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ABSTRACT

Though image transformers have shown competitive results with convolutional
neural networks in computer vision tasks, lacking inductive biases such as lo-
cality still poses problems in terms of model efficiency especially for embedded
applications. In this work, we address this issue by introducing attention masks
to incorporate spatial locality into self-attention heads. Local dependencies are
captured with masked attention heads along with global dependencies captured
by original unmasked attention heads. With Masked attention image Transformer
– MaiT, top-1 accuracy increases by up to 1.0% compared to DeiT, without ex-
tra parameters, computation, or external training data. Moreover, attention masks
regulate the training of attention maps, which facilitates the convergence and im-
proves the accuracy of deeper transformers. Masked attention heads guide the
model to focus on local information in early layers and promote diverse attention
maps in latter layers. Deep MaiT improves the top-1 accuracy by up to 1.5%
compared to CaiT with fewer parameters and less FLOPs. Encoding locality with
attention masks requires no extra parameter or structural change, and thus it can be
combined with other techniques for further improvement in vision transformers.

1 INTRODUCTION

Convolutional neural networks (CNNs) (Krizhevsky et al., 2012; He et al., 2016; Tan & Le, 2019)
have been the de facto model for computer vision (CV) tasks, which are inherently equipped with
inductive biases such as translation equivariance and locality. Recently, vision transformers (Doso-
vitskiy et al., 2021; Touvron et al., 2021a) are gaining momentum translating the success from
transformer-based models in natural language processing (NLP) tasks (Vaswani et al., 2017; Devlin
et al., 2019). Self-attention heads excel at capturing the long-range dependencies in sequences but
struggle at focusing on local information. Unlike CNNs which have gone through many iterations
of optimization, vision transformers are not very efficient and still require huge computing power
and a large number of Flops.

Naturally, combining the benefits of both CNNs and vision transformers is promising to further
boost performances of CV models. The question remains how to effectively integrate inductive bias
such as spatial locality into transformers. One direction is to utilize convolutional blocks to extract
spatial information by adapting either the patch-token embedding layer, self-attention module or
feed-forward layers, to form CNN-transformer hybrid structures as in Li et al. (2021b); Srinivas et al.
(2021); Graham et al. (2021); Wu et al. (2021a); Yuan et al. (2021a); Guo et al. (2021). However,
forcefully inserting convolutional operations into transformers may potentially constrain the learning
capacity of transformers.

To capture the spatial information without significantly changing the transformer model architecture,
Chu et al. (2021b) introduce extra positional encoding. Han et al. (2021); Chen et al. (2021) fuse
local and global representations using multiple transformer blocks or branches to simultaneously
process images at different scales such as pixel-level, small-patch or large patch. Yuan et al. (2021b)
apply a layerwise tokens-to-tokens transformation to capture local structure. These approaches usu-
ally come with the cost of extra parameters and model complexity, thus potentially lowering the
inference speed.

d’Ascoli et al. (2021); Zhou et al. (2021) improve the self-attention for better representation with
gated positional self-attention and learnable transformation matrix respectively. Hu et al. (2019),
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Ramachandran et al. (2019) adapt the self-attention module and improve the performance of CNN
models.

Different from prior works, we try to incorporate spatial locality without changing its architecture or
adding extra parameters/FLOPs. We propose attention masks to guide the attention heads to focus on
local information. Masked attention heads extract local dependencies more efficiently by allowing
information aggregation only from the closest neighbors. This liberates other unmasked heads to
learn global information more effectively. We name the modified model, ”Masked attention image
Transformer” (MaiT), which is built on top of DeiT (Touvron et al., 2021a). MaiT gathers both
local and global information at the same time from different heads. Moreover, the regularization
effects from attention masks facilitate the training of deep transformers by guiding the attention
map learning and promoting diversity across transformer layers.

We proved that less is more in this specific case with attention masks. MaiT achieves up to 1.0%
higher top-1 accuracy on ImageNet (Deng et al., 2009) with the same model architecture as DeiT
(Touvron et al., 2021a). Additionally, MaiT outperforms CaiT (Touvron et al., 2021b) by up to 1.5%
in top-1 accuracy with fewer parameters and simpler structure in deeper transformers.

In summary, we make three major contributions in this work: 1). we propose attention masks
to encode spatial locality into self-attention heads without structural change or extra parame-
ter/computation, while improving model efficiency. 2). We present a quick and effective search
strategy for the masking scheme exploration. 3). We also reveal the importance of the locality
across layers and the impact of attention masks on facilitating the training and convergence of deep
transformer models. Note though MaiT is demonstrated with DeiT, the attention mask is applicable
to other vision transformers as well.

2 RELATED WORK

Spatial locality is an integral part of the convolutional operation with weight filters attending to local
regions of input feature maps. Vision transformer (ViT) (Dosovitskiy et al., 2021) is the first pure
transformer-based model on vision tasks, but it requires a large private labeled dataset JFT300M
(Sun et al., 2017) to achieve competitive performances. Data-efficient image transformer (DeiT)
(Touvron et al., 2021a) improves upon ViT models by introducing stronger data augmentation, reg-
ularization, and knowledge distillation. Class-attention in image transformer (CaiT) (Touvron et al.,
2021b) extends DeiT by increasing the number of transformer layers. To overcome the difficulties of
training deeper transformers, CaiT introduces LayerScale and class-attention layers, which increase
the parameters and model complexity.

Tokens-to-Token vision transformer (T2T) (Yuan et al., 2021b) proposes an image transformation
by recursive token aggregation to capture local structure. Stand-alone self-attention (Ramachandran
et al., 2019) applies local self-attention layer to replace spatial convolution and outperform original
ResNet models. Even though sharing value and key spatially is parameter efficient in this approach,
content-based information is lost. Transformer-iN-Transformer (TNT) (Han et al., 2021) models
both patch-level and pixel-level representations and applies outer and inner transformer blocks to
extract global and local information respectively. ConViT (d’Ascoli et al., 2021) proposes the gated
positional self-attention to incorporate soft convolutional biases. CrossViT (Chen et al., 2021) pro-
poses a dual-branch transformer architecture for multi-scale feature extraction.

For pixel-level prediction tasks such as semantic segmentation, object detection, Pyramid Vision
Transformer (PVT) (Wang et al., 2021a) introduces a progressive shrinking pyramid and spatial-
reduction attention with fine-grained image patches. DETR (Carion et al., 2020) adapts transformers
for object detection tasks. Swin Transformer (Liu et al., 2021) applies hierarchical transformer with
shifted windows of varying sizes. Twins (Chu et al., 2021a) deploys interleaved locally-grouped
self-attention and global sub-sample attention layers to improve performances.

To optimize transformer and save computation, Wu et al. (2021b) uses centroid attention to extract
and compress input information, Jaegle et al. (2021) iteratively distill inputs into latent space with
attention bottlenecks, Wang et al. (2021b) dynamically adjusts the number of tokens with multi-
ple cascading transformers, and Wu et al. (2020) introduced semantic token to replace pixel-based
transformers to save computation.
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There are hybrid architectures fusing convolutional and transformer blocks, such as LocalViT (Li
et al., 2021b), BoTNet (Srinivas et al., 2021), LeViT (Graham et al., 2021), BossNet (Li et al.,
2021a), CvT (Wu et al., 2021a), CoaT (Xu et al., 2021), CMT (Guo et al., 2021) for higher accuracy
and faster inference.

Unlike prior literature, our work explores the intrinsic capability of pure transformer block on incor-
porating spatial locality and the impact of the locality along the depth direction. This work is also
inspired by the emerging graph attention network (Veličković et al., 2018), borrowing the concept
of message passing and information aggregation from nearest neighbors.

Note attention masks have been used in NLP tasks as a sparsification method to reduce the computa-
tion complexity, as well as to capture local information, as in Guo et al. (2019); Child et al. (2019);
Beltagy et al. (2020); Ainslie et al. (2020).

3 VISION TRANSFORMER PRELIMINARIES

The transformer architecture introduced by Vaswani (Vaswani et al., 2017) inspired many model
variants with remarkable success in NLP tasks. ViT (Dosovitskiy et al., 2021) extends pure
transformer-based architecture into CV applications. Instead of pixel-level processing, ViT splits
the original images into a sequence of patches as inputs and transforms them into patch tokens, for
better computation efficiency. In general, ViT consists of 3 fundamental modules: embedding layer,
multi-head self-attention, and feed-forward network.

To process images in transformer, the original (224x224) RGB images is flattened into a sequence of
N (16x16) patches. Each patch has a fixed size, typically 16x16 pixels. Patches are then transformed
into patch embedding with hidden dimensions (D) of 192, 384, and 768 for tiny, small, and base
models respectively in ViT/DeiT. In addition to patch tokens, the embedding layer also integrates
positional information, classification and knowledge distillation through the positional token, class
token and distillation token, respectively.

Positional token is added into the patch embedding with a trainable positional embedding. However,
this positional embedding is added only in the embedding layers. The spatial information is largely
lost in the transformer layers since all-to-all attention is invariant to the order of the patches.

The class token is another trainable vector (1xD), concatenated to the patch tokens (total N+1). It is
used to collect information from the patch tokens to make output predictions, while also spreading
information among patches during training.

Distillation token is sometimes added for knowledge transfer from teacher models, such as a CNN
model. When training the distilled version of the model, a distillation token is further concatenated
to the patch token along with the class token (total N+2).

Multi-head self-attention (MHA) module has multiple parallel attention heads, where each of them
comprises three main components: Key, Query, and Value. Key ((N+1)xd) and Query ((N+1)xd)
are trained and multiplied to estimate how much weights on each corresponding token in Value
((N+1)xd) for output ((N+1)xd):

Attention(K,Q, V ) = Softmax

(
QKT

√
d

)
V (1)

Where softmax is applied to each row of the input product matrix (QKT ) and
√
d provides ap-

propriate normalization. Multiple attention heads in MHA attend to different parts of the input
simultaneously. Considering H heads in MHA layer, the hidden dimension D is split equally across
all heads (D=Hxd).

Feed-forward network (FFN) follows after the MHA module, containing two linear transformation
layers separated by Gelu activation. The hidden dimension expands by 4x after the first linear layer
from D to 4D, and is reduced back to D in the second linear layer. Both MHA and FFN use skip-
connections with layer normalization as the residual operation.
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4 MASKED ATTENTION HEAD

Spatial locality plays a crucial role in computer vision tasks. CNN models capture it using the
sliding filter of shared weights, typically with a receptive field of 3x3, 5x5, or 7x7. In contrast to
CNN models, the locality is not intrinsically encoded in the transformer structure. With attention
masks, we can explicitly insert locality into self-attention modules without introducing any extra
parameter or computation. The key idea is to apply a mask on the all-to-all attention products (i.e.
QKT ) to reinforce the weights from the closest neighbors and allow information aggregation only
from tokens selected by the mask.

Figure 1: Attention mask with depth of 1 (orange) and 2 (green).

Figure 1 illustrates an example of our proposed masking scheme. The orange box shows a 3 × 3
mask, where only the direct neighboring patches are selected. Specifically, Patch 16 only gathers
information from the closest neighbors of Patch 1, 2, 3, 15, 17, 29, 30, and 31, and ignores the rest of
patches. This is different from the typical all-to-all attention module, where Patch 16 attends to all
0-196 patches. We can easily expand the depth of the attention mask beyond the closest neighbors,
to second-level neighbors (green box in Figure 1) or more. Note that the class token (and distillation
token) still attends to all the patches to collect and spread information during forward and backward
passes. Since each attention product selected by the mask is calculated by Q and K, the masked
attention head also retains the content-based locality information.

The attention mask is added before Softmax, regulating the distribution of attention maps to focus
more on the closest neighbors:

Masked Attention(K,Q, V ) = Softmax

(
M �QKT

√
d

)
V (2)

where M ∈ R(N+1)×(N+1) is a binary attention mask, encoding the spatial locality into the atten-
tion head by passing through only the weights from close neighbors and setting the rest to zero.

Note it’s important to add the mask before Softmax because it allows the flexibility for the model
to learn the importance of the locality. More precisely, unselected patches appear as e0 = 1 in the
numerator of the softmax operation. Thus, if the attention product result of the closest neighbors is
meaningfully larger than zero (i.e. M �QKT � 0), it suggests that local information dominates.
However, if those results are negative or close to zero, it implies that local information is insignificant
and global information is more important. Therefore, inserting masks before the softmax operation
allows models to enforce locality or bypass it.

4.1 ATTENTION LOCALITY SCORE (ALS)

The softmax operation transfers the QKT product results into the probability space. As a result,
each row of the attention map (A) sums up to 1. For each patch, the probability of focusing on local
neighbors equals the sum of their neighbors’ attention map weights. If this number approaches one,
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the local information is crucial; whereas if it is close to zero, it means global information matters.
For Patch n, we define ALSn as the Attention Locality Score (ALS) and the average from all patches
(N+1) as ALS for each attention head, as follow:

ALS =

∑
n ALSn

(N + 1)
,where ALSn =

∑
i

(M �A)n,i (3)

where M is the same attention mask defined earlier, and A = Softmax
(
Mask �QKT /

√
d
)

is the attention map, or A = Softmax
(
QKT /

√
d
)

for unmasked heads. We later use the ALS
metric to get some insights about the locality behavior of different attention heads in our models.

4.2 MASKING STRATEGY

With total H attention heads, h′ number of attention heads can be allocated to focus on local infor-
mation. The rest of the unaltered attention heads (H − h′) capture global dependencies. Therefore,
we can extract the local information through masked attention heads and global information through
original attention heads at the same time, as shown in Figure 2.

Figure 2: Masked attention heads and original attention heads for local and global dependencies.

Besides the depth of the attention mask, the number of masked attention heads in MHA and the
position (which layer to insert mask) are also hyper-parameters. Though masks encode locality
into the attention heads, the regularization from masking (pruning attention map) can also limit the
learning capacity. Consequently, where to add attention masks requires careful consideration. The
complexity to search for the best masking strategy is up to 236 for a 12-layer model with 3 heads,
and thus we leave it for future work. Instead, we leverage the insights from ALS study to guide the
mask placement, by using a masking strategy as follows:

1. Add mask to only one attention head (Head 0) for all layers
2. Compute ALS0,i for every layer i

(a) If ALS0,i is close to 1: add masks to all attention heads of layer i, proceed to 3.
(b) If ALS0,i is close to 0.5: keep the mask, add no more
(c) If ALS0,i is close to 0: remove the mask

3. Following 2.a), compute ALSh,i for each head and remove the mask if ALSh,i is nearly 0

4.3 CROSS-LAYER SIMILARITY

To evaluate the impact of attention masks on the diversity of the attention maps across all layers, we
apply a cross-layer similarity metric similarly defined in DeepViT (Zhou et al., 2021):

Mi,j
h,t =

Ai
h,t,:A

j>
h,t,:

‖Ai
h,t,:‖‖A

i
h,t,:‖

(4)

where Mi,j
h,t is the attention map cosine similarity between layer i and layer j for attention head h and

token t. Ah,t,: measures the weight contribution for each token in input (Value) for output token T.
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Therefore, it reflects the similarity of attention maps on information aggregation across all T input
tokens. For example, if Mi,j

h,t reaches 1, output token t at head h attends to all N+1 tokens in Value
with the same probability for both layer i and layer j.

5 EXPERIMENTS

In this section, we report the results for MaiT, implemented by applying attention masks on top
of DeiT. We consider different hyper parameters related to the masking scheme including mask
depth, number of masked heads per layer, and number of transformer layers. We also evaluate the
importance of locality in the depth direction and the impact of masks for deep transformers. In our
evaluation, we merely focus on models with fewer than 50M parameters, which are more applicable
to embedded systems and mobile devices.

5.1 SETUP

We follow the same training procedure as DeiT, unless specified otherwise. The implementation
is based on the Timm library (Wightman, 2019). Models are trained with ILSVRC-2012 ImageNet
dataset (Deng et al., 2009) with the default batch size of 1024 on 4 GPUs for 300 epochs for 12-layer
models and 400 epochs for models with more than 12 layers. The model parameters we adopted is
summarized in Table 1.

Table 1: Details of MaiT model parameters

Model Extra tiny (XT) Tiny (T) Extra small (XS) Small (S)

Hidden dim. 144 192 288 384
Heads 3 3 3 6

5.2 IMPACT OF MASK DEPTH

Intuitively, the field of view is larger with an attention mask of larger depth, to gather broader
neighborhood information. However, in the extreme case with mask depth of N+1 (standard self-
attention), all the patch token information is merged and positional information is lost. On the other
hand, attention masks can be considered as a structured pruning on attention maps as well. A smaller
depth for the attention mask potentially translates to fewer FLOPs, which might be useful for some
hardware devices such as embedded CPUs. For example, with 3x3 mask, instead of calculating all
197 attention weights, we only compute 9 of them, a 95% reduction for attention map computation.

To study the impact of the mask depth, we mask only one attention head for every MHA module,
with the field of view as 3x3, 3x5, and 5x5 on DeiT-small model. The results are summarized in
Table 2. There is 0.1 - 0.3 % improvement compared to DeiT small. Various mask sizes only lead
to marginal differences in accuracy. This is probably because each patch (original 16x16 pixels) is
a processed sub-image and already contains some locality information, and thus further away patch
tokens barely provide much extra information. Therefore, 3x3 mask is the default setting for MaiT
in the subsequent sections.

Table 2: Top-1 accuracy on ImageNet for DeiT and MaiT (one masked head for all 12 layers) with
various attention mask depth. MaiT* has two masked heads for all 12 layers and is trained for 400
epochs.

DeiT MaiT(3x3) MaiT(3x5) MaiT(5x5) MaiT*(3x3)

79.8 79.9(+0.1) 80.1(+0.3) 80.0(+0.2) 80.8(+1.0)

In contrast to DeiT, whose accuracy saturates beyond 300 epochs as reported in (Touvron et al.,
2021a), MaiT-small sees another 0.9% improvement when trained for 400 epochs. Accordingly, we
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suspect a higher learning rate is beneficial for MaiT since attention masks provide some guidance
for attention map training. If we change the batch size from 1024 to 3072 for MaiT-tiny, essentially
increasing the learning rate (lr = 0.0005× batchsize/512) by 3x, the top-1 accuracy for MaiT-tiny
increases by 0.4% to 72.6 after 300 epochs. Therefore, the number of training epochs and learning
rate for MaiT is subject to further tuning for performance improvement.

5.3 IMPORTANCE OF SPATIAL LOCALITY

To explore the importance of locality across transformer layers, we start by masking one head in
each layer and compute the ALS for all the heads in all layers. Figure 3 a) illustrates the result
for 12-layer MaiT-small. ALS of the masked head is significantly higher for the first 10 out of 12
layers, than the unmasked heads. This indicates the model learns to focus on local information with
the masked attention head and global information with unmasked heads. We observe three stages
in the ALS across all layers for the masked head: 1. high ALS, where more than 70% of attention
weights are allocated to closest neighbors in the first 4 layers; 2. mid ALS, where the probability to
focus on locality decreases to around 50% for Layer 4 to Layer 9; 3. low ALS, where the chance
of attending to local patches are less than 0.5% for the last 2 layers. Notice that in the third layer,
even for unmasked heads, two heads focus heavily on closest neighbors with ALS larger than 0.7.
Similarly, among the unmasked heads, the first 4 layers show higher ALS, which decreases in the
following 6 layers and down to an average of 0.0051 (1/(N+1) = 1/197) if the attention weights are
distributed uniformly.

This indicates the locality is more important in the early layers (first 4 layers) and becomes trivial
in the last two layers, which is consistent with d’Ascoli et al. (2021), Raghu et al. (2021) When
the number of transformer blocks increases, the importance of locality expands to deeper layers as
shown in Figure 7. The trends remain for deeper MaiT of 24 or 36 layers.

Accordingly in Figure3 b), we mask all heads for the first one-third of total layers, only one masked
head for 8 layers in the middle (8-15), and no mask for the rest of the layers. For fully masked layers,
ALS of most heads are larger than 0.5. Though one head in every other layer of the first 8 blocks
shows lower than 0.1 ALS. This suggests at least one head is trying to gather global information
even in the first 8 layers. Thus it’s beneficial to keep one global attention head even for the initial
few layers.

Figure 3: Attention Locality Scores (ALS) for MaiT-small: a) 1 masked head for all 12 layers; b)
out of 24 layers, 6 masked heads for the first 8 layers, 1 masked head for the middle 8 layers, and no
masking for the last 8 layers.

5.4 IMPACT OF ATTENTION MASK ON DEEPER TRANSFORMERS

Besides lacking inductive bias, another issue with transformers is the difficulty to train deeper mod-
els. Naively stacking transformer layers fails to deliver the expected performance gain as shown in
Touvron et al. (2021b). One reason for the performance degradation is attention collapse, i.e. the
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attention maps are more alike among deeper layers (Zhou et al., 2021). We find the attention mask is
able to break the attention map homogeneity and facilitates the convergence of the deep transform-
ers. The mixed masking scheme breaks the structural repetition in deep transformers and promotes
diversity in later layers.

Figure 4: Top-1 accuracy on ImageNet for DeiT (red), MaiT (green), CaiT (yellow) and randomly
masked DeiT (blue) with various numbers of transformer blocks. Green square MaiT applies one
mask heads for all layers while green star MaiT masks all three heads for the first 12 layers and only
one masked attention head for the rest 24 layers.

When increasing transformer blocks from 24 to 36, even though the model capacity is largely in-
creased, top-1 accuracy only increases by 0.25% for DeiT-tiny (Figure 4). With MaiT changing one
head to focus on local information, top-1 accuracy is 0.8% higher over DeiT of the same layers up
to 32 layers. However, at 36 layers, the performance of MaiT degrades to the same level as DeiT.
Beyond 32 layers, a mixed masking strategy can be adopted to extend the performance gain. If the
36-layer MaiT applies fully 3 masked heads in the first 12 layers and only one masked head for the
rest 24 layers, the top-1 accuracy increases by 1.2% (from 78.6% to 79.8%).

Interestingly, we noticed that for 24-layer transformers, CaiT shows even worse performances than
naively stacked DeiT-24, suggesting that the hyper-parameters for 24-layer CaiT-tiny are probably
not optimal.

To rule out the impact of pure pruning effects on attention maps from masking, we also apply a
random mask of the same drop-out rate to one head of all 24 layers. The randomly masked model
leads to 0.5% accuracy drop as compared to 24-layer DeiT. This provides further proof that the
performance gain with attention masks is indeed from better locality information aggregation instead
of pruning on attention maps.

To better understand the impact of attention masks in deep MaiT, we compare the cross layer sim-
ilarity heat map among 36 layers of DeiT, MaiT (one masked head), and MaiT (mixed masking)
in Figure 8, Figure 9, and Figure 5 respectively. Each point in the heat map denotes the averaged
similarity between the y-axis indexed layer and the layer from x-axis.

DeiT shows the highest cross-layer similarity at the last 8 stages, with an average of 0.75 (Figure 8).
This homogeneity in attention maps at the late stage limits the model learning capability. Adding
mask to one head for all 36 layers does not alleviate this problem since the same structure is repeated
36 times in the model. As a result, the average cross-layer similarity for the last 8 layers with
unmasked heads is also 0.75 (Figure 9). Alternatively, if we mask all heads in the first 8 layers, they
are naturally different from the rest of the partially masked layers, and the same structure is only
repeated 8 or 24 times. As shown in Figure 5, cross-layer similarity between the first 8 layers and
the following 24 layer are mostly well below 0.3 for Head 1 and 2. Additionally, a mixed masking
scheme lower the cross-layer similarity among the last 8 layers by 0.1 to 0.65.
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Figure 5: Similarity across 36 layers for MaiT-tiny with mixed masking scheme

5.5 COMPARISON WITH DEIT AND CAIT

In Table 3, we find the attention mask is more effective with small hidden dimensions on deeper
transformer models. To improve DeiT-T, we introduce MaiT-XT (24 layers) with similar parameters
and FLOPs, achieving 1.5% higher top-1 accuracy. 24-layer MaiT-T outperforms CaiT-T by 1.5%
even with fewer parameters and less FLOPs. However, with increased hidden dimension, MaiT-XS
and MaiT-S are 0.8% and 0.7% lower than CaiT-XS and CaiT-S, respectively. Note that CaiT applies
multiple optimization techniques to improve accuracy. In comparison, by simply adding attention
masks, MaiT-S improves the accuracy by 1.1% and thus bridges the gap between CaiT-S and naively
stacked DeiT-S. Moreover, if we add LayerScale to MaiT-S, its accuracy surpasses CaiT-S by 0.1%
with fewer parameters and FLOPs. It’s promising for more gain when combining other optimization
techniques with MaiT.

Table 3: Top-1 accuracy for DeiT, MaiT, and CaiT. Hyper parameters for MaiT are listed in the
Appendix. *Added LayerScale on MaiT. The accuracy for DeiT-S+ is from Touvron et al. (2021b).

Model Layers Params(M) GFLOPs Top-1 Acc.

DeiT-T 12 5.7 1.3 72.2
MaiT-XT 24 6.3 1.5 73.7
CaiT-T 24+2 12 2.5 77.6
MaiT-T 24 11 2.5 79.1
DeiT-S 12 22 4.6 79.8
CaiT-XS 24+2 26.6 5.4 81.8
MaiT-XS 24 24.5 5.3 81.0
CaiT-S 24+2 46.9 9.4 82.7
DeiT-S+ 24 43.3 9.1 81.0
MaiT-S 24 43.3 9.1 82.1
MaiT-S* 24 43.3 9.1 82.8

6 CONCLUSION

In this work, we incorporate spatial locality into vision transformers by inserting masks to attention
heads. Masked heads are able to focus on local information and liberate other unmasked heads
to extract global information more effectively. We also introduce attention locality score to guide
the masking strategy search and rapidly evaluate various masking schemes. Attention masking is a
simple and effective technique, especially for smaller models (i.e., < 6M parameters). We observe
that attention masking also serves as a regularizer to guide the training of attention maps for deeper
transformers. Moreover, it is promising to further boost performances by combining this attention
mask technique with other optimization approaches.
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Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference, 2021.

Jianyuan Guo, Kai Han, Han Wu, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang. Cmt:
Convolutional neural networks meet vision transformers, 2021.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-
transformer, 2019.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local relation networks for image recognition,
2019.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.
Perceiver: General perception with iterative attention, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. NIPS, 25:1097–1105, 2012.

Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng, Bing Wang, Xiaodan Liang, and Xiaojun
Chang. Bossnas: Exploring hybrid cnn-transformers with block-wisely self-supervised neural
architecture search, 2021a.

10



Under review as a conference paper at ICLR 2022

Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool. Localvit: Bringing locality
to vision transformers, 2021b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows, 2021.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks?, 2021.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens.
Stand-alone self-attention in vision models. Advances in Neural Information Processing Systems,
32, 2019.

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition, 2021.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable ef-
fectiveness of data in deep learning era, 2017.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In ICML, pp. 6105–6114. PMLR, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers & distillation through attention. In
ICML, volume 139, pp. 10347–10357, July 2021a.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
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Bengio. Graph attention networks, 2018.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions, 2021a.

Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth 16x16
words: Dynamic vision transformers with adaptive sequence length, 2021b.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers, 2021a.

Lemeng Wu, Xingchao Liu, and Qiang Liu. Centroid transformers: Learning to abstract with atten-
tion, 2021b.

Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-scale conv-attentional image transform-
ers, 2021.

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating con-
volution designs into visual transformers, 2021a.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet, 2021b.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou, and
Jiashi Feng. Deepvit: Towards deeper vision transformer, 2021.

11

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 ALS OF DEIT AND DEEP MAIT

When trained without restriction from attention mask, DeiT-small emphasizes the locality by al-
locating more than 50% of attention weights on closest neighbors for 3 heads at second and third
layer, even close to 90% at the second layer as shown in Figure 6. In comparison, in Figure 3, MaiT
utilizes masked Head 0 to extract local information from the first layer to the ninth layer. Another
notable change between MaiT and DeiT is the ALS from Layer 4 to 9, masked head 0 elevates
ALS above other heads to focus on local information. Head 1 to Head 5 in MaiT show lower ALS
compared to DeiT, and focus more on global information.

Figure 6: ALS for DeiT-small for all 6 attention heads.

Figure 7: ALS of deeper MaiT-tiny with 12, 24 and 36 layers.

When the number of transformer blocks increases, the importance of locality expands to deeper
layers as shown in Figure 7. For the masked Head 0 in MaiT-tiny, 12-layer model shows more than
0.8 ALS for 6 layers out of the first 7 layers, the following 4 layers give a ALS around 0.5, and the
ALS of the last layer declines below 0.05. Likewise, for 24-layer and 36 layer models, 10 layers out
of the first 12 layers show ALS higher than 0.8, and decreases to 0.5 or 0.6 in the following layers
before the last layer.
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A.2 HYPER PARAMETERS FOR MAIT

Table 4: Hyper parameters for 24-layer MaiT in Table 3. Drop rate refers to linear stochastic depth
drop rate, the same as in Touvron et al. (2021a). *denotes the constant drop out for all layers.

Model Masked Head/Layer Drop rate Batch size

MaiT-XT 3/0-7 + 1/8-21 0.0 1024
MaiT-T 1/0-23 0.1 2048
MaiT-XS 1/0-23 0.1 1024
MaiT-S 5/0-7 + 1/8-19 0.1* 1024

A.3 CROSS LAYER SIMILARITY HEAT MAP

In Figure 8, 36-layer DeiT-tiny shows the highest similarity at the last 8 stages across all three
heads, with an average similarity of 0.75, whereas the similarity is quite small among the first 16
layers and between the first 16 layers and the last 20 layers. This is agreement with Zhou et al.
(2021), indicating an attention collapse at later stage of deep transformers.

Figure 8: Similarity across 36 layers for DeiT-tiny

Figure 9: Similarity across 36 layers for MaiT-tiny

In comparison, for MaiT with one masked head across all layers, the masked attention Head 0
shows a more uniform distribution with a lower peak intensity as compared to the the non-masked
or partially masked (in early layers) Head 1 and Head 2 (Figure 9. For unmasked Head 1 and Head
2, later stage especially the last 8 layers show highest similarity among each other, the average of
them is also 0.75. This suggests one masked head for all transformer blocks is not as effective in

13



Under review as a conference paper at ICLR 2022

36-layer model as in 24-layer model. This indicates repeating the same structure for 36 times in the
depth direction is causing the attention collapse. The diversity among the heads within the same
layer doesn’t alleviate this issue.
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