
Parametrized Quantum Policies
for Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

With the advent of real-world quantum computing, the idea that parametrized1

quantum computations can be used as hypothesis families in a quantum-classical2

machine learning system is gaining increasing traction. Such hybrid systems have3

already shown the potential to tackle real-world tasks in supervised and generative4

learning, and recent works have established their provable advantages in special5

artificial tasks. Yet, in the case of reinforcement learning, which is arguably most6

challenging and where learning boosts would be extremely valuable, no proposal7

has been successful in solving even standard benchmarking tasks, nor in showing a8

theoretical learning advantage over classical algorithms. In this work, we achieve9

both. We propose a hybrid quantum-classical reinforcement learning model using10

very few qubits, which we show can be effectively trained to solve several standard11

benchmarking environments. Moreover, we demonstrate, and formally prove, the12

ability of parametrized quantum circuits to solve certain learning tasks that are13

intractable to classical models, including current state-of-art deep neural networks,14

under the widely-believed classical hardness of the discrete logarithm problem.15

1 Introduction16

Hybrid quantum machine learning models constitute one of the most promising applications of17

near-term quantum computers [1, 2]. In these models, parametrized and data-dependent quantum18

computations define a hypothesis family for a given learning task, and a classical optimization19

algorithm is used to train them. For instance, parametrized quantum circuits (PQCs) [3] have already20

proven successful in classification [4–8], generative modeling [9, 10] and clustering [11] problems.21

Moreover, recent results have shown proofs of their learning advantages in artificially constructed22

tasks [6, 12], some of which are based on widely believed complexity-theoretic assumptions [12–15].23

All these results, however, only consider supervised and generative learning settings.24

Arguably, the largest impact quantum computing can have is by providing enhancements to the25

hardest learning problems. From this perspective, reinforcement learning (RL) stands out as a field26

that can greatly benefit from a powerful hypothesis family. This is showcased by the boost in learning27

performance that deep neural networks (DNNs) have provided to RL [16], which enabled systems28

like AlphaGo [17], among other achievements [18, 19]. Nonetheless, the true potential of near-term29

quantum approaches in RL remains very little explored. The few existing works [20–23] have failed30

so far at solving classical benchmarking tasks using PQCs and left open the question of their ability31

to provide a learning advantage.32

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



𝜋𝜽(𝑎|𝑠)

𝑠, 𝜽

ۧ|0
ۧ|0

ۧ|0

𝑠, 𝜽𝜽 𝜽 𝜽

𝑂𝑎 𝑠,𝜽

𝑎

𝑠

𝑟

∇𝜽 log 𝜋𝜽

Figure 1: Training parametrized quantum policies for reinforcement learning. We consider a
quantum-enhanced RL scenario where a hybrid quantum-classical agent learns by interacting with a
classical environment. For each state s it perceives, the agent samples its next action a from its policy
πθ(a|s) and perceives feedback on its behavior in the form of a reward r. For our hybrid agents,
the policy πθ is specified by a PQC (see Def. 1) evaluated (along with the gradient ∇θ log πθ) on
a quantum processing unit (QPU). The training of this policy is performed by a classical learning
algorithm, such as the REINFORCE algorithm (see Alg. 1), which uses sample interactions and
policy gradients to update the policy parameters θ.

Contributions In this work, we demonstrate the potential of policies based on PQCs in solving33

classical RL environments. To do this, we first propose new model constructions, describe their learn-34

ing algorithms, and show numerically the influence of design choices on their learning performance.35

In our numerical investigation, we consider benchmarking environments from OpenAI Gym [24], for36

which good and simple DNN policies are known, and in which we demonstrate that PQC policies can37

achieve comparable performance. Second, inspired by the classification task of Havlíček et al. [6],38

conjectured to be classically hard by the authors, we construct analogous RL environments where39

we show an empirical learning advantage of our PQC policies over standard DNN policies used in40

deep RL. In the same direction, we construct RL environments with a provable gap in performance41

between a family of PQC policies and any efficient classical learner. These environments essentially42

build upon the work of Liu et al. [14] by embedding into a learning setting the discrete logarithm43

problem (DLP), which is the problem solved by Shor’s celebrated quantum algorithm [25] but widely44

believed to be classically hard to solve [26].45

Related work Recently, a few works have been exploring hybrid quantum approaches for RL.46

Among these, Refs. [20, 21] also trained PQC-based agents in classical RL environments. However,47

these take a value-based approach to RL, meaning that they use PQCs as value-function approxima-48

tors instead of direct policies. The learning agents in these works are also tested on OpenAI Gym49

environments (namely, a modified FrozenLake and CartPole), but do not achieve sufficiently good per-50

formance to be solving them, according to the Gym specifications. We believe that this performance51

can be improved using some of our considerations on training PQCs for RL (i.e., trainable observables52

and input scaling parameters). An actor-critic approach to QRL was introduced in Ref. [22], using53

both a PQC actor (or policy) and a PQC critic (or value-function approximator). In contrast to our54

work, these are trained in quantum environments (e.g., quantum-control environments), that provide a55

quantum state to the agent, which acts back with a continuous classical action. These aspects make it56

a different learning setting to ours. Finally, Ref. [23] describes a hybrid quantum-classical algorithm57

for value-based RL. The function-approximation models on which this algorithm is applied are58

however not PQCs but energy-based neural networks (e.g., deep and quantum Boltzmann machines).59

Code An accompanying tutorial implemented as part of the quantum machine learning library60

TensorFlow Quantum [27] provides the code required to reproduce our numerical results and explore61

different settings. It also implements the value-based approach for PQC-RL of Anonymous et al.62

[28]. Anonymized versions of this paper and the tutorial are provided in the supplementary material.63

2



Uvar(φ0) Uenc(s,λ0)

|0〉0 H Rz(φ0,0) Ry(φ0,2) • Ry(λ0,0s0) Rz(λ0,2s0)
Uvar(φ1)

|0〉1 H Rz(φ0,1) Ry(φ0,3) • Ry(λ0,1s1) Rz(λ0,3s1)

Figure 2: PQC architecture for n = 2 qubits and depthDenc = 1. This architecture is composed of
alternating layers of encoding unitaries Uenc(s,λi) taking as input a state vector s = (s0, . . . , sd−1)
and scaling parameters λi (part of a vector λ ∈ R|λ| of dimension |λ|), and variational unitaries
Uvar(φi) taking as input rotation angles φi (part of a vector φ ∈ [0, 2π]|φ| of dimension |φ|).

2 Parametrized quantum policies: definitions and learning algorithm64

In this section, we give a detailed construction of our parametrized quantum policies and describe65

their associated training algorithms. We start however with a short introduction to the basic concepts66

of quantum computation, introduced in more detail in [29, 30].67

2.1 Quantum computation: a primer68

A quantum system composed of n qubits is represented by a 2n-dimensional complex Hilbert space69

H = (C2)⊗n. Its quantum state is described by a vector |ψ〉 ∈ H of unit norm 〈ψ|ψ〉 = 1, where we70

adopt the bra-ket notation to describe vectors |ψ〉, their conjugate transpose 〈ψ| and inner-products71

〈ψ|ψ′〉 inH. Single-qubit computational basis states are given by |0〉 = (1, 0)T , |1〉 = (0, 1)T , and72

their tensor products describe general computational basis states, e.g., |10〉 = |1〉 ⊗ |0〉 = (0, 0, 1, 0).73

A quantum gate is a unitary operation U acting on H. When a gate U acts non-trivially only on a74

subset S ⊆ [n] of qubits, we identify it to the operation U ⊗ 1[n]\S . In this work, we are mainly75

interested in the so-called single-qubit Pauli gates Z, Y and their associated rotations Rz, Ry:76

Z =

(
1 0
0 −1

)
, Rz(θ) = exp

(
−iθ

2
Z

)
, Y =

(
0 −i
i 0

)
, Ry(θ) = exp

(
−iθ

2
Y

)
, (1)

for rotation angles θ ∈ R, and the 2-qubit Ctrl-Z gate = diag(1, 1, 1,−1).77

A projective measurement is described by a Hermitian operator O called an observable. Its spectral78

decomposition O =
∑
mmPm in terms of eigenvalues m and orthogonal projections Pm defines the79

outcomes of this measurement, according to the Born rule: a measured state |ψ〉 gives the outcome80

m and gets projected onto the state Pm |ψ〉 /
√
p(m) with probability p(m) = 〈ψ|Pm |ψ〉 = 〈Pm〉ψ .81

The expectation value of the observable O with respect to |ψ〉 is Eψ[O] =
∑
m p(m)m = 〈O〉ψ .82

2.2 The RAW-PQC and SOFTMAX-PQC policies83

At the core of our parametrized quantum policies is a PQC defined by a unitary U(s,θ) that acts on84

a fixed n-qubit state (e.g., |0⊗n〉). This unitary encodes an input state s ∈ Rd and is parametrized85

by a trainable vector θ. Although different choices of PQCs are possible, throughout our numerical86

experiments (Sec. 3 and 4.2), we consider so-called hardware-efficient PQCs [31] with an alternating-87

layered architecture [32, 33]. This architecture is depicted in Fig. 2 and essentially consists in an88

alternation of Denc encoding unitaries Uenc (composed of single-qubit rotations Rz, Ry) and Denc + 189

variational unitaries Uvar (composed of single-qubit rotations Rz, Ry and entangling Ctrl-Z gates ).90

For any given PQC, we define two families of policies, differing in how the final quantum states91

|ψs,θ〉 = U(s,θ) |0⊗n〉 are used. In the RAW-PQC model, we exploit the probabilistic nature of92

quantum measurements to define an RL policy. For |A| available actions to the RL agent, we partition93

H in |A| disjoint subspaces (e.g., spanned by computational basis states) and associate a projector Pa94

to each of these subspaces. The projective measurement associated to the observable O =
∑
a aPa95

then defines our RAW-PQC policy πθ(a|s) = 〈Pa〉s,θ. A limitation of this policy family however96

is that it does not have a directly adjustable greediness (i.e., a control parameter that makes the97

3



policy more peaked). This consideration arises naturally in an RL context where an agent’s policy98

needs to shift from an exploratory behavior (i.e., close to uniform distribution) to a more exploitative99

behavior (i.e., a peaked distribution). To remedy this limitation, we define the SOFTMAX-PQC model,100

that applies an adjustable softmaxβ non-linear activation function on the expectation values 〈Pa〉s,θ101

measured on |ψs,θ〉. Since the softmax function normalizes any real-valued input, we can generalize102

the projections Pa to be arbitrary Hermitian operators Oa. We also generalize these observables one103

step further by assigning them trainable weights. The two models are formally defined below.104

Definition 1 (RAW- and SOFTMAX-PQC). Given a PQC acting on n qubits, taking as input a state105

s ∈ Rd, rotation angles φ ∈ [0, 2π]|φ| and scaling parameters λ ∈ R|λ|, such that its corresponding106

unitary U(s,φ,λ) produces the quantum state |ψs,φ,λ〉 = U(s,φ,λ) |0⊗n〉, we define its associated107

RAW-PQC policy as:108

πθ(a|s) = 〈Pa〉s,θ (2)
where 〈Pa〉s,θ = 〈ψs,φ,λ|Pa|ψs,φ,λ〉 is the expectation value of a projection Pa associated to action109

a, such that
∑
a Pa = I and PaPa′ = δa,a′ . θ = (φ,λ) constitute all of its trainable parameters.110

Using the same PQC, we also define a SOFTMAX-PQC policy as:111

πθ(a|s) =
eβ〈Oa〉s,θ∑
a′ e

β〈Oa′ 〉s,θ
(3)

where 〈Oa〉s,θ = 〈ψs,φ,λ|
∑
i wa,iHa,i|ψs,φ,λ〉 is the expectation value of the weighted Hermitian112

operatorsHa,i associated to action a, β ∈ R is an inverse-temperature parameter and θ = (φ,λ,w).113

In our PQC construction, we include trainable scaling parameters λ, used in every encoding gate to114

re-scale its input components. This modification to the standard data encoding in PQCs comes in115

light of recent considerations on the structure of PQC functions [34]. These additional parameters116

allow to represent functions with a wider and richer spectrum of frequencies, and hence provide117

shallow PQCs with more expressive power.118

2.3 Learning algorithm119

In order to analyze the properties of our PQC policies without the interference of other learning120

mechanisms [35], we train these policies using the basic Monte Carlo policy gradient algorithm121

REINFORCE [36, 37] (see Alg. 1). This algorithm consists in evaluating Monte Carlo estimates of122

the value function Vπθ (s0) = Eπθ
[∑H−1

t=0 γtrt

]
, γ ∈ [0, 1], using batches of interactions with the123

environment, and updating the policy parameters θ via a gradient ascent on Vπθ (s0). The resulting124

updates (see line 8 of Alg. 1) involve the gradient of the log-policy ∇θ log πθ(a|s), which we125

therefore need to compute for our policies. We describe this computation in the following lemma.126

Lemma 1. Given a SOFTMAX-PQC policy πθ, the gradient of its logarithm is given by:127

∇θ log πθ(a|s) = β
(
∇θ 〈Oa〉s,θ −

∑
a′
πθ(a′|s)∇θ 〈Oa′〉s,θ

)
. (4)

Partial derivatives with respect to observable weights are trivially given by ∂wa,i〈Oa〉s,θ =128

〈ψs,φ,λ|Ha,i|ψs,φ,λ〉 (see Def. 1), while derivatives with respect to rotation angles ∂φi〈Oa〉s,θ129

and scaling parameters1 ∂λi〈Oa〉s,θ can be estimated via the parameter-shift rule [38, 34]:130

∂i 〈Oa〉s,θ =
1

2

(
〈Oa〉s,θ+π

2 ei
− 〈Oa〉s,θ−π2 ei

)
, (5)

i.e., using the difference of two expectation values 〈Oa〉s,θ′ with a single angle shifted by ±π2 .131

For a RAW-PQC policy πθ, we have instead:132

∇θ log πθ(a|s) = ∇θ 〈Pa〉s,θ / 〈Pa〉s,θ (6)

where the partial derivatives ∂φi〈Pa〉s,θ and ∂λi〈Pa〉s,θ can be estimated similarly to above.133

In some of our environments, we additionally rely on a linear value-function baseline to reduce the134

variance of the Monte Carlo estimates [39]. We choose it to be identical to that of Ref. [40].135

1Note that the parameters λ do not act as rotation angles. To compute the derivatives ∂λi,j 〈Oa〉s,θ , one
should compute derivatives w.r.t. sjλi,j instead and apply the chain rule: ∂λi,j 〈Oa〉s,θ = sj∂sjλi,j 〈Oa〉s,θ .

4



Algorithm 1: REINFORCE with PQC policies and value-function baselines

Input: a PQC policy πθ from Def. 1; a value-function approximator Ṽω
1 Initialize parameters θ and ω;
2 while True do
3 Generate N episodes {(s0, a0, r1, . . . , sH−1, aH−1, rH)}i following πθ;
4 for episode i in batch do
5 Compute the returns Gi,t ←

∑H−t
t′=1 γ

t′r
(i)
t+t′ ;

6 Compute the gradients∇θ log πθ(a
(i)
t |s

(i)
t ) using Lemma 1;

7 Fit
{
Ṽω(s

(i)
t )
}
i,t

to the returns {Gi,t}i,t;

8 Compute ∆θ =
1

N

N∑
i=1

H−1∑
t=0
∇θ log πθ(a

(i)
t |s

(i)
t )
(
Gi,t − Ṽω(s

(i)
t )
)

;

9 Update θ ← θ + α∆θ;

2.4 Efficient policy sampling136

A natural consideration when it comes to the implementation of SOFTMAX-PQCs is whether one can137

efficiently (in the number of executions of the PQC on a quantum computer) sample and train policies138

of the form of Eq. (3). Indeed, since 〈Oa〉s,θ are expectation values of measurements, repeated139

measurements on a quantum computer only give access to noisy estimates 〈Õa〉s,θ , close up to some140

additive error. We find that such estimates are sufficient to compute a policy π̃θ that produces samples141

close to those of the true πθ . More formally, we show the following lemma (proven in Appendix B).142

Lemma 2. For a SOFTMAX-PQC policy πθ defined by a unitary U(s,θ) and observables Oa,143

call 〈Õa〉s,θ approximations of the true expectation values 〈Oa〉s,θ with at most ε additive error.144

Then the approximate policy π̃θ = softmaxβ(〈Õa〉s,θ) has total variation distance O(βε) to πθ =145

softmaxβ(〈Oa〉s,θ). Since expectation values can be efficiently estimated to additive error on a146

quantum computer, this implies efficient approximate sampling from πθ.147

We also obtain a similar result for the log-policy gradient of SOFTMAX-PQCs (see Lemma 1), that148

we show can be efficiently estimated to additive error in `∞-norm (see Appendix B for a proof).149

3 Performance comparison in benchmarking environments150

In the previous section, we have introduced our quantum policies and described several of our design151

choices. We defined the RAW-PQC and SOFTMAX-PQC models and introduced two original features152

for PQCs: trainable observables at their output and trainable scaling parameters for their input. In this153

section, we evaluate the influence of these design choices on learning performance through numerical154

simulations. We consider three classical benchmarking environments from the OpenAI Gym library155

[24]: CartPole, MountainCar and Acrobot. All three have continuous state spaces and discrete action156

spaces (see Appendix C for their specifications). Moreover, simple NN-policies, as well as simple157

closed-form policies, are known to perform very well in these environments [41], which makes them158

an excellent test-bed to benchmark PQC policies.159

3.1 RAW-PQC v.s. SOFTMAX-PQC160

In our first set of experiments, presented in Fig. 3, we evaluate the general performance of our161

proposed policies. The aim of these experiments is twofold: first, to showcase that quantum policies162

based on shallow PQCs and acting on very few qubits can be trained to good performance in our163

selected environments; second, to test the advantage of SOFTMAX-PQC policies over RAW-PQC164

policies that we conjectured in the Sec. 2.2. To assess these claims, we take a similar approach for165

each of our benchmarking environments, in which we evaluate the average learning performance of 20166

RAW-PQC and 20 SOFTMAX-PQC agents. Apart from the PQC depth, the shared hyperparameters167

5



0 250 500 750 1000 1250 1500 1750 2000
Episode

0

100

200

300

400

500

Av
er
ag

e
co

lle
ct
ed

re
w
ar
ds

CartPole-v1 (n = 4, Denc = 1)

softmax-PQC
raw-PQC

0 250 500 750 1000 1250 1500 1750 2000
Episode

-180

-160

-140

-120

-100

-80

-60
MountainCar-v0 (n = 2, Denc = 4)

softmax-PQC
raw-PQC

0 250 500 750 1000 1250 1500 1750 2000
Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100
Acrobot-v1 (n = 6, Denc = 2)

softmax-PQC
raw-PQC

Figure 3: Numerical evidence of the advantage of SOFTMAX-PQC over RAW-PQC in bench-
marking environments. The learning curves (20 agents per curve) of randomly-initialized SOFTMAX-
PQC agents (green curves) and RAW-PQC agents (red curves) in OpenAI Gym environments:
CartPole-v1, MountainCar-v0, and Acrobot-v1. Each curve is temporally averaged with a time
window of 10 episodes. All agents have been trained using the REINFORCE algorithm (see Alg. 1),
with value-function baselines for the MountainCar and Acrobot environments.

0 250 500 750 1000 1250 1500 1750 2000
Episode

0

100

200

300

400

500

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

CartPole - softmax-PQC

Depth 5
Reference (depth 1)
Fixed lambdas
Fixed weights, β = 2, 10

0 250 500 750 1000 1250 1500 1750 2000
Episode

-180

-160

-140

-120

-100

-80

-60
MountainCar - softmax-PQC

Depth 6
Reference (depth 4)
Fixed lambdas
Fixed weights, β = 2, 10

0 250 500 750 1000 1250 1500 1750 2000
Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100

Acrobot - softmax-PQC

Depth 5
Reference (depth 2)
Fixed lambdas
Fixed weights, β = 2, 10

Figure 4: Influence of the model architecture for SOFTMAX-PQC agents. The blue curves in
each plot correspond to the learning curves from Fig. 3 and are taken as a reference. Other curves
highlight the influence of individual hyperparameters. For RAW-PQC agents, see Appendix D.

of these two models were jointly picked as to give the best overall performance for both; the168

hyperparameters specific to each model were optimized independently. As for the PQC depth Denc,169

the latter was chosen as the minimum depth for which near-optimal performance was observed for170

either model. The simulation results confirm both our hypotheses: quantum policies can achieve good171

performance on the three benchmarking tasks that we consider, and we can see a clear separation172

between the performance of SOFTMAX-PQC and RAW-PQC agents.173

3.2 Influence of architectural choices174

The results of the previous subsection however do not indicate whether other design choices we have175

made in Sec. 2.2 had an influence on the performance of our quantum agents. To address this, we176

run a second set of experiments, presented in Fig. 4. In these simulations, we evaluate the average177

performance of our SOFTMAX-PQC agents after modifying one of three design choices: we either178

increment the depth of the PQC (until no significant increase in performance is observed), fix the179

input-scaling parameters λ to 1, or fix the observable weightsw to 1. By comparing the performance180

of these agents with that of the agents from Fig. 3, we can make the following observations:181

• Influence of depth: Increasing the depth of the PQC generally improves (not strictly) the perfor-182

mance of the agents. Note that the maximum depth we tested was Denc = 10.183

• Influence of scaling parameters λ: We observe that training these scaling parameters in general184

benefits the learning performance of our PQC policies, likely due to their increased expressivity.185

• Influence of trainable observable weightsw: our final consideration relates to the importance of186

having a policy with “trainable greediness” in RL scenarios. For this, we consider SOFTMAX-PQC187

agents with fixed observables βOa throughout training. We observe that this has the general effect188

6



of decreasing the performance and/or the speed of convergence of the agents. We also see that189

policies with fixed high β (or equivalently, a large observable norm β‖Oa‖) tend to have a poor190

learning performance, likely due to their lack of exploration in the RL environments.191

4 Quantum advantage of PQC agents in RL environments192

The proof-of-concept experiments of the previous section show that our PQC agents can learn in basic193

classical environments, where they achieve comparable performance to standard DNN policies. This194

observation naturally raises the question of whether there exist RL environments where PQC policies195

can provide a learning advantage over standard classical policies. In this section, we answer this196

question in the affirmative by constructing: a) environments with a provable separation in learning197

performance between quantum and any classical (polynomial-time) learners, and b) environments198

where our PQC policies of Sec. 2 show an empirical learning advantage over standard DNN policies.199

4.1 Quantum advantage of PQC policies over any classical learner200

In this subsection, we construct RL environments with theoretical guarantees of separation between201

quantum and classical learning agents. These constructions are predominantly based on the recent202

work of Liu et al. [14], which defines a classification task out of the discrete logarithm problem203

(DLP), i.e., the problem solved in the seminal work of Shor [25]. In broad strokes, this task can be204

viewed as an encryption of an easy-to-learn problem. For an “un-encrypted” version, one defines205

a labeling fs of integers between 0 and p − 2 (for a large prime p), where the integers are labeled206

positively if and only if they lie in the segment [s, s+ (p− 3)/2] (mod p− 1). Since this labeling is207

linearly separable, the concept class {fs}s is then easy to learn. To make it hard, the input integers x208

(now between 1 and p− 1) are first encrypted using modular exponentiation, i.e., the secure operation209

performed in the Diffie–Hellman key exchange protocol. In the encrypted problem, the logarithm of210

the input integer logg(x) (for a generator g of Z∗p, see Appendix E) hence determines the label of x.211

Without the ability to decrypt by solving DLP, which is widely believed to be classically intractable,212

the numbers appear randomly labeled. Moreover, Liu et al. show that achieving non-trivial labeling213

accuracy 1/2 + 1/poly(n) (for n = log(p), i.e., slightly better than random guessing) with a classical214

polynomial-time algorithm using poly(n) examples would lead to an efficient classical algorithm215

that solves DLP [14]. In contrast, the same authors construct a family of quantum learners based on216

Shor’s algorithm, that can achieve a labeling accuracy larger than 0.99 with high probability.217

SL-DLP Our objective is to show that analogous separations between classical and quantum218

learners can be established for RL environments, in terms of their attainable value functions. We start219

by pointing out that supervised learning (SL) tasks (and so the classification problem of Liu et al.) can220

be trivially embedded into RL environments [42]: for a given concept fs, the states x are datapoints,221

an action a is an agent’s guess on the label of x, an immediate reward specifies if it was correct222

(i.e., fs(x) = a), and subsequent states are chosen uniformly at random. In such settings, the value223

function is trivially related to the testing accuracy of the SL problem, yielding a direct reduction of224

the separation result of Liu et al. [14] to an RL setting. We call this family of environments SL-DLP.225

Cliffwalk-DLP In the SL-DLP construction, we made the environment fully random in order to226

simulate the process of obtaining i.i.d. samples in an SL setting. It is an interesting question whether227

similar results can be obtained for environments that are less random, and endowed with temporal228

structure, which is characteristic of RL. In our second family of environments (Cliffwalk-DLP),229

we supplement the SL-DLP construction with next-state transitions inspired by the textbook “cliff230

walking” environment of Sutton & Barto [36]: all states are ordered in a chain and some actions of the231

agent can lead to immediate episode termination. We keep however stochasticity in the environment232

by allowing next states to be uniformly sampled, with a certain probability δ (common in RL to233

ensure that an agent is not simply memorizing a correct sequence of actions). This allows us to show234

that, as long as sufficient randomness is provided, we still have a simple classical-quantum separation.235

7



Deterministic-DLP In the two families constructed above, each environment instance provided236

the randomness needed for a reduction from the SL problem. This brings us to the question of237

whether separations are also possible for fully deterministic environments. In this case, it is clear238

that for any given environment, there exists an efficient classical agent which performs perfectly239

over any polynomial horizon (a lookup-table will do). However, we show in our third family of240

environments (Deterministic-DLP) that a separation can still be attained by moving the randomness241

to the choice of the environment itself: assuming an efficient classical agent is successful in most242

of exponentially-many randomly generated (but otherwise deterministic) environments, implies the243

existence of a classical efficient algorithm for DLP.244

We summarize our results in the following Theorem, detailed and proven in Appendix F.245

Theorem 1. There exist families of reinforcement learning environments which are: i) fully random246

(i.e., subsequent states are independent from the previous state and action); ii) partially random247

(i.e., the previous moves determine subsequent states, except with a probability δ at least 0.86 where248

they are chosen uniformly at random), and iii) fully deterministic; such that there exists a separation249

in the value functions achievable by a given quantum polynomial-time agent and any classical250

polynomial-time agent. Specifically, the value of the initial state for the quantum agent Vq(s0) is251

ε−close to the optimal value function (for a chosen ε, and with probability above 2/3). Further, if252

there exists a classical efficient learning agent that achieves a value Vc(s0) better than Vrand(s0) + ε′253

(for a chosen ε′, and with probability above 0.845), then there exists a classical efficient algorithm254

to solve DLP. Finally, we have Vq(s0) − Vc(s0) larger than some constant, which depends on the255

details of the environment.256

The remaining point we need to address here is that the learning agents of Liu et al. do not use PQCs257

but rather support vector machines (SVMs) based on quantum kernels [6, 7]. Nonetheless, using a258

connection between these quantum SVMs and PQCs [7], we construct PQC policies which are as259

powerful in solving the DLP environments (even under similar noise considerations). We detail this260

connection and construction in Appendices I and J.261

4.2 Quantum advantage of PQC policies over DNN policies262

While the DLP environments establish a proof of the learning advantage PQC policies can have in263

theory, these environments remain extremely contrived and artificial. They are based on algebraic264

properties that agents must explicitly decrypt in order to perform well. Instead, we would like to265

consider environments that are less tailored to a specific decryption function, which would allow266

more general agents to learn. To do this, we take inspiration from the work of Havlíček et al. [6], who,267

in order to test their PQC classifiers, define a learning task generated by similar quantum circuits.268

4.2.1 PQC-generated environments269

We generate our RL environments out of random RAW-PQCs. To do so, we start by uniformly270

sampling a RAW-PQC that uses the alternating-layer architecture of Fig. 2 for n = 2 qubits and depth271

Denc = 4. We use this RAW-PQC to generate a labeling function f(s) by assigning a label +1 to the272

datapoints s in [0, 2π]2 for which 〈ZZ〉s,θ ≥ 0 and a label −1 otherwise. We create a dataset S of273

10 datapoints per label by uniformly sampling points in [0, 2π]2 for which | 〈ZZ〉s,θ | ≥
∆
2 = 0.15.274

This dataset allows us to define two RL environments, similar to the SL-DLP and Cliffwalk-DLP275

environments of Sec. 4.1:276

• SL-PQC: this degenerate RL environment encodes a classification task in an episodic RL environ-277

ment: at each interaction step of a 20-step episode, a sample state s is uniformly sampled from the278

dataset S, the agent assigns a label a = ±1 to it and receives a reward δf(s),a = ±1.279

• Cliffwalk-PQC: this environment essentially adds a temporal structure to SL-PQC: each episode280

starts from a fixed state s0 ∈ S, and if an agent assigns the correct label to a state si, 0 ≤ i ≤ 19, it281

moves to a fixed state si+1 and receives a +1 reward, otherwise the episode is instantly terminated282

and the agent gets a −1 reward. Reaching s20 also causes termination.283

8



0 π 2π0

π

2π (a) PQC labeling function

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

(b) SL-PQC

softmax-PQC
DNN

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 (c) Cliffwalk-PQC

softmax-PQC
DNN

Figure 5: Numerical evidence of the advantage of PQC policies over DNN policies in PQC-
generated environments. (a) Labeling function and training data used for both RL environments.
The data labels (red for +1 label and blue for −1 label) are generated using a RAW-PQC of depth
Denc = 4 with a margin ∆ = 0.3 (white areas). The training samples are uniformly sampled from
the blue and red regions, and arrows indicate the rewarded path of the cliffwalk environment. (b) and
(c) The learning curves (20 agents per curve) of randomly-initialized SOFTMAX-PQC agents and
DNN agents in RL environments where input states are (b) uniformly sampled from the dataset and
(c) follow cliffwalk dynamics. Each curve is temporally averaged with a time window of 10 episodes.

4.2.2 Performance comparison284

Having defined our PQC-generated environments, we now evaluate the performance of SOFTMAX-285

PQC and DNN policies in these tasks. The particular models we consider are SOFTMAX-PQCs with286

PQCs sampled from the same family as that of the RAW-PQCs generating the environments (but with287

re-initialized parameters θ), and DNNs using Rectified Linear Units (ReLUs) in their hidden layers.288

In our hyperparameter search, we evaluated the performance of DNNs with a wide range of depths289

(number of hidden layers between 2 to 10) and widths (number of units per hidden layer between 8290

and 64), and kept the architecture with the best average performance (depth 4, width 16).291

Despite this hyperparametrization, we find (see Fig. 5, and Fig. 8 in Appendix D for different292

environment instances) that the performance of DNN policies on these tasks remains limited compared293

to that of SOFTMAX-PQCs, that learn close-to-optimal policies on both tasks. Moreover, we observe294

that the separation in performance gets boosted by the cliffwalk temporal structure. This is likely do295

to the increased complexity of this task, as, in order to move farther in the cliffwalk, the policy family296

should allow learning new labels without “forgetting” the labels of earlier states. In these particular297

case studies, the SOFTMAX-PQC policies exhibited sufficient flexibility in this sense, whereas the298

DNNs we considered did not (see Appendix D for a visualization of these policies). Note that these299

results do not reflect the difficulty of our tasks at the sizes we consider (a look-up table would perform300

optimally) but rather highlight the inefficacy of these DNNs at learning PQC functions.301

5 Conclusion302

In this work, we have investigated the design of quantum RL agents based on PQCs. We proposed303

several constructions and showed the impact of certain design choices on learning performance. In304

particular, we introduced the SOFTMAX-PQC model, where a softmax policy is computed from ex-305

pectation values of a PQC with both trainable observables and input scaling parameters. These added306

features to standard PQCs used in ML (e.g., as quantum classifiers) enhance both the expressivity and307

flexibility of PQC policies, which allows them to achieve a learning performance on benchmarking308

environments comparable to that of standard DNNs. We additionally demonstrated the existence of309

task environments, constructed out of PQCs, that are very natural for PQC agents, but on which DNN310

agents have a poor performance. To strengthen this result, we constructed several RL environments,311

each with a different degree of degeneracy (i.e., closeness to a supervised learning task), where we312

showed a rigorous separation between a class of PQC agents and any classical learner, based on the313

widely-believed classical hardness of the discrete logarithm problem. We believe that our results314

constitute strides toward a practical quantum advantage in RL using near-term quantum devices.315

9



References316

[1] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.317

[2] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav318

Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. Noisy319

intermediate-scale quantum (nisq) algorithms. arXiv preprint arXiv:2101.08448, 2021.320

[3] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum321

circuits as machine learning models. Quantum Science and Technology, 4(4):043001, 2019.322

[4] Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term323

processors. arXiv preprint arXiv:1802.06002, 2018.324

[5] Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe. Circuit-centric quantum325

classifiers. Physical Review A, 101(3):032308, 2020.326

[6] Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala,327

Jerry M Chow, and Jay M Gambetta. Supervised learning with quantum-enhanced feature328

spaces. Nature, 567(7747):209–212, 2019.329

[7] Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces.330

Physical review letters, 122(4):040504, 2019.331

[8] Evan Peters, Joao Caldeira, Alan Ho, Stefan Leichenauer, Masoud Mohseni, Hartmut Neven,332

Panagiotis Spentzouris, Doug Strain, and Gabriel N Perdue. Machine learning of high dimen-333

sional data on a noisy quantum processor. arXiv preprint arXiv:2101.09581, 2021.334

[9] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit born machines. Physical335

Review A, 98(6):062324, 2018.336

[10] Daiwei Zhu, Norbert M Linke, Marcello Benedetti, Kevin A Landsman, Nhung H Nguyen,337

C Huerta Alderete, Alejandro Perdomo-Ortiz, Nathan Korda, A Garfoot, Charles Brecque, et al.338

Training of quantum circuits on a hybrid quantum computer. Science advances, 5(10):eaaw9918,339

2019.340

[11] JS Otterbach, R Manenti, N Alidoust, A Bestwick, M Block, B Bloom, S Caldwell, N Didier,341

E Schuyler Fried, S Hong, et al. Unsupervised machine learning on a hybrid quantum computer.342

arXiv preprint arXiv:1712.05771, 2017.343

[12] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hart-344

mut Neven, and Jarrod R McClean. Power of data in quantum machine learning. Nature345

communications, 12(1):1–9, 2021.346

[13] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao. Expressive power of347

parametrized quantum circuits. Physical Review Research, 2(3):033125, 2020.348

[14] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and robust quantum349

speed-up in supervised machine learning. arXiv preprint arXiv:2010.02174, 2020.350

[15] Ryan Sweke, Jean-Pierre Seifert, Dominik Hangleiter, and Jens Eisert. On the quantum versus351

classical learnability of discrete distributions. Quantum, 5:417, 2021.352

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G353

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.354

Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.355

[17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur356

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of357

go without human knowledge. Nature, 550(7676):354, 2017.358

[18] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy359

Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large360

scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.361

[19] Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson,362

Denis Teplyashin, Karen Simonyan, Andrew Zisserman, Raia Hadsell, et al. Learning to363

navigate in cities without a map. Advances in Neural Information Processing Systems, 31:364

2419–2430, 2018.365

[20] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-366

Sheng Goan. Variational quantum circuits for deep reinforcement learning. IEEE Access, 8:367

141007–141024, 2020.368

10



[21] Owen Lockwood and Mei Si. Reinforcement learning with quantum variational circuit. In Pro-369

ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,370

volume 16, pages 245–251, 2020.371

[22] Shaojun Wu, Shan Jin, Dingding Wen, and Xiaoting Wang. Quantum reinforcement learning in372

continuous action space. arXiv preprint arXiv:2012.10711, 2020.373

[23] Sofiene Jerbi, Lea M. Trenkwalder, Hendrik Poulsen Nautrup, Hans J. Briegel, and Vedran374

Dunjko. Quantum enhancements for deep reinforcement learning in large spaces. PRX Quantum,375

2:010328, Feb 2021.376

[24] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,377

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.378

[25] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a379

quantum computer. SIAM review, 41(2):303–332, 1999.380

[26] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of381

pseudorandom bits. SIAM journal on Computing, 13(4):850–864, 1984.382

[27] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J Martinez, Jae Hyeon Yoo,383

Sergei V Isakov, Philip Massey, Murphy Yuezhen Niu, Ramin Halavati, Evan Peters, et al.384

Tensorflow quantum: A software framework for quantum machine learning. arXiv preprint385

arXiv:2003.02989, 2020.386

[28] Anonymous et al. Quantum agents in the gym: a variational quantum algorithm for deep387

q-learning. Supplementary Material, 2021.388

[29] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.389

Cambridge University Press, 2000.390

[30] Ronald De Wolf. Quantum computing: Lecture notes. arXiv preprint arXiv:1907.09415, 2019.391

[31] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M392

Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small393

molecules and quantum magnets. Nature, 549(7671):242–246, 2017.394

[32] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre. Data re-395

uploading for a universal quantum classifier. Quantum, 4:226, 2020.396

[33] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding on the397

expressive power of variational quantum-machine-learning models. Physical Review A, 103(3):398

032430, 2021.399

[34] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating400

analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.401

[35] Lilian Weng. Policy gradient algorithms. URL: lilianweng.github.io/lil-log, 2018.402

[36] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. 1998.403

[37] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-404

ment learning. Machine learning, 8(3-4):229–256, 1992.405

[38] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit406

learning. Physical Review A, 98(3):032309, 2018.407

[39] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for408

gradient estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):409

1471–1530, 2004.410

[40] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep411

reinforcement learning for continuous control. In International conference on machine learning,412

pages 1329–1338. PMLR, 2016.413

[41] OpenAI. Leaderboard of openai gym environments. URL: github.com/openai/gym/wiki, 2020.414

[42] Vedran Dunjko, Yi-Kai Liu, Xingyao Wu, and Jacob M Taylor. Exponential improvements for415

quantum-accessible reinforcement learning. arXiv preprint arXiv:1710.11160, 2017.416

11

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://github.com/openai/gym/wiki/Leaderboard


Checklist417

1. For all authors...418

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s419

contributions and scope? [Yes]420

(b) Did you describe the limitations of your work? [Yes] See Sec. 4.2, where we mention421

that our constructed environments are artificial and comment on the limitations of our422

comparison to deep neural networks.423

(c) Did you discuss any potential negative societal impacts of your work? [No]424

(d) Have you read the ethics review guidelines and ensured that your paper conforms to425

them? [Yes]426

2. If you are including theoretical results...427

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Lemma428

1, Lemma 2, Lemma 3, Theorem 1 (derived from Lemmata 4, 5, 6) and Theorem 2429

(derived from Lemmata 7 and 8).430

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendices A, B,431

F, G, H and J.432

3. If you ran experiments...433

(a) Did you include the code, data, and instructions needed to reproduce the main ex-434

perimental results (either in the supplemental material or as a URL)? [Yes] See last435

paragraph of Sec. 1 and the supplementary material.436

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they437

were chosen)? [Yes] See Sec. 3.1, 3.2 and 4.2.2, and Appendix C.438

(c) Did you report error bars (e.g., with respect to the random seed after running experi-439

ments multiple times)? [Yes] See Fig. 3, 4, 5, 6 and 8.440

(d) Did you include the total amount of compute and the type of resources used (e.g., type441

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C.442

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...443

(a) If your work uses existing assets, did you cite the creators? [N/A]444

(b) Did you mention the license of the assets? [N/A]445

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]446

447

(d) Did you discuss whether and how consent was obtained from people whose data you’re448

using/curating? [N/A]449

(e) Did you discuss whether the data you are using/curating contains personally identifiable450

information or offensive content? [N/A]451

5. If you used crowdsourcing or conducted research with human subjects...452

(a) Did you include the full text of instructions given to participants and screenshots, if453

applicable? [N/A]454

(b) Did you describe any potential participant risks, with links to Institutional Review455

Board (IRB) approvals, if applicable? [N/A]456

(c) Did you include the estimated hourly wage paid to participants and the total amount457

spent on participant compensation? [N/A]458

12


	Introduction
	Parametrized quantum policies: definitions and learning algorithm
	Quantum computation: a primer
	The raw-PQC and softmax-PQC policies
	Learning algorithm
	Efficient policy sampling

	Performance comparison in benchmarking environments
	raw-PQC v.s. softmax-PQC
	Influence of architectural choices

	Quantum advantage of PQC agents in RL environments
	Quantum advantage of PQC policies over any classical learner
	Quantum advantage of PQC policies over DNN policies
	PQC-generated environments
	Performance comparison


	Conclusion

