
Elucidating the Design Space of Diffusion-Based
Generative Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

We argue that the theory and practice of diffusion-based generative models are1

currently unnecessarily convoluted and seek to remedy the situation by presenting2

a design space that clearly separates the concrete design choices. This lets us3

identify several changes to both the sampling and training processes, as well as4

preconditioning of the score networks. Together, our improvements yield new5

state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in6

an unconditional setting, with much faster sampling (35 network evaluations per7

image) than prior designs. To further demonstrate their modular nature, we show8

that our design changes dramatically improve both the efficiency and quality ob-9

tainable with pre-trained score networks from previous work, including improving10

the FID of an existing ImageNet-64 model from 2.07 to near-SOTA 1.55.11

1 Introduction12

Diffusion-based generative models have emerged as a powerful new framework for neural image13

synthesis, in both unconditional [15, 32, 41] and conditional [16, 31, 32, 34, 35, 36, 37, 41] settings,14

even surpassing the quality of GANs [12] in certain situations [9]. They are also rapidly finding use15

in other domains such as audio [26, 33] and video [18] generation, image segmentation [4, 47] and16

language translation [30]. As such, there is great interest in applying these models and improving17

them further in terms of image/distribution quality, training cost, and generation speed.18

The literature on these models is dense on theory, and derivations of sampling schedule, training19

dynamics, noise level parameterization, etc., tend to be based as directly as possible on theoretical20

frameworks, which ensures that the models are on a solid theoretical footing. However, this approach21

has a danger of obscuring the available design space — a proposed model may appear as a tightly22

coupled package where no individual component can be modified without breaking the entire system.23

As our first contribution, we take a look at the theory behind these models from a practical standpoint,24

focusing more on the “tangible” objects and algorithms that appear in the training and sampling25

phases, and less on the statistical processes from which they might be derived. The goal is to obtain26

better insights into how these components are linked together and what degrees of freedom are27

available in the design of the overall system. We focus on the broad class of models where a neural28

network is used to model the score [21] of a noise level dependent marginal distribution of the training29

data corrupted by Gaussian noise. Thus, our work is in the context of denoising score matching [44].30

Our second set of contributions concerns the sampling processes used to synthesize images using31

diffusion models. We identify the best-performing time discretization for sampling, apply a higher-32

order Runge–Kutta method for the sampling process, evaluate different sampler schedules, and33

analyze the usefulness of stochasticity in the sampling process. The result of these improvements is a34

significant drop in the number of sampling steps required during synthesis, and the improved sampler35

can be used as a drop-in replacement with several widely used diffusions models [32, 41].36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

The third set of contributions focuses on the training of the score-modeling neural network. While37

we continue to rely on the commonly used network architectures (DDPM [15], NCSN [40]), we38

provide the first principled analysis of the preconditioning of the networks’ inputs, outputs, and loss39

functions in a diffusion model setting and derive best practices for improving the training dynamics.40

We also suggest an improved distribution of noise levels during training, and note that non-leaking41

augmentation [24] — typically used with GANs — is beneficial for diffusion models as well.42

Taken together, our contributions enable significant improvements in result quality, e.g., leading43

to a record FID of 1.79 on CIFAR-10 [27]. With all key ingredients of the design space explicitly44

tabulated, we believe that our approach will allow easier innovation on the individual components,45

and thus enable more extensive and targeted exploration of the design space of diffusion models.46

2 Expressing diffusion models in a common framework47

Let us denote the data distribution by pdata(x), with standard deviation σdata, and consider the family48

of mollified distributions p(x;σ) obtained by adding i.i.d. Gaussian noise of standard deviation σ to49

the data. For σmax � σdata, p(x;σmax) is practically indistinguishable from pure Gaussian noise. The50

idea of diffusion models is to randomly sample a noise image x0 ∼ N (0, σ2
maxI), and sequentially51

denoise it into images xi with noise levels σ0 = σmax > σ1 > · · · > σN = 0 so that at each noise52

level xi ∼ p(xi;σi). The endpoint xN of this process is thus distributed according to the data.53

Song et al. [41] present a stochastic differential equation (SDE) that maintains the desired distribution54

p as sample x evolves over time. This allows the above process to be implemented using a stochastic55

solver that both removes and adds noise at each iteration. They also give a corresponding “probability56

flow” ordinary differential equation (ODE) where the only source of randomness is the initial noise57

image x0. Contrary to the usual order of treatment, we begin by examining the ODE, as it offers a58

fruitful setting for analyzing sampling trajectories and their discretizations. The insights carry over to59

stochastic sampling, which we reintroduce as a generalization in Section 4.60

ODE formulation. A probability flow ODE [41] continuously increases or reduces noise level of61

the image when moving forward or backward in time, respectively. To specify the ODE, we must first62

choose a schedule σ(t) that defines the desired noise level at time t. For example, setting σ(t) ∝
√
t63

is mathematically natural, as it corresponds to constant-speed heat diffusion [11]. However, we will64

show in Section 3 that the choice of schedule has major practical implications and should not be65

made on the basis of theoretical convenience.66

The defining characteristic of the probability flow ODE is that evolving a sample xa ∼ p
(
xa;σ(ta)

)
67

from time ta to tb (either forward or backward in time) yields a sample xb ∼ p
(
xb;σ(tb)

)
. Following68

previous work [41], this requirement is satisfied (Appendix B) by69

dx = −σ̇(t) σ(t)∇x log p
(
x;σ(t)

)
dt, (1)

where the dot denotes a time derivative. ∇x log p(x;σ) is the score function [21], a vector field that70

points towards higher density of data at a given noise level. Intuitively, an infinitesimal forward step71

of this ODE nudges the sample away from the data, at a rate that depends on the change in noise level.72

Equivalently, a backward step nudges the sample towards the data distribution.73

Denoising score matching. The score function has the remarkable property that it does not depend74

on the generally intractable normalization constant of the underlying density function p(x;σ) [21],75

and thus can be much easier to evaluate. Specifically, if D(x;σ) is a denoiser function that minimizes76

the expected L2 denoising error for samples drawn from pdata separately for every σ, i.e.,77

Ey∼pdataEn∼N (0,σ2I)‖D(y + n;σ)− y‖22, then ∇x log p(x;σ) =
(
D(x;σ)− x

)
/σ2, (2, 3)

where y is a training image and n is noise. In this light, the score function isolates the noise78

component from the signal in x, and Eq. 1 amplifies (or diminishes) it over time. Figure 1 illustrates79

the behavior of ideal D in practice. The key observation in diffusion models is that D(x;σ) can be80

implemented as a neural network Dθ(x;σ) trained according to Eq. 2. Note that Dθ may include81

additional pre- and post-processing steps, such as scaling x to an appropriate dynamic range; we will82

return to such preconditioning in Section 5.83

Time-dependent signal scaling. Some methods (see Appendix C) introduce an additional scale84

schedule s(t) and consider x = s(t) x̂ to be a scaled version of the original, non-scaled variable85

2

σ=0 0.2 0.5 1 2 3 5 7 10 20 50 σ=0 0.2 0.5 1 2 3 5 7 10 20 50

(a) Noisy images drawn from p(x;σ) (b) Ideal denoiser outputs D(x;σ)

Figure 1: Denoising score matching on CIFAR-10. (a) Images from the training set corrupted with
varying levels of additive Gaussian noise. High levels of noise lead to oversaturated colors; we
normalize the images for cleaner visualization. (b) Optimal denoising result from minimizing Eq. 2
analytically (Appendix B). With increasing noise level, the denoised image approaches dataset mean.

Table 1: Specific design choices employed by different model families. N is the number of ODE
solver iterations that we wish to execute during sampling. The corresponding sequence of time
steps is {t0, t1, . . . , tN}, where tN = 0. If the model was originally trained for specific choices
of N and {ti}, the originals are denoted by M and {uj}, respectively. The denoiser is defined as
Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ

(
cin(σ)x; cnoise(σ)

)
; Fθ represents the raw neural network layers.

VP [41] VE [41] iDDPM [32] + DDIM [39] Ours
Sampling (Section 3)
ODE solver Euler Euler Euler 2nd order Heun

Time steps ti<N 1 + i
N−1 (εs − 1) σ2

max

(
σ2

min/σ
2
max

) i
N−1 ubj0+

M−1−j0
N−1 i+ 1

2 c
, where

uM = 0

uj−1=

√
u2
j+1

max(ᾱj−1/ᾱj ,C1)−1

(
σmax

1
ρ +

i
N−1 (σmin

1
ρ−σmax

1
ρ)
)ρ

Schedule σ(t)
√
e

1
2βdt2+βmint−1

√
t t t

Scaling s(t) 1
/√

e
1
2βdt2+βmint 1 1 1

Network and preconditioning (Section 5)
Architecture of Fθ DDPM++ NCSN++ DDPM (any)
Skip scaling cskip(σ) 1 1 1 σ2

data/
(
σ2 + σ2

data

)
Output scaling cout(σ) −σ σ −σ σ · σdata/

√
σ2

data + σ2

Input scaling cin(σ) 1/
√
σ2 + 1 1 1/

√
σ2 + 1 1/

√
σ2 + σ2

data

Noise cond. cnoise(σ) (M − 1) σ−1(σ) ln(1
2σ) M−1−argminj |uj − σ| 1

4 ln(σ)

Training (Section 5)
Noise distribution σ−1(σ) ∼ U(εt, 1) ln(σ)∼U(ln(σmin), σ = uj , j ∼ U{0,M−1} ln(σ) ∼ N (Pmean, P

2
std)

ln(σmax))
Loss weighting λ(σ) 1/σ2 1/σ2 1/σ2 (note: ∗)

(
σ2+σ2

data

)
/(σ · σdata)

2

Parameters βd = 19.9, βmin = 0.1 σmin = 0.02 ᾱj = sin2(π
2

j
M(C2+1)

) σmin = 0.002, σmax = 80

εs = 10−3, εt = 10−5 σmax = 100 C1 = 0.001, C2 = 0.008 σdata = 0.5, ρ = 7

M = 1000 M = 1000, j0 = 8† Pmean = −1.2, Pstd = 1.2
∗ iDDPM also employs a second loss term Lvlb

† In our tests, j0 = 8 yielded better FID than j0 = 0 used by iDDPM

x̂. This changes the time-dependent probability density, and consequently also the ODE solution86

trajectories. The resulting ODE is a generalization of Eq. 1:87

dx =
[
ṡ(t) x/s(t)− s(t)2 σ̇(t) σ(t)∇x log p

(
x/s(t);σ(t)

)]
dt. (4)

Note that we explicitly undo the scaling of x when evaluating the score function to keep the definition88

of p(x;σ) independent of s(t).89

Solution by discretization. The ODE to be solved is obtained by substituting Eq. 3 into Eq. 4 to90

define the point-wise gradient, and the solution can be found by numerical integration, i.e., taking91

finite steps over discrete time intervals. This requires choosing both the integration scheme (e.g.,92

Euler or a variant of Runge–Kutta), as well as the discrete sampling times {t0, t1, . . . , tN}. Many93

prior works rely on Euler’s method, but we show in Section 3 that a 2nd order solver offers a better94

computational tradeoff. For brevity, we do not provide a separate pseudocode for Euler’s method95

applied to our ODE here, but it can be extracted from Algorithm 1 by omitting lines 6–8.96

Putting it together. Table 1 presents formulas for reproducing deterministic variants of three97

earlier methods in our framework. These methods were chosen because they are widely used and98

achieve state-of-the-art performance, but also because they were derived from different theoretical99

foundations. Some of our formulas appear quite different from the original papers as indirection and100

recursion have been removed; see Appendix C for details. The main purpose of this reframing is to101

3

NFE=8 16 32 64 128 256 512 1024
2
3
5

10

20

50

100

200
FID

35

8 32 128 512 2048 8192
2
3
5
10
20

50
100
200

500
FID

27
8 16 32 64 128 256 512 1024

2

3

5

10

20
FID

79

Original sampler
Our reimplementation
+ Heun & our {ti}
+ Our σ(t) & s(t)

Black-box RK45

(a) Uncond. CIFAR-10, VP ODE (b) Uncond. CIFAR-10, VE ODE (c) Class-cond. ImageNet-64, DDIM

Figure 2: Comparison of deterministic sampling methods using three pre-trained models. For each
curve, the dot indicates the lowest NFE whose FID is within 3% of the lowest observed FID.

bring into light all the independent components that often appear tangled together in previous work.102

In our framework, there are no implicit dependencies between the components — any choices (within103

reason) for the individual formulas will, in principle, lead to a functioning model.104

3 Improvements to deterministic sampling105

Our hypothesis is that the choices related to the sampling process are largely independent of the other106

components, such as network architecture and training details. In other words, the training procedure107

of Dθ should not dictate σ(t), s(t), and {ti}, nor vice versa; from the viewpoint of the sampler, Dθ108

is simply a black box [45, 46]. We test this by evaluating different samplers on three pre-trained109

models, each representing a different theoretical framework and model family. We first measure110

baseline results for these models using their original sampler implementations, and then bring these111

samplers into our unified framework using the formulas in Table 1, followed by our improvements.112

We evaluate the “DDPM++ cont. (VP)” and “NCSN++ cont. (VE)” models by Song et al. [41]113

trained on unconditional CIFAR-10 [27] at 32×32, corresponding to the variance preserving (VP) and114

variance exploding (VE) formulations [41], originally inspired by DDPM [15] and SMLD [40]. We115

also evaluate the “ADM (dropout)” model by Dhariwal and Nichol [9] trained on class-conditional Im-116

ageNet [8] at 64×64, corresponding to the improved DDPM (iDDPM) formulation [32]. This model117

was trained using a discrete set of M = 1000 noise levels. Further details are given in Appendix C.118

We evaluate the result quality in terms of Fréchet inception distance (FID) [14] computed between119

50,000 generated images and all available real images. Figure 2 shows FID as a function of neural120

function evaluations (NFE), i.e., how many times Dθ is evaluated to produce a single image. Given121

that the sampling process is dominated entirely by the cost of Dθ, improvements in NFE translate122

directly to sampling speed. The original deterministic samplers are shown in blue, and the reimple-123

mentations of these methods in our unified framework (orange) yield similar but consistently better124

results. The differences are explained by certain oversights in the original implementations as well125

as our more careful treatment of discrete noise levels in the case of DDIM; see Appendix C. Note126

that our reimplementations are fully specified by Algorithm 1 and Table 1, even though the original127

codebases are structured very differently from each other.128

Discretization and higher-order integrators. Solving an ODE numerically is necessarily an129

approximation of following the true solution trajectory. At each step, the solver introduces truncation130

error that accumulates over the course of N steps. The local error generally scales superlinearly with131

respect to step size, and thus increasing N improves the accuracy of the solution.132

The commonly used Euler’s method is a first order ODE solver with O(h2) local error with respect133

to step size h. Higher-order Runge–Kutta methods [42] scale more favorably but require multiple134

evaluations of Dθ per step. Through extensive tests, we have found Heun’s 2nd order method [2]135

(a.k.a. improved Euler, trapezoidal rule) — previously explored in the context of diffusion models by136

Jolicoeur-Martineau et al. [23] — to provide an excellent tradeoff between truncation error and NFE.137

As illustrated in Algorithm 1, it introduces an additional correction step for xi+1 to account for change138

in dx/dt between ti and ti+1. This correction leads to O(h3) local error at the cost of one additional139

evaluation of Dθ per step. Note that stepping to σ = 0 would result in a division by zero, so we revert140

to Euler’s method in this case. We discuss the general family of 2nd order solvers in Appendix D.141

The time steps {ti} determine how the step sizes and thus truncation errors are distributed between142

different noise levels. We provide a detailed analysis in Appendix D, concluding that the step size143

should decrease monotonically with decreasing σ and it does not need to vary on a per-sample basis.144

4

Algorithm 1 Deterministic sampling using Heun’s 2nd order method with arbitrary σ(t) and s(t).
1: procedure HEUNSAMPLER(Dθ(x;σ), σ(t), s(t), ti∈{0,...,N})
2: sample x0 ∼ N

(
0, σ2(t0) s2(t0) I

)
. Generate initial sample at t0

3: for i ∈ {0, . . . , N − 1} do . Solve Eq. 4 over N time steps

4: di ←
(
σ̇(ti)

σ(ti)
+
ṡ(ti)

s(ti)

)
xi −

σ̇(ti)s(ti)

σ(ti)
Dθ

(
xi
s(ti)

;σ(ti)

)
. Evaluate dx/dt at ti

5: xi+1 ← xi + (ti+1 − ti)di . Take Euler step from ti to ti+1

6: if σ(ti+1) 6= 0 then . Apply 2nd order correction unless σ goes to zero

7: d ′i ←
(
σ̇(ti+1)

σ(ti+1)
+
ṡ(ti+1)

s(ti+1)

)
xi+1 −

σ̇(ti+1)s(ti+1)

σ(ti+1)
Dθ

(
xi+1

s(ti+1)
;σ(ti+1)

)
. Eval. dx/dt at ti+1

8: xi+1 ← xi + (ti+1 − ti)
(
1
2
di + 1

2
d ′i
)

. Explicit trapezoidal rule at ti+1

9: return xN . Return noise-free sample at tN

0.0 0.2 0.4 0.6 0.8
2

1

0

1

2
x

0 200 400 600
40

20

0

20

40
x

0 5 10 15 20 25
40

20

0

20

40
x

t= t= t=

(a) Variance preserving ODE [41] (b) Variance exploding ODE [41] (c) DDIM [39] / Our ODE

Figure 3: A sketch of ODE curvature in 1D where pdata is two Dirac peaks at x = ±1. Horizontal t
axis is chosen to show σ ∈ [0, 25] in each plot, with insets showing σ ∈ [0, 1] near the data. Example
local gradients are shown with black arrows. (a) Variance preserving ODE of Song et al. [41] has
solution trajectories that flatten out to horizontal lines at large σ. Local gradients start pointing
towards data only at small σ. (b) Variance exploding variant has extreme curvature near data and the
solution trajectories are curved everywhere. (c) With the schedule used by DDIM [39] and us, as
σ increases the solution trajectories approach straight lines that point towards the mean of data. As
σ → 0, the trajectories become linear and point towards the data manifold.

We adopt a parameterized scheme where the time steps are defined according to a sequence of noise145

levels {σi}, i.e., ti = σ−1(σi). We set σi<N = (Ai+B)ρ and select the constants A and B so that146

σ0 = σmax and σN−1 = σmin, which gives147

σi<N =
(
σmax

1
ρ + i

N−1 (σmin
1
ρ − σmax

1
ρ)
)ρ

and σN = 0. (5)

Here ρ controls how much the steps near σmin are shortened at the expense of longer steps near σmax.148

Our analysis in Appendix D shows that setting ρ = 3 nearly equalizes the truncation error at each149

step, but that ρ in range of 5 to 10 performs much better for sampling images. This suggests that150

errors near σmin have a large impact. We set ρ = 7 for the remainder of this paper. Results for Heun’s151

method and Eq. 5 are shown as the green curves in Figure 2. We observe consistent improvement in152

all cases: Heun’s method reaches the same FID as Euler’s method with considerably lower NFE.153

Trajectory curvature and noise schedule. The shape of the ODE solution trajectories is defined154

by functions σ(t) and s(t). The choice of these functions offers a way to reduce the truncation errors155

discussed above, as their magnitude can be expected to scale proportional to the curvature of dx/dt.156

We argue that the best choice for these functions is σ(t) = t and s(t) = 1, which is also the choice157

made in DDIM [39]. With this choice, the ODE of Eq. 4 simplifies to dx/dt =
(
x−D(x; t)

)
/t.158

An immediate consequence is that at any x and t, a single Euler step to t = 0 yields the denoised159

image Dθ(x; t). The tangent of the solution trajectory therefore always points towards the denoiser160

output. This can be expected to change only slowly with the noise level, which corresponds to largely161

linear solution trajectories. The 1D ODE sketch of Figure 3c supports this intuition; the solution162

trajectories approach linear at both large and small noise levels, and have substantial curvature in163

only a small region in between. The same effect can be seen with real data in Figure 1b, where the164

change between different denoiser targets occurs in a relatively narrow σ range. With the advocated165

schedule, this corresponds to high ODE curvature being limited to this same range.166

5

Algorithm 2 Our stochastic sampler with σ(t) = t and s(t) = 1.
1: procedure STOCHASTICSAMPLER(Dθ(x;σ), ti∈{0,...,N}, γi∈{0,...,N−1}, Snoise)
2: sample x0 ∼ N

(
0, t20 I

)
3: for i ∈ {0, . . . , N − 1} do . γi =

{
min

(
Schurn
N

,
√

2−1

)
if ti∈[Stmin,Stmax]

0 otherwise4: sample εi ∼ N
(
0, S2

noise I
)

5: t̂i ← ti + γiti . Select temporarily increased noise level t̂i
6: x̂i ← xi +

√
t̂2i − t2i εi . Add new noise to move from ti to t̂i

7: di ←
(
x̂i −Dθ(x̂i; t̂i)

)
/t̂i . Evaluate dx/dt at t̂i

8: xi+1 ← x̂i + (ti+1 − t̂i)di . Take Euler step from t̂i to ti+1

9: if ti+1 6= 0 then
10: d ′i ←

(
xi+1 −Dθ(xi+1; ti+1)

)
/ti+1 . Apply 2nd order correction

11: xi+1 ← x̂i + (ti+1 − t̂i)
(
1
2
di + 1

2
d ′i
)

12: return xN

The effect of setting σ(t) = t and s(t) = 1 is shown as the red curves in Figure 2. As DDIM already167

employs these same choices, the red curve is identical to the green one for ImageNet-64. However,168

VP and VE benefit considerably from switching away from their original schedules.169

Discussion. The choices that we made in this section to improve deterministic sampling are170

summarized in the Sampling part of Table 1. Together, they reduce the NFE needed to reach high-171

quality results by a large factor: 7.3× for VP, 300× for VE, and 3.2× for DDIM, corresponding to172

the highlighted NFE values in Figure 2. In practice, we can generate 26.3 high-quality CIFAR-10173

images per second on a single NVIDIA V100. The consistency of improvements corroborates our174

hypothesis that the sampling process is orthogonal to how each model was originally trained. As175

further validation, we show results for the adaptive RK45 method [10] using our schedule as the176

dashed black curves in Figure 2; the cost of this sophisticated ODE solver outweighs its benefits.177

4 Stochastic sampling178

Deterministic sampling offers many benefits, e.g., the ability to turn real images into their corre-179

sponding latent representations by inverting the ODE. However, it tends to lead to worse output180

quality [39, 41] than stochastic sampling that injects fresh noise into the image in each step. Given181

that ODEs and SDEs recover the same distributions in theory, what exactly is the role of stochasticity?182

Background. The SDEs of Song et al. [41] can be generalized [19, 48] as a sum of the probability183

flow ODE of Eq. 1 and a varying-rate Langevin diffusion SDE [13]:184

dx± = −σ̇(t)σ(t)∇x log p
(
x;σ(t)

)
dt︸ ︷︷ ︸

probability flow ODE (Eq. 1)

± β(t)σ(t)2∇x log p
(
x;σ(t)

)
dt︸ ︷︷ ︸

deterministic noise decay

+
√
2β(t)σ(t) dωt︸ ︷︷ ︸
noise injection︸ ︷︷ ︸

Langevin diffusion SDE

, (6)

where dωt is the standard Wiener process. dx+ and dx− are now separate SDEs for moving forward185

and backward in time, related by the time reversal formula of Anderson [1]. The Langevin term can186

further be seen as a combination of a deterministic score-based denoising term and a stochastic noise187

injection term, whose net noise level contributions cancel out. As such, β(t) effectively expresses the188

relative rate at which existing noise is replaced with new noise. The SDEs of Song et al. [41] are189

recovered with the choice β(t) = σ̇(t)/σ(t), whereby the score vanishes from the forward SDE.190

This perspective reveals why stochasticity is helpful in practice: The implicit Langevin diffusion191

drives the sample towards the desired marginal distribution at a given time, actively correcting for192

any errors made in earlier sampling steps. On the other hand, approximating the Langevin term193

with discrete SDE solver steps introduces error in itself. Previous results [3, 23, 39, 41] suggest that194

non-zero β(t) is helpful, but as far as we can tell, the implicit choice for β(t) in Song et al. [41] enjoys195

no special properties. Hence, the optimal amount of stochasticity should be determined empirically.196

Our stochastic sampler. We propose a stochastic sampler that combines the existing higher-order197

ODE integrator with explicit Langevin-like “churn” of adding and removing noise. A pseudocode is198

given in Algorithm 2. At each step i, given the sample xi at noise level ti (= σ(ti)), we perform two199

6

NFE=16 32 64 128 256 512 1024 2048

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2
FID

2.27

Deterministic Stmin,tmax = [0,∞]

Stmin,tmax + Snoise = 1 Optimal settings
Snoise = 1 Original sampler
Jolicoeur-Martineau et al. [23]

16 32 64 128 256 512 1024 2048

2.0

2.5

3.0

3.5

4.0

4.5
FID

2.23

16 32 64 128 256 512 1024 2048

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

FID

1.55

(a) Uncond. CIFAR-10, VP (b) Uncond. CIFAR-10, VE (c) Class-cond. ImageNet-64

Figure 4: Evaluation of our stochastic sampler (Algorithm 2). The purple curve corresponds to
optimal choices for {Schurn, Stmin, Stmax, Snoise}; orange, blue, and green correspond to disabling the
effects of Stmin,tmax and/or Snoise. The red curves show reference results for our deterministic sampler
(Algorithm 1), equivalent to setting Schurn = 0. The dashed black curves correspond to the original
stochastic samplers from previous work: Euler–Maruyama [41] for VP, predictor-corrector [41] for
VE, and iDDPM [32] for ImageNet-64. The dots indicate lowest observed FID.

sub-steps. First, we add noise to the sample according to a factor γi ≥ 0 to reach a higher noise level200

t̂i = ti + γiti. Second, from the increased-noise sample x̂i, we solve the ODE backward from t̂i to201

ti+1 with a single step. This yields a sample xi+1 with noise level ti+1, and the iteration continues.202

We stress that this is not a general-purpose SDE solver, but a sampling procedure tailored for the203

specific problem. Its correctness stems from the alternation of two sub-steps that each maintain the204

correct distribution (up to truncation error in the ODE step).205

Practical considerations. We have observed (see Appendix E) that excessive Langevin-like addi-206

tion and removal of noise results in gradual loss of detail in the generated images with all datasets and207

denoiser networks. There is also a drift toward oversaturated colors at very low and high noise levels.208

We suspect that practical denoisers induce a slightly non-conservative vector field in Eq. 3, violating209

the premises of Langevin diffusion and causing these detrimental effects. Notably, our experiments210

with analytical denoisers (such as the one in Figure 1b) have not shown such degradation.211

If the degradation is caused by flaws in Dθ(x;σ), they can only be remedied using heuristic means212

during sampling. We address the drift toward oversaturated colors by only enabling stochasticity213

within a specific range of noise levels ti ∈ [Stmin, Stmax]. For these noise levels, we define γi =214

Schurn/N , where Schurn controls the overall amount of stochasticity. We further clamp γi to never215

introduce more new noise than what is already present in the image. Finally, we have found that the216

loss of detail can be partially counteracted by setting Snoise slightly above 1 to inflate the standard217

deviation for the newly added noise. This suggests that a major component of the hypothesized218

non-conservativity of Dθ(x;σ) is a tendency to remove slightly too much noise — most likely due to219

regression toward the mean that can be expected to happen with any L2-trained denoiser [28].220

Evaluation. Figure 4 shows that our stochastic sampler outperforms previous samplers [32, 41]221

by a significant margin, especially at low step counts. In particular, through sampler improvements222

alone, we are able to bring the ImageNet-64 model that originally achieved FID 2.07 [9] to 1.55223

that is very close to the state-of-the-art; previously, FID 1.48 has been reported for cascaded diffu-224

sion [16], 1.55 for classifier-free guidance [17], and 1.52 for StyleGAN-XL [38]. While our results225

showcase the potential gains achievable through sampler improvements, they also highlight the main226

shortcoming of stochasticity: For best results, one must make several heuristic choices — either227

implicit or explicit — that depend on the specific model. Indeed, we had to find the optimal values of228

{Schurn, Stmin, Stmax, Snoise} on a case-by-case basis using grid search (Appendix E). This raises a gen-229

eral concern that using stochastic sampling as the primary means of evaluating model improvements230

may inadvertently end up influencing the design choices related to model architecture and training.231

5 Preconditioning and training232

There are various known good practices for training neural networks in a supervised fashion. For233

example, it is advisable to keep input and output signal magnitudes fixed to, e.g., unit variance, and to234

avoid large variation in gradient magnitudes on a per-sample basis [5, 20]. Training a neural network235

to model D directly would be far from ideal — for example, as the input x = y +n is a combination236

7

Table 2: Evaluation of our training improvements. The starting point (config A) is VP & VE using
our deterministic sampler. At the end (configs E,F), VP & VE only differ in the architecture of Fθ.

CIFAR-10 [27] at 32×32 FFHQ [25] 64×64 AFHQv2 [7] 64×64
Conditional Unconditional Unconditional Unconditional

Training configuration VP VE VP VE VP VE VP VE
A Baseline [41] (∗pre-trained) 2.48 3.11 3.01∗ 3.77∗ 3.39 25.95 2.58 18.52
B + Adjust hyperparameters 2.18 2.48 2.51 2.94 3.13 22.53 2.43 23.12
C + Redistribute capacity 2.08 2.52 2.31 2.83 2.78 41.62 2.54 15.04
D + Our preconditioning 2.09 2.64 2.29 3.10 2.94 3.39 2.79 3.81
E + Our loss function 1.88 1.86 2.05 1.99 2.60 2.81 2.29 2.28
F + Non-leaky augmentation 1.79 1.79 1.97 1.98 2.39 2.53 1.96 2.16

NFE 35 35 35 35 79 79 79 79

of clean signal y and noise n ∼ N (0, σ2I), its magnitude varies immensely depending on noise237

level σ. For this reason, the common practice is to not represent Dθ as a neural network directly, but238

instead train a different network Fθ from which Dθ is derived.239

Previous methods [32, 39, 41] address the input scaling via a σ-dependent normalization factor and240

attempt to precondition the output by training Fθ to predict n scaled to unit variance, from which the241

signal is then reconstructed via Dθ(x;σ) = x− σFθ(·). This has the drawback that at large σ, the242

network needs to fine-tune its output carefully to cancel out the existing noise n exactly and give the243

output at the correct scale; note that any errors made by the network are amplified by a factor of σ. In244

this situation, it would seem much easier to predict the expected output D(x;σ) directly. To this end,245

we propose to precondition the neural network with a σ-dependent skip connection that allows it to246

estimate either y or n, or something in between. We thus write Dθ in the following form:247

Dθ(x;σ) = cskip(σ) x+ cout(σ) Fθ
(
cin(σ) x; cnoise(σ)

)
, (7)

where Fθ is the neural network to be trained, cskip(σ) modulates the skip connection, cin(σ) and248

cout(σ) scale the input and output magnitudes, and cnoise(σ) maps noise level σ into a conditioning in-249

put for Fθ. Taking a weighted expectation of Eq. 2 over the noise levels gives the overall training loss250

Eσ,y,n
[
λ(σ) ‖D(y + n;σ)− y‖22

]
, where σ ∼ ptrain, y ∼ pdata, and n ∼ N (0, σ2I). The probabil-251

ity of sampling a given noise level σ is given by ptrain(σ) and the corresponding weight is given by252

λ(σ). We can equivalently express this loss with respect to the raw network output Fθ in Eq. 7:253

Eσ,y,n
[
λ(σ) cout(σ)

2︸ ︷︷ ︸
effective weight

∥∥Fθ(cin(σ) · (y + n); cnoise(σ)
)︸ ︷︷ ︸

network output

− 1
cout(σ)

(
y − cskip(σ) · (y + n)

)︸ ︷︷ ︸
effective training target

∥∥2

2

]
. (8)

This form reveals the effective training target of Fθ, allowing us to determine suitable choices for the254

preconditioning functions from first principles. As detailed in Appendix B, we derive our choices255

shown in Table 1 by requiring network inputs and training targets to have unit variance (cin, cout), and256

amplifying errors in Fθ as little as possible (cskip). The formula for cnoise is chosen empirically.257

Table 2 shows FID for a series of training setups, evaluated using our deterministic sampler from258

Section 3. We start with the baseline training setup of Song et al. [41], which differs considerably259

between the VP and VE cases; we provide separate results for each (config A). To obtain a more260

meaningful point of comparison, we re-adjust the basic hyperparameters (config B) and improve the261

expressive power of the model (config C) by removing the lowest-resolution layers and doubling the262

capacity of the highest-resolution layers instead; see Appendix F for further details. We then replace263

the original choices of {cin, cout, cnoise, cskip} with our preconditioning (config D), which keeps the264

results largely unchanged — except for VE that improves considerably at 64×64 resolution. Instead265

of improving FID per se, the main benefit of our preconditioning is that it makes the training more266

robust, enabling us to turn our focus on redesigning the loss function without adverse effects.267

Loss weighting and sampling. Eq. 8 shows that training Fθ as preconditioned in Eq. 7 incurs268

an effective per-sample loss weight of λ(σ)cout(σ)
2. To balance the effective loss weights, we set269

λ(σ) = 1/cout(σ)
2, which also equalizes the initial training loss over the entire σ range as shown in270

Figure 5a (green curve). Finally, we need to select ptrain(σ), i.e., how to choose noise levels during271

training. Inspecting the per-σ loss after training (blue and orange curves) reveals that a significant272

reduction is possible only at intermediate noise levels; at very low levels, it is both difficult and273

8

σ=0.005 0.02 0.1 0.5 1 2 5 10 20 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

loss
CIFAR-10 at 32×32, VP Loss after initialization
FFHQ at 64×64, VP Our noise distribution

Schurn=0 10 20 30 40 50 60 70 80 90 100

2.0

2.5

3.0

3.5

4.0

FID
VP, original VP, our model VE, original VE, our model

(a) Training loss & noise distribution (b) Amount of stochasticity on CIFAR-10

Figure 5: (a) Observed initial (green) and final loss per noise level, representative of the the 32×32
(blue) and 64×64 (orange) models considered in this paper. The shaded regions represent the standard
deviation over 10k random samples. Our proposed training sample density is shown by the dashed red
curve. (b) For the original training setup of Song et al. [41], stochastic sampling is highly beneficial
(blue, green), while deterministic sampling (Schurn = 0) leads to relatively poor FID. For our training
setup, the situation is reversed (orange, red); stochastic sampling is not only unnecessary but harmful.

irrelevant to discern the vanishingly small noise component, whereas at high levels the training targets274

are always dissimilar from the correct answer that approaches dataset average. Therefore, we target275

the training efforts to the relevant range using a simple log-normal distribution for ptrain(σ) as detailed276

in Table 1 and illustrated in Figure 5a (red curve).277

Table 2 shows that our proposed ptrain and λ (config E) lead to a dramatic improvement in FID278

in all cases when used in conjunction with our preconditioning (config D). In concurrent work,279

Choi et al. [6] propose a similar scheme to prioritize noise levels that are most relevant w.r.t. forming280

the perceptually recognizable content of the image. However, they only consider the choice of λ in281

isolation, which results in a smaller overall improvement.282

Augmentation regularization. To prevent potential overfitting that often plagues diffusion models283

with smaller datasets, we borrow an augmentation pipeline from the GAN literature [24]. The pipeline284

consists of various geometric transformations (see Appendix F) that we apply to a training image285

prior to adding noise. To prevent the augmentations from leaking to the generated images, we provide286

the augmentation parameters as a conditioning input to Fθ; during inference we set the them to zero287

to guarantee that only non-augmented images are generated. Table 2 shows that data augmentation288

provides a consistent improvement (config F) that yields new state-of-the-art FIDs of 1.79 and 1.97289

for conditional and unconditional CIFAR-10, beating the previous records of 1.85 [38] and 2.10 [43].290

6 Conclusions291

Our approach of putting diffusion models to a common framework exposes a modular design. This292

allows a targeted investigation of individual components, potentially helping to better cover the293

viable design space. In our tests this let us to simply replace the samplers in various earlier models,294

drastically improving the results. For example, in ImageNet-64 our sampler turned an average295

model (FID 2.07) to a challenger (1.55) for the current SOTA model (1.48) [16]. We also obtained296

new state-of-the-art results on CIFAR-10 while using only 35 model evaluations, deterministic297

sampling, and a small network. The current high-resolution diffusion models rely either on separate298

super-resolution steps [16, 31, 35], subspace projection [22], very large networks [9, 41], or hybrid299

approaches [34, 36, 43] — we believe that our contributions are orthogonal to these extensions. That300

said, many of our parameter values may need to be re-adjusted for higher resolution datasets.301

Interestingly, the relevance of stochastic sampling appears to diminish as the model itself improves,302

as shown in Figure 5b. Intuitively the role of stochasticity is to correct approximation errors, and303

if the approximation errors are minimal to begin with, there is nothing left to do. Nevertheless, we304

feel that the precise interaction between stochasticity and the training objective remains a promising305

avenue for future work, and stochasticity likely continues to be beneficial for more diverse datasets.306

Negative societal impacts Our advances in sample quality can potentially amplify negative societal307

effects when used in a large-scale system like DALL·E 2, including types of disinformation or308

emphasizing sterotypes and harmful biases [29]. The training and sampling of diffusion models needs309

a lot of electricity; our project consumed ∼250MWh on an in-house cluster of NVIDIA V100s.310

9

References311

[1] B. D. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,312

12(3):313–326, 1982.313

[2] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-314

Algebraic Equations. Society for Industrial and Applied Mathematics, 1998.315

[3] F. Bao, C. Li, J. Zhu, and B. Zhang. Analytic-DPM: an analytic estimate of the optimal reverse variance in316

diffusion probabilistic models. In Proc. ICLR, 2022.317

[4] D. Baranchuk, A. Voynov, I. Rubachev, V. Khrulkov, and A. Babenko. Label-efficient semantic segmenta-318

tion with diffusion models. In Proc. ICLR, 2022.319

[5] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, USA, 1995.320

[6] J. Choi, J. Lee, C. Shin, S. Kim, H. Kim, and S. Yoon. Perception prioritized training of diffusion models.321

CoRR, abs/2204.00227, 2022.322

[7] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. StarGAN v2: Diverse image synthesis for multiple domains. In Proc.323

CVPR, 2020.324

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image325

database. In Proc. CVPR, pages 248–255. IEEE, 2009.326

[9] P. Dhariwal and A. Q. Nichol. Diffusion models beat GANs on image synthesis. In Proc. NeurIPS, 2021.327

[10] J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of computational328

and applied mathematics, 6(1):19–26, 1980.329

[11] J. B. J. Fourier, G. Darboux, et al. Théorie analytique de la chaleur, volume 504. Didot Paris, 1822.330

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.331

Generative adversarial networks. In Proc. NIPS, 2014.332

[13] U. Grenander and M. I. Miller. Representations of knowledge in complex systems. Journal of the Royal333

Statistical Society: Series B (Methodological), 56(4):549–581, 1994.334

[14] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale335

update rule converge to a local Nash equilibrium. In Proc. NIPS, 2017.336

[15] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proc. NeurIPS, 2020.337

[16] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans. Cascaded diffusion models for high338

fidelity image generation. Journal of Machine Learning Research, 23, 2022.339

[17] J. Ho and T. Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep Generative340

Models and Downstream Applications, 2021.341

[18] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models. CoRR,342

abs/2204.03458, 2022.343

[19] C.-W. Huang, J. H. Lim, and A. C. Courville. A variational perspective on diffusion-based generative344

models and score matching. In Proc. NeurIPS, 2021.345

[20] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao. Normalization techniques in training DNNs:346

Methodology, analysis and application. CoRR, abs/2009.12836, 2020.347

[21] A. Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine348

Learning Research, 6(24):695–709, 2005.349

[22] B. Jing, G. Corso, R. Berlinghieri, and T. Jaakkola. Subspace diffusion generative models. CoRR,350

abs/2205.01490, 2022.351

[23] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas. Gotta go fast when352

generating data with score-based models. CoRR, abs/2105.14080, 2021.353

[24] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training generative adversarial354

networks with limited data. In Proc. NeurIPS, 2020.355

[25] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks.356

In Proc. CVPR, 2018.357

[26] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro. DiffWave: A versatile diffusion model for audio358

synthesis. In Proc. ICLR, 2021.359

[27] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of360

Toronto, 2009.361

[28] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila. Noise2Noise:362

Learning image restoration without clean data. In Proc. ICML, 2018.363

[29] P. Mishkin, L. Ahmad, M. Brundage, G. Krueger, and G. Sastry. DALL·E 2 preview – risks and limitations.364

OpenAI, 2022.365

[30] E. Nachmani and S. Dovrat. Zero-shot translation using diffusion models. CoRR, abs/2111.01471, 2021.366

[31] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and M. Chen.367

GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models. CoRR,368

abs/2112.10741, 2021.369

[32] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Proc. ICML, volume370

139, pages 8162–8171, 2021.371

10

[33] V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, and M. Kudinov. Grad-TTS: A diffusion probabilistic model372

for text-to-speech. In Proc. ICML, volume 139, pages 8599–8608, 2021.373

[34] K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn. Diffusion autoencoders: Toward a374

meaningful and decodable representation. In Proc. CVPR, 2022.375

[35] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image generation376

with CLIP latents. Technical report, OpenAI, 2022.377

[36] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with378

latent diffusion models. In Proc. CVPR, 2022.379

[37] C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet, and M. Norouzi. Palette:380

Image-to-image diffusion models. CoRR, abs/2111.05826, 2021.381

[38] A. Sauer, K. Schwarz, and A. Geiger. StyleGAN-XL: Scaling StyleGAN to large diverse datasets. CoRR,382

abs/2201.00273, 2022.383

[39] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In Proc. ICLR, 2021.384

[40] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In Proc.385

NeurIPS, 2019.386

[41] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative387

modeling through stochastic differential equations. In Proc. ICLR, 2021.388

[42] E. Süli and D. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, 2003.389

[43] A. Vahdat, K. Kreis, and J. Kautz. Score-based generative modeling in latent space. In Proc. NeurIPS,390

2021.391

[44] P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation,392

23(7):1661–1674, 2011.393

[45] D. Watson, W. Chan, J. Ho, and M. Norouzi. Learning fast samplers for diffusion models by differentiating394

through sample quality. In Proc. ICLR, 2022.395

[46] D. Watson, J. Ho, M. Norouzi, and W. Chan. Learning to efficiently sample from diffusion probabilistic396

models. CoRR, abs/2106.03802, 2021.397

[47] J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin. Diffusion models for implicit image398

segmentation ensembles. In Medical Imaging with Deep Learning, 2022.399

[48] Q. Zhang and Y. Chen. Diffusion normalizing flow. In Proc. NeurIPS, 2021.400

11

Checklist401

1. For all authors...402

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s403

contributions and scope? [Yes]404

(b) Did you describe the limitations of your work? [Yes] Section 6. The main limitations405

of the analysis relate to the set of tested datasets and their limited resolution.406

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 6.407

(d) Have you read the ethics review guidelines and ensured that your paper conforms to408

them? [Yes]409

2. If you are including theoretical results...410

(a) Did you state the full set of assumptions of all theoretical results? [No] We follow411

common application-specific assumptions about the probability distributions, functions412

and other components, but do not exhaustively specify them, or consider pathological413

corner cases.414

(b) Did you include complete proofs of all theoretical results? [No] Our equations and415

algorithms build on previously known results, and highlight their practical aspects416

through mostly readily verifiable algebraic manipulations (Appendix B). We do not417

explicitly present all details of the derivations, and assume that the previous results are418

sufficiently rigorously proven in the respective literature.419

3. If you ran experiments...420

(a) Did you include the code, data, and instructions needed to reproduce the main ex-421

perimental results (either in the supplemental material or as a URL)? [Yes] Code is422

provided in the supplemental material. We will also release it in public, along with423

pre-trained models.424

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they425

were chosen)? [Yes] Appendix F.426

(c) Did you report error bars (e.g., with respect to the random seed after running experi-427

ments multiple times)? [Yes] Shaded regions in Figures 4 and 5.428

(d) Did you include the total amount of compute and the type of resources used (e.g., type429

of GPUs, internal cluster, or cloud provider)? [Yes] Section 6.430

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...431

(a) If your work uses existing assets, did you cite the creators? [Yes]432

(b) Did you mention the license of the assets? [Yes] Appendix F.433

(c) Did you include any new assets either in the supplemental material or as a URL? [No]434

(d) Did you discuss whether and how consent was obtained from people whose data you’re435

using/curating? [N/A]436

(e) Did you discuss whether the data you are using/curating contains personally identifiable437

information or offensive content? [N/A]438

5. If you used crowdsourcing or conducted research with human subjects...439

(a) Did you include the full text of instructions given to participants and screenshots, if440

applicable? [N/A]441

(b) Did you describe any potential participant risks, with links to Institutional Review442

Board (IRB) approvals, if applicable? [N/A]443

(c) Did you include the estimated hourly wage paid to participants and the total amount444

spent on participant compensation? [N/A]445

12

	Introduction
	Expressing diffusion models in a common framework
	Improvements to deterministic sampling
	Stochastic sampling
	Preconditioning and training
	Conclusions

