention is paid to how
training samples are generated.

7



Under review as a conference paper at ICLR 2022

Test set eigenvalue distribution
Semicircle Positive Uniform Gaussian Laplace

σtest/σtrain 0.3 1.0 1.2 0.6 1 0.6 1 0.6 1 0.6 1

iid coeff. A=10 (baseline) 12 100 7 0 0 60 19 44 25 28 26

iid coeff. A ∈ [1, 100] 99 98 97 0 0 68 60 65 59 57 53
Semicircle-Positive 1 99 14 88 99 45 23 31 23 17 20
Semicircle-Gaussian 88 100 100 99 99 96 98 93 97 84 90
Semicircle-Laplace 98 100 100 100 100 100 100 99 100 96 99
Laplace 95 99 99 100 100 98 98 97 98 94 96
Gaussian-Uniform-Laplace 99 100 100 100 100 100 100 99 100 97 99

Table 10: Out-of-distribution eigenvalue accuracy (tolerance 2%) for different training distributions.

Models trained on matrices of a given size do not generalize to different dimensions. However,
they can be retrained over samples of matrices of different size. This takes comparatively few
examples: a 5×5 model, that takes 40 million examples to be trained, can learn to predict with high
accuracy eigenvalues of matrices of dimension 6 and 7 with about 25 million additional examples.
Table 11 presents those results. The capacity of pre-trained large transformers (such as GPT-3) to
perform few-shot learning is well documented, but it is interesting to observe the same phenomenon
in smaller models.

Encoding Retrain dimensions Accuracy (5%) Accuracy(2%) Retrain examples

P10 5-6 100 99.9 10M
P10 5-7 100 93.6 25M
P1000 5-6 100 97.7 25M

Table 11: Model accuracy after retraining. Models trained over 5x5 matrices, retrained over 5-6 and 5-7.
Overall performance after retraining (tolerance 5 and 2%, and number of examples needed for retraining.

6 DISCUSSION AND FUTURE DIRECTIONS

We discuss four encoding schemes for matrix coefficients. Our experiments suggest that P10 is
generally dominated by P1000, which is also more economical, and that B1999 never really finds
its use, as FP15 is more compact and P1000 more efficient. P1000 seems to be a good choice for
problems of moderate size, and FP15 when sequence lengths grow. For advanced problems, like
eigenvectors and inversion, architectures using a deep encoder with FP15 encoding, and a shallow
decoder with P1000, seem to achieve the best performances. Our interpretation is that P1000 in the
decoder facilitates training because, by representing output in a meaningful way (sign, mantissa,
exponent), it provides the model with better “error signal” during training. On the other hand, a
FP15-based deep encoder can implement complex representations of the input matrix, but is easier
to train because of the shorter sequences. When using those asymmetric architectures, we note that
the deep encoder often benefits from more attention heads, while reducing the number of heads
in the shallow decoder improves training stability. We believe that such asymmetric architectures
deserve to be better studied and understood.

Most of our experiments focus on matrices with 5 to 10 lines and columns. Experiments on the
eigenvalue problem suggest that larger problems can be solved by training over matrices of variable
size. In this work, we sample matrices of different dimensions in equal proportion, and present
them for training in random order. Better performance might be achieved by leveraging curriculum
learning (varying the proportion and scheduling of matrices of different dimensions). Yet, sequence
lengths will reach the practical limits of quadratic attention mechanisms as dimension grows. Ex-
perimenting with transformers with linear or log-linear attention (Zaheer et al., 2021; Wang et al.,
2020a; Vyas et al., 2020; Child et al., 2019) is a natural extension of our work. Throughout this re-
search, we use small models. Our transformers have up to 6 layers and less than 50 million trainable
parameters. BERT and GPT-1 (2018) had 12 and 120, GPT-2 (2019) 48 and 1.5 billion, and GPT-3
(2020) 96 and 175 billions. It would certainly be interesting to test large pre-trained models on such
computational tasks.
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We consider the out-of-distribution experiments as our most striking results. They suggest that
models can generalize to a wide range of test distributions. This validates the idea of training models
from generated datasets, but indicates that the choice of the training distribution is a decisive factor.
In our specific case, we note that the “obvious” random model (Wigner matrices) is not the best for
out-of-domain generalization, and that special distributions (matrices with non-iid coefficients with
Laplace eigenvalues) can produce better models. This seems to confirm the intuitive idea that we
learn more from specific and edge cases, that from averages. A similar situation might apply to other
random models, for instance the Erdos-Renyi model for graphs.

7 RELATED WORK

Algorithms using neural networks to compute eigenvalues and eigenvectors have been proposed
since the early 1990s (Samardzija & Waterland, 1991; Cichocki & Unbehauen, 1992; Yi et al., 2004;
Tang & Li, 2010; Oja, 1992), and improvements to the original techniques have been proposed until
recently (Finol et al., 2019). Similar approaches have been proposed for other problems in linear al-
gebra (Wang, 1993a;b; Zhang et al., 2008). All these methods leverage the Universal Approximation
Theorem (Cybenko, 1989; Hornik, 1991), which states that, under weak conditions on their activa-
tion functions, neural networks can approximate any continuous mapping (in our case, the mapping
between the coefficients of a matrix and their associated eigenvalues and vectors). These approaches
rely on the fact that eigenvalues and vectors appear in the solutions of particular differential equa-
tions involving the matrix coefficients (see, for instance, Brockett (1991)). By designing a neural
network that represents this differential equation, with the matrix to decompose as the input, and the
coefficients in the output layer as the solution, and by defining a loss function measures how well the
output layer approximates the correct solution, the network can be trained to predict the solution to
the problem. These techniques have two main limitations: they rely on a problem-specific network
architecture, that has to be hand-coded, and computation is done at train time, which makes them
slow, and implies retraining the network every time a new matrix is to be processed. In comparison,
the techniques proposed in this paper are trained to compute at inference, for any matrix input.

Techniques have been proposed to train neural networks to compute basic mathematical operations,
and use them as building blocks for larger components. Kaiser & Sutskever (2015) introduced the
Neural GPU, that could learn addition and multiplication over binary representations of integers.
Trask et al. (2018) proposed Neural Arithmetic Logic Units (NALU), that can learn to perform
exact additions, substractions, multiplications and divisions by constraining the weights of a linear
network to remain close to 0, 1 or -1. Both Neural GPU and NALU have been shown to be able to
extrapolate to numbers far larger than those they were trained on. For matrix multiplication, Blalock
& Guttag (2021) use learning techniques to improve on known approximate techniques.

Use of transformers in mathematics has mostly focused on symbolic computations. Lample & Char-
ton (2019) showed that transformers could be trained to integrate functions and solve ordinary dif-
ferential equations and, in a follow-up work (Charton et al., 2020), predict properties of differen-
tial systems. Transformers have also been applied to formal systems, in theorem proving (Polu &
Sutskever, 2020) and temporal logic (Hahn et al., 2021). The use of sequence to sequence models for
arithmetic and the exact solution of mathematical problem has been studied by Saxton et al. (2019).
In a recent paper, Nogueira et al. (2021) point to the limitations of experiments on arithmetic.

8 CONCLUSION

In this paper, we have shown that transformers can be trained over generated datasets to solve prob-
lems of linear algebra with high accuracy, and that careful selection of the generative model for
their training data can allow them to generalize out of their training distribution. This demonstrates
that applications of transformers to mathematics are not limited to symbolic calculation, and can
cover a wider range of scientific problems, featuring numerical computations. Our results on out-
of-distribution generalization provide some justification to the idea that models trained over random
data can be used to solve “real world” problems. Our results also stress the importance of data gen-
eration: by suggesting that natural random models, such as Wigner matrices, might not be the best
generative procedure for training models, they open paths for future research.
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