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Abstract

A number of recent studies of continuous variational autoencoder (VAE) models1

have noted, either directly or indirectly, the tendency of various parameter gradients2

to drift towards infinity during training. Because such gradients could potentially3

contribute to numerical instabilities, and are often framed as a problematic phe-4

nomena to be avoided, it may be tempting to shift to alternative energy functions5

that guarantee bounded gradients. But it remains an open question: What might6

the unintended consequences of such a restriction be? To address this issue, we7

examine how unbounded gradients relate to the regularization of a broad class of8

autoencoder-based architectures, including VAE models. Our main finding is that,9

if the ultimate goal is to simultaneously avoid over-regularization (high reconstruc-10

tion errors, sometimes referred to as posterior collapse) and under-regularization11

(excessive latent dimensions are not pruned from the model), then an autoencoder-12

based energy function with infinite gradients around optimal representations is13

provably required per a certain technical sense we carefully detail. Given that both14

over- and under-regularization can directly lead to poor generated sample quality15

or suboptimal feature selection, this result suggests that heuristic modifications to16

or constraints on the VAE energy function may be ill-advised, and large gradients17

should be accommodated to the extent possible.18

1 Introduction19

Suppose we have access to continuous variables x ∈ χ that are drawn from ground-truth measure µgt.20

This measure assigns probability mass µgt(dx) to the infinitesimal dx residing within χ ⊂ Rd such21

that we have
∫
χ µgt(dx) = 1. This formalism allows us to consider data that may lie on or near an22

r-dimensional manifold embedded in Rd (implying r < d), capturing the notion of low-dimensional23

structure relative to the high-dimensional ambient space.24

Because of the possibility of an unknown latent manifold, it is common to approximate the corre-25

sponding ground-truth measure via a density model parameterized as26

pθ(x) =

∫
pθ(x|z)p(z)dz. (1)

In this expression θ are trainable parameters and z ∈ Rκ serves as a low-dimensional latent represen-27

tation, with fixed prior p(z) = N (z;0, I) and ideally κ ≥ r. If some θ∗ were available such that28 ∫
A
pθ∗(x)dx ≈

∫
A
µgt(dx) for any measurable A ⊆ χ, then the model would adequately reflect the29

intrinsic underlying distribution. Of course we will generally not know in advance the value of θ∗,30

but in principle we might consider minimizing − log pθ(x) averaged across a set of training samples31

{x(i)}ni=1 drawn from µgt, i.e., minimize 1
n

∑n
i=1− log

[
pθ
(
x(i)

)]
≈

∫
− log [pθ(x)]µgt(dx)32
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over θ. Unfortunately though, the marginalization required to produce pθ
(
x(i)

)
is generally in-33

tractable for models of sufficient representational power. To circumvent this issue, the variational34

autoencoder (VAE) [Kingma and Welling, 2014, Rezende et al., 2014] instead optimizes the tractable35

variational bound L(θ, φ) ,36

1
n

n∑
i=1

{
−Eqφ(z|x(i))

[
log pθ

(
x(i)|z

)]
+ KL

[
qφ(z|x(i))||p(z)

]}
≥ 1

n

n∑
i−1
− log

[
pθ

(
x(i)

)]
.

(2)
Here qφ(z|x) represents a variational approximation to pθ(z|x) with additional parameters φ gov-37

erning the tightness of the bound. It is commonly referred to as an encoder distribution since it38

quantifies the mapping from x to the latent code z. For analogous reasons, pθ(x|z) is labeled39

as the decoder distribution. When combined, the data-dependent factor −Eqφ(z|x) [log pθ (x|z)]40

can be viewed as instantiating a form of stochastic autoencoder (AE) structure, which attempts to41

assign high probability to accurate reconstructions of each x; if qφ (z|x) is Dirac delta function,42

then a regular deterministic AE emerges with loss dictated by the decoder negative log-likelihood43

− log pθ(x|z). Beyond this, KL [qφ(z|x)||p(z)] serves as a regularization factor that pushes the44

encoder distribution towards the prior. The bound (2) can be minimized over {θ, φ} using SGD and a45

simple reparameterization trick [Kingma and Welling, 2014, Rezende et al., 2014].46

The latter requires that we assume specific functional forms for the encoder and decoder distributions.47

In this regard, it is common to select qφ (z|x) = N (z|µz, diag[σz]
2), where the Gaussian moment48

vectors µz and σz are functions of model parameters φ and the random variable x, i.e., µz ≡49

µz (x;φ), and σz ≡ σz (x;φ). Similarly, for continuous data the decoder model is conventionally50

parameterized as pθ (x|z) = N (x;µx, γI), with mean defined analogously as µx ≡ µx (z; θ)51

and scalar variance parameter γ > 0. The functions µz (x;φ), σz (x;φ), and µx (z; θ) are all52

instantiated using deep neural network layers. Given this definitions, (2) can be expressed in the more53

transparent form54

L(θ, φ) ≡ 1
n

n∑
i=1

{
Eqφ(z|x(i))

[
1
γ ‖x

(i) − µx (z; θ) ‖22
]

+ d log γ (3)

+
∥∥∥σz (x(i);φ

)∥∥∥2
2
− log

∣∣∣∣diag
[
σz

(
x(i);φ

)]2∣∣∣∣+
∥∥∥µz (x(i);φ

)∥∥∥2
2

}
.

Although VAE models have been successfully applied to a variety of practical problems [Li and She,55

2017, Schott et al., 2018, Walker et al., 2016], at times they exhibit potentially problematic behavior56

that is not fully understood. For example, a number of recent works have mentioned that if a trainable57

decoder variance parameter γ is included within a Gaussian VAE as in (3), then the optimal value58

may converge to zero, resulting in infinite or unbounded gradients and potential instabilities [Dai59

and Wipf, 2019, Mattei and Frellsen, 2018, Rezende and Viola, 2018, Takahashi et al., 2018]. While60

unbounded gradients may indeed be troublesome from an optimization perspective, in this work we61

will reframe such gradients as an integral part of any successful autoencoder-based energy function62

designed to model continuous data arising from a low-dimensional manifold.63

To accomplish this, our analysis is split into three parts. First, in Section 2 we detail how unbounded64

gradients contribute to an optimal, balanced form of regularization, allowing the VAE to capture65

low-dimensional manifold structure via a maximally parsimonious latent representation. Such66

representations turn out to be critical for tasks such as generating non-blurry samples that resemble67

the training data [Tolstikhin et al., 2018], or for using autoencoder-based models in general to robustly68

screen outliers [An and Cho, 2015, Xu et al., 2018]. Of course it is natural to consider whether these69

same goals could not be achieved using an alternative energy function with strictly bounded gradients.70

The second and primary component of our contribution answers this question in the negative. More71

concretely, our main result from Section 3 proves that canonical autoencoder-based architectures72

will necessarily require unbounded gradients to guarantee the type of maximally parsimonious latent73

representation mentioned above. Thirdly, in Section 4 we elucidate the benefits of learning γ during74

training, even in situations where we know that the optimal value will be at or near zero and contribute75

to arbitrarily-large gradients. In particular, we argue that (at the very least) learning γ localizes76

troublesome unbounded gradients to narrow regions around minima of (3), while simultaneously77

smoothing the VAE objective across optimization trajectories prior to convergence.78
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Overall, our contribution can be viewed as complementary to the wide body of work analyzing what79

is commonly-referred to as posterior collapse in VAE models [He et al., 2019, Razavi et al., 2019].80

The latter can be related to the situation where γ is too large (either implicitly [Dai et al., 2020] or81

explicitly [Lucas et al., 2019]) and along all or most latent dimensions the posterior qφ
(
zj |x(i)

)
82

collapses to the priorN (0, 1) leading to high reconstruction errors. In contrast, we direct our attention83

herein to the opposite condition whereby γ is arbitrarily small and unbounded gradients invariably84

ensue. In this regime, the resulting latent representations obtained from bad local minimizers can85

potentially be under-regularized in an underappreciated sense that will be described in subsequent86

sections.87

2 Optimal Low-Dimensional Structure via Unbounded VAE Gradients88

As alluded to previously, the VAE objective will experience unbounded gradients if γ → 0 as has89

sometimes been observed (at least approximately) during training. But perhaps counter-intuitively,90

this phenomena nonetheless serves a critical purpose in the context of modeling data with low-91

dimensional manifold structure as described in Section 1. To quantify this assertion, we first precisely92

define what type of low-dimensional or sparse latent representations will be considered optimal for93

our present analysis; later we link this definition to practical VAE/AE applications.94

2.1 Optimal Sparse Representations95

Definition 1 An autoencoder-based architecture (VAE or otherwise) produces an optimal sparse96

representation of a training setX if the following two conditions simultaneously hold:97

(i) The reconstruction error is zero.1 For a stochastic VAE model this requirement entails that98

1
n

n∑
i=1

Eqφ(z|x(i))

[∥∥∥x(i) − µx [z; θ]
∥∥∥2
2

]
= 0. (4)

In contrast, for an AE with encoder function µz (x;φ) and decoder µx (z; θ),99

we analogously require that the now deterministic reconstruction satisfies100

1
n

∑n
i=1

∥∥x(i) − µx
[
µz
(
x(i);φ

)
; θ
]∥∥2

2
= 0.101

(ii) Conditioned on achieving perfect reconstructions per criteria (i) above, the number of latent102

dimensions of z containing no information about X is maximal. More specifically, for the VAE103

we say that the j-th latent dimension contains no information regardingX if qφ
(
zj |x(i)

)
=104

N (0, 1) for all i, i.e., the posterior is pushed to the prior along this dimension. Likewise, for an105

AE with encoder µz (x;φ), the corresponding requirement can be relaxed to µz
(
x(i);φ

)
j

= 0106

for all i. In either case, a latent dimension so-defined provides no benefit in reducing the107

reconstruction error and could in principle be removed from the model.2108

Conceptually, this definition is merely describing the most parsimonious latent representation of the109

training data that nonetheless allows us to obtain perfect reconstructions. And when combined with110

the low-dimensional manifold assumption from Section 1, it readily follows that an optimal sparse111

representation ofX will generally involve κ− r uninformative dimensions (assuming κ ≥ r). As a112

simple illustrative example, for data generated by a low-dimensional linear subspace model, PCA can113

be trivially applied to obtain the corresponding optimal sparse representation, in this case defined by114

the smallest subspace containing all of the data variance.115

In broader contexts involving nonlinear low-dimensional manifolds, the VAE can achieve something116

analogous when granted sufficient encoder/decoder capacity, at least assuming that the global optimum117

1If insufficient capacity or other modeling errors are a factor, we can of course relax this definition to allow
for reconstruction errors within some tolerance level.

2It could also be argued that if qφ(zj |x(i)) is set to another arbitrary distribution not equal to the prior p(z),
it would similarly contain no information about X . However, this possibility is moot because if qφ(zj |x(i)) is
not useful for predicting X , then it will be set to the prior p(z) to optimize the KL-divergence term, not some
arbitrary distribution. Analogous reasoning holds for the deterministic AE case, where typical sparsity penalties
(e.g., [Fan and Li, 2001, Rao et al., 2003]) are used to push noninformative dimensions to zero.
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Figure 1: The importance of optimal sparse representations in screening outliers. In this example, the
simple 2D principal subspace obtainable by PCA can perfectly reconstruct the inlier manifold shown
in red. But this requires using two separate informative dimensions, allowing both inliers and outliers
to be reconstructed with zero error within this subspace. In contrast, it is only by recovering the
curved 1D inlier manifold, which relies on a single informative dimension, that inliers and outliers
can be differentiated. Please see supplementary for practical example using real data.

of (3) can be found [Dai and Wipf, 2019]. This capability requires that the VAE avoid both over-118

or under-regularization of the latent representations. To be more precise, VAE over-regularization119

(sometimes loosely referred to as latent posterior collapse [He et al., 2019, Razavi et al., 2019])120

occurs when too many latent dimensions are non-informative (i.e., the latent posterior along these121

dimensions is close to the non-informative prior) such that the reconstruction error is high and criteria122

(i) is violated. In contrast, with under-regularized solutions criteria (i) may be satisfied, and yet123

in reducing the reconstruction error towards zero, an excessive number of latent dimensions are124

informative in violation of criteria (ii).125

In avoiding both of these suboptimal scenarios, it can be shown that the VAE explicitly relies on126

γ → 0 and the attendant unbounded gradients that follow [Dai and Wipf, 2019]. From an intuitive127

standpoint, we might expect that achieving criteria (i) would require an unbounded gradient given128

that, if we minimize (3) over γ in isolation, the optimal value satisfies129

γ∗ = 1
dn

n∑
i=1

Eqφ(z|x(i))

[∥∥∥x(i) − µx [z; θ]
∥∥∥2
2

]
. (5)

If we then plug this value back into the d log γ term from (3), the result is unbounded from below as130

the reconstruction error goes to zero. Of course to actually achieve near-zero reconstruction errors, at131

least some dimensions of σz must be pushed towards zero, which can also lead to infinite gradients132

within the KL-divergence term. See [Dai and Wipf, 2019] for more details.133

2.2 Relevance to Typical VAE Usage Regimes134

Obtaining minimalist latent representations as distilled by Definition 1 can serve a variety of practical135

downstream applications, such as feature extraction [Bengio et al., 2013, Ng, 2011], compression136

[Ballé et al., 2018, Donoho, 2006, Minnen et al., 2018], manifold learning [Silva et al., 2006],137

corruption removal [Dai et al., 2018], or even the generation of realistic samples. With respect to the138

latter, it has been shown in [Dai and Wipf, 2019] that what we have above defined as an optimal sparse139

representation can be viewed as a necessary (albeit not sufficient) condition for generating samples140

using a continuous-space VAE that match the training distribution. In this context, the unneeded141

latent dimensions are simply set to the uninformative Gaussian prior to optimize the KL regularizer;142

however, this white noise can be filtered out by the decoder so as not to impact the reconstructions143

allowing both criteria (i) and (ii) of Definition 1 to be satisfied. In principle, a deterministic AE144

architecture capable of producing optimal sparse representations can also be leveraged to generate145

realistic samples; this would simply involve first discarding the uninformative dimensions and then146

applying the same analysis from [Dai and Wipf, 2019]. In fact, variants of this strategy have been147

previously considered in [Ghosh et al., 2019, Tolstikhin et al., 2018].148

And as a final motivational example, any AE-based architecture capable of producing optimal sparse149

representations can naturally be applied to screening outliers by squeezing the latent space to the150

minimal number of informative dimensions needed for reconstructing inliers. In doing so, we reduce151

the risk that outlier points x(out) can be accurately reconstructed by exploiting the superfluous latent152
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flexibility. Here we are assuming that x(out) ∼ µout 6= µgt for some outlier distribution µout. Figure153

1 contains an illustration of the basic rationale.3154

Additionally, in the supplementary we demonstrate that indeed, if the inlier data (in this case Fashion155

MNIST samples) come from a low-dimensional manifold, outlier points (MNIST samples) can be156

reliably differentiated, provided that κ ≥ r and the VAE has sufficient capacity and the learned γ can157

converge to near zero. And because of the VAE’s propensity to find optimal sparse representations158

where possible, even as κ is raised such that κ� r, unneeded dimensions are shut off to reduce the159

risk of outliers masquerading as inliers (see supplementary).160

3 Can we Reliably Obtain Optimal Sparse Representations without161

Unbounded Gradients?162

As discussed in Section 2, given data originating from a low-dimensional manifold, optimal sparse163

representations are a necessary requirement (at least approximately) for various tasks such as gener-164

ating non-blurry samples aligned with the ground-truth distribution or alternatively, screening for165

outliers. We have also discussed how the divergent gradients associated with γ → 0, allow VAE166

global minima to achieve such optimal sparse representations. But what about alternatives that167

circumvent such unbounded gradients altogether? For example, could we not consider a regularized168

AE model that, while encouraging sparse latent representations [Ng, 2011], explicitly relies on energy169

function terms with bounded gradients? Despite this conceptual possibility, per the analysis that170

follows, the answer turns out to be unequivocally no. Or more specifically, if we wish to guarantee171

an optimal sparse representation, then even arbitrary AE-based objectives will necessarily require172

penalty terms with infinite gradients around optimal solutions.173

3.1 A Generic AE-based Objective for Optimal Sparse Representations174

Consider the constrained objective function Lh(θ, φ) ,175

h

(
1
dn

n∑
i=1

∥∥∥x(i) − µx
(
z(i); θ

)∥∥∥2
2

)
+ 1

d

κ∑
k=1

h
(

1
n ‖zk‖

2
2

)
,

176

s.t. z(i) = µz

(
x(i);φ

)
∀i, θ ∈ Θ, (6)

where Z , {z(i)}ni=1 ∈ Rκ×n and zk denotes the k-th row of Z. This expression can be viewed as177

characterizing a typical regularized AE with a generic penalty function h : R+ → R on the norm178

across training samples of each latent dimension. The multipliers 1/n, 1/d, and 1/(dn) ensure a179

form of proportional regularization within energy functions composed of multiple penalty factors of180

varying dimension designed to favor sparsity [Wipf and Wu, 2012]. The square-root Lasso can be181

viewed as a special case of this strategy that emerges when h is a square-root function [Belloni et al.,182

2011]. We adopt this formalism to avoid distracting complications from tunable trade-off parameters;183

however, our central conclusions still hold even when such a parameter is introduced. And finally,184

the constraint θ ∈ Θ is included in (6) to prevent the trivial solution Z → 0, which could occur if185

each z(i) is pushed to zero while the decoder µx includes an unconstrained compensatory factor that186

grows towards infinity such that the error
∥∥x(i) − µx

(
z(i); θ

)∥∥
2

can still be minimized to zero. Any187

regularized AE must include such constraints to avoid trivial solutions, or else additional penalty188

terms on θ that serve a similar purpose.189

We can also relate (6) to various VAE instantiations as follows:190

Lemma 2 Let µx (z; θ) = Wz + b for some W ∈ Rd×κ and b ∈ Rd, and σz (x;φ) = s for any191

arbitrary s ∈ Rκ. Then in the limit γ → 0, the VAE loss from (3) is such that minσz(x;φ) L (θ, φ) ≡192

mins L (θ, φ) reduces to (6) with h(·) = log(·), excluding irrelevant constant factors.193

3The only exception to this line of reasoning would be adversarial outliers that follow the exact same
low-dimensional structure as the inliers, meaning µout and µgt both apply all of their probability mass to the
same low-dimensional manifold. In this scenario, we would need to exploit differences between µout and µgt
within the manifold to reliably screen outliers, a regime in which Definition 1 is not directly applicable. That
being said, differentiating µout and µgt once a shared low-dimensional manifold has been modeled is far easier
than doing so in the original ambient space.
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Lemma 3 For any arbitrary µx (z; θ) and θ ∈ Θ, if we enforce σz (x;φ)→ 0 for all x and apply194

a log transformation to each ‖zk‖22, then the VAE loss from (3) collapses to (6) with h(·) = log(·),195

excluding irrelevant constant factors.196

Collectively, these results point to a close affiliation between (6), with h set to a log function, and the197

VAE loss, especially given that γ → 0 and σz (x;φ)→ 0 along many dimensions are characteristics198

of VAE global optima [Dai and Wipf, 2019]. Hence it is natural to consider more general selections199

of h in the context of optimal sparse representations.200

3.2 Main Result: Unbounded Gradients Cannot be Avoided201

Given a generic AE architecture as in (6), it is natural to examine what possible functions h are such202

that any global minimum of Lh(θ, φ) is guaranteed to produce an optimal sparse representation. This203

can be addressed as follows:204

Theorem 4 Assume the constraint θ ∈ Θ and dataX = {x(i)}ni=1 ∈ Rd×n are such that to achieve205

x(i) = µx
(
z(i); θ

)
∀i (i.e., perfect reconstruction) requires that ‖zk‖2 > 0 for at least r < d rows206

of Z. Then to guarantee (without further assumptions onX) that minimization of Lh(θ, φ) achieves207

zero reconstruction error using at most r nonzero rows of Z (i.e., active dimensions), h must have an208

unbounded gradient around zero.209

Note that a similar result can be obtained by replacing the reconstruction penalty with the additional210

constraint
∑n
i=1

∥∥x(i) − µx
(
z(i); θ

)∥∥2
2

= 0, in which case no trade-off parameter, fixed or otherwise,211

need be included. We also emphasize that Theorem 4 effectively implies that, to guarantee every212

global minima corresponds with an optimal sparse reconstruction per our definition, the constituent213

penalty functions must have an unbounded gradient around zero. This can be viewed as a necessary,214

albeit not sufficient condition, for optimal sparsity, as sufficiency requires additional care taking215

limits around zero, e.g., γ → 0 in the case of the VAE.216

Consequently, we cannot simply replace a VAE model with any possible AE architecture to somehow217

guarantee optimal sparse representations devoid of infinite surrounding gradients. Rather, optimal218

sparse representations and infinite gradients go hand-in-hand unless further restrictive assumptions219

are imposed on the training data.220

3.3 High-Level Intuition Behind Theorem 4221

While the proof is predicated on a nuanced counterexample designed with a specific technical222

purpose in mind (see supplementary file), we can nonetheless loosely convey the basic idea through223

a toy illustration shown in Figure 2. Here we are assuming that the data points {x(i)}ni=1 lie on a224

1D manifold embedded in 2D ambient space. Moreover, we stipulate that this manifold is tightly225

squeezed within a small non-negative ε× ε square near zero, represented by the blue curve on the226

lefthand side of Figure 2. Now consider a sample point x′ = [x′1, x
′
2]> taken from somewhere along227

the stated 1D manifold. We represent this point using two candidate decoder functions, both assumed228

to be within the capacity of µx, as displayed in the middle of Figure 2.229

For the simple decoder case, which is just the identity function µx(z; θ) = z, the values of z1 = z′1230

and z2 = z′2 needed for a perfect reconstruction will both be small, i.e., {z′1, z′2} ≤ ε by design. In231

contrast, the optimal decoder only requires that a single dimension of z, namely z1, be nonzero.232

However, the optimal value actually needed for perfect reconstruction, denoted z∗1 , can be arbitrarily233

large in controlling where along the extended, labyrinthine manifold pathway x′ is located (for ease234

of presentation we will assume z∗1 is also positive). Hence we can easily have that235

z∗1 � ε ≥ max (z′1, z
′
2) . (7)

Because of this, to ensure that z∗ = [z∗1 , 0]> is preferred over the z′ alternative, we require a concave236

penalty function h on each encoder dimension such that any infinitesimal movement away from zero237

incurs an arbitrarily-large cost, while increases originating from points away from zero incur only a238

modest additional cost (see the green curve on the righthand side of Figure 2). From this it follows239

that any movement of z′1 and z′2 away from zero, no matter how small, will be such that we can240

guarantee that the penalties on z∗ and z′ will satisfy241

h(z∗1) + h(0) = h(z∗1) ≈ h(z′1) ≈ h(z′2) < h(z′1) + h(z′2) ≈ 2 [h(z∗1) + h(0)] , (8)
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Figure 2: 2D illustration of the intuition behind Theorem 4. See Section 3.3 for details.

and so z∗ is preferred. The righthand side of Figure 2 motivates this relationship. Note also that if242

we were to explicitly bound the slope of h around zero, then we could always select an ε sufficiently243

small such that the inequality in (8) is reversed; hence an unbounded slope is required to achieve the244

stated result.245

To a large extent, the intuition here mirrors the basic scenario from Figure 1, and is emblematic of246

broader situations that naturally arise in practice. For example, if we run PCA on MNIST data, we247

find that only a 100 or so principal components are needed to achieve highly accurate reconstructions.248

But a VAE model with only around 15 informative latent dimensions can accomplish something249

similar [Dai et al., 2018] by closely approximating an optimal sparse representation using a nonlinear250

decoder. Of course unless we have a objective function with a strong preference for lower-dimensional251

structures, as instantiated through large gradients around optimal sparse representations, then the252

network may well favor or converge to a simpler, higher-dimensional alternative (e.g., resembling a253

PCA solution).254

4 Mitigating Unbounded Gradients via γ-Dependent Smoothing255

While we have argued that unbounded gradients may serve a useful purpose in obtaining optimal256

latent representations, they may nonetheless pose challenges from an optimization standpoint. In257

addressing this concern, it is worth acknowledging that energy functions involving infinite gradients258

and/or unbounded regions are already indispensable across a wide range of structured regression and259

sparse estimation problems [Gorodnitsky and Rao, 1997]. This history implies that when training a260

VAE or other related AE structure, we may borrow appropriate tools designed to mitigate the risk of261

converging to bad local solutions or regions of instability. In this vein, one effective strategy involves262

partially minimizing what amounts to a smoothed version of the original objective function. The263

degree of smoothness is then gradually reduced as the optimization trajectory moves towards an264

optimum. Within the domain of underdetermined linear inverse problems, this procedure is frequently265

used to find maximally sparse representations with minimal reconstruction error [Chartrand and Yin,266

2008, Hu et al., 2012, Xu et al., 2013].267

The VAE automatically accomplishes something similar when we choose to iteratively estimate γ dur-268

ing training rather than merely setting its value to near zero as may be theoretically optimal (assuming269

we know that there exists sufficient network capacity to achieve negligible reconstruction errors).270

Initially, when the reconstruction cost is still high because encoder/decoder parameters have not271

converged, the learned γ will be larger and the overall VAE energy will be relatively smooth, devoid of272

many deep local minimizers. It is only later as the data fit
∑n
i=1 Eqφ(z|x(i))

[∥∥x(i) − µx(z; θ)
∥∥2
2

]
273

becomes small that γ will follow suite, and by this point it is more likely that we have already274

approached a basin of attraction capable of producing optimal sparse reconstructions. Additionally,275

unlike fixing γ ≈ 0 for all training iterations, in which case gradients will be unbounded right from276

the beginning, by learning γ we will likely only encounter large gradients in a narrow neighborhood277

around minimizing solutions. This implies that in practice, we only need accommodate such gra-278

dients when the reconstruction error becomes small, at which point stability countermeasures can279

be deployed if/when necessary, e.g., reduced step size, checks for oscillating gradient sign patterns280

[Riedmiller and Braun, 1993], etc.281

To help visualize these points, in Figure 3 we have plotted 1D slices through the objective function282

of a simple VAE model involving a single layer for both encoder and decoder, applied to data283

from a random low-dimensional subspace. We vary γ ∈ {10−3, 10−2, 10−1, 1}, which exposes284
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(a) (b)

Figure 3: Plots (a) and (b) show two sets of representative 1D slices through the VAE objective
function (3) as the value of γ is varied. Dashed vertical lines indicate the x-axis location of the
minimal value of each respective slice and γ setting. And for both plots (a) and (b) the 1D slices are
set such that an optimal sparse representation would occur at zero on the x-axis when γ → 0. It can
be observed that disconnected local minima only occur when γ is small.

the increasing gradients and multi-modal nature of the objective function as γ becomes smaller.285

Dashed vertical lines indicate the minimal value of the respective curve for each γ. Additionally, we286

have explicitly designed this visualization such that there will exist an optimal sparse representation287

at zero on the x-axis. Consequently, we can readily observe that as γ becomes sufficiently small,288

the minimizing value of the VAE energy increasingly aligns with an optimal sparse representation289

as desired. However, as γ is reduced the energy is less smooth and disconnected local minima290

appear in both 1D slices. And local minima of the VAE loss surface can at times be risk points for291

under-regularized representations.292

To further explore the implications of this γ-dependent smoothing effect, we empirically compare a293

practical scenario whereby learning γ may be better than fixing it to an arbitrarily small value. To this294

effect, we first train a VAE model on CelebA data [Liu et al., 2015] and learn an appropriate small295

value of γ denoted γ∗ (note that γ∗ need not be exactly zero since with real data and limited capacity296

the network will generally display some nonzero reconstruction errors). Please see the supplementary297

for network and training details. We then retrain the same network from scratch but with γ = γ∗298

fixed throughout all training iterations.299

The resulting models are evaluated via the reconstruction error and the maximum mean discrepancy300

(MMD) between the aggregated posterior qφ(z) , 1
n

∑
i qφ(z|x(i)) [Makhzani et al., 2016] and the301

prior p(z) = N (z;0, I). If too few latent dimensions are removed by swamping the appropriate302

channels with noise following the prior (i.e., under-regularization), then we would expect qφ(z) to be303

confined to a low-dimensional manifold in Rκ and the MMD to be much larger. Note that for ideal304

generative modeling performance via an autoencoder architecture, it is required that305

1
n

∑
i

qφ(z|x(i)) ≈
∫
χ
qφ(z|x)µgt(dx) = p(z), (9)

meaning the MMD from N (z;0, I) is ideally zero [Makhzani et al., 2016]. With manifold data this306

is only possible if an optimal sparse representation is produced by the VAE or autoencoder-based307

analogue [Tolstikhin et al., 2018].308

Results are displayed in Figure 4(a), where as expected the reconstruction errors are nearly identical,309

but the learnable γ case leads to much lower MMD values, indicative of a better local solution with310

reduced under-regularization. We also plot the evolution of the gradient magnitudes
∥∥∥dL(θ,φ)dz

∥∥∥
2

311

in Figure 4(b) (other gradients are similar). When γ is learned, the gradient increases slowly;312

however, with fixed γ = γ∗, there exists a large gradient right from the start since γ∗ is small but the313

reconstruction error is high. This contributes to a worse final solution per the results in Figure 4(a).314
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Figure 4: (a) Reconstruction error and MMD between qφ(z) and N (0, I) on CelebA (128 × 128
resolution). We first train a VAE with learnable γ and obtain the optimal value γ∗. Then we fix γ = γ∗

and re-train the same network from scratch. While the final reconstruction errors are almost the same,
the MMDs between qφ(z) and the prior N (0, I) are significantly different. (b) The Evolution of the

gradient
∥∥∥dL(θ,φ)dz

∥∥∥
2
. Although both curves end up with similar final values, the large initial gradient

with fixed γ is disruptive to the final solution.

Additionally, examples of using a learnable γ to improve generated sample quality based on these315

principles can be found in [Dai and Wipf, 2019].316

5 Conclusion317

It is not uncommon to learn the VAE decoder variance parameter in situations where the training data318

has a noise component that we are unable or do not wish to model. By doing so we can avoid tuning319

a trade-off parameter while allowing the model to adapt to the data. However, with sufficient capacity320

networks and relatively clean data, the risk of unbounded gradients when training γ has frequently321

been raised as a potentially problematic phenomena. We nonetheless provide formal justification for322

this choice (even in cases where γ does tend to zero) on two primary fronts:323

• We prove that unbounded gradients are in fact necessary for guaranteeing that global minima324

of canonical AE architectures will coincide with optimal spare representations, meaning high325

fidelity reconstruction of the training data using the minimal number of informative latent326

dimensions. Hence there is no obvious alternative if this form of parsimony is our goal.327

Furthermore, given the value of such representations to numerous downstream tasks as described328

in Section 2.2, our analysis suggests that heuristic modifications to or constraints on the VAE329

energy function may be ill-advised, and large gradients should be accommodated to the extent330

possible (e.g., reduced step size, checks for oscillating gradient sign patterns, etc.).331

• We present compelling evidence that by learning γ, large gradients away from global minimizers,332

as well as at least some bad local minimizers, can be mitigated or smoothed within the VAE loss333

surface. This helps to explain observed successes learning γ in situations where the optimal334

value turns out to be small or near zero [Dai and Wipf, 2019]. Note that as mentioned in335

Section 1, it is already known that fixing γ too high can lead to over-regularization and the336

widely-studied phenomena of posterior collapse [He et al., 2019, Lucas et al., 2019, Razavi et al.,337

2019]. In a similar vein, we have demonstrated the complementary yet underappreciated fact338

that prematurely fixing γ too low, even to what may ultimately be the optimal value near zero,339

can steer convergence towards under-regularized local minima and the inadvertent wasteful340

deployment of latent degrees-of-freedom.341

And finally, although not our focus, our results herein naturally relate to more flexible VAE models342

with non-Gaussian latent posteriors [Kingma et al., 2016, Rezende and Mohamed, 2015] or adapt-343

able/trainable priors [Bauer and Mnih, 2019, Tomczak and Welling, 2018]. While these types of344

enhancements can be useful tools for favoring qφ(z) ≈ p(z), they do not circumvent the infinite345

gradients that will occur around optimal sparse representations. Additionally, for a brief discussion346

regarding the implications to β-VAE models [Higgins et al., 2017]; please see the supplementary.347
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