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Abstract

Accurately backpropagating the gradient through categorical variables is a chal-1

lenging task that arises in various domains, such as training discrete latent variable2

models. To this end, we propose CARMS, an unbiased estimator for categorical3

random variables based on multiple mutually negatively correlated (jointly anti-4

thetic) samples. CARMS combines REINFORCE with copula based sampling5

to avoid duplicate samples and reduce the variance, while keeping the estimator6

unbiased using a simple multiplicative term. It generalizes both the ARMS anti-7

thetic estimator for binary variables, which is CARMS for two categories, as well8

as LOORF/VarGrad, the leave-one-out REINFORCE estimator, which is CARMS9

with independent samples. We evaluate CARMS on several benchmark datasets on10

a generative modeling task, as well as a structured output prediction task, and find11

it to outperform competing methods including a strong self-control baseline. The12

code is available in the supplementary material.13

1 Introduction14

When optimizing an expectation based objective of the form Ez∼qφ(z)[f(z)], we sometimes require15

the gradients with respect to the parameters φ of the distribution. This is challenging for discrete16

variables, because the commonly used reparameterization gradient does not directly work, unless the17

discrete distribution is approximated by a continuous and reparameterizable one [Jang et al., 2017,18

Maddison et al., 2017]. A significant part of this field has thus been score function (REINFORCE)19

based estimators [Glynn, 1990, Williams, 1992, Fu, 2006], which are general and do not require20

differentiability of f . In this paper, we focus on the case when z is a high dimensional categorical21

variable with logits φ. An common example of this form is the evidence lower bound (ELBO) [Jordan22

et al., 1998], which arises in variational inference, which is used for training variational autoen-23

coders [Kingma and Welling, 2014, Rezende et al., 2014]. Because their latent space consists of24

a large number of categorical variables, they require Monte Carlo gradients with respect to the25

parameters of the stochastic distribution, but have excellent performance, as a categorical VAE has in26

practice achieved state of the art zero-shot image generation [Ramesh et al., 2021].27

Our main contribution is a novel unbiased and low variance gradient estimator for categorical28

variables. The Categorical-Antithetic-REINFORCE-Multi-Sample (CARMS) estimator uses a copula29

to generate any number of antithetic (mutually negatively correlated) [Owen, 2013] categorical30

samples, and constructs an unbiased estimator by combining them into a baseline for variance31

reduction. This approach is inspired by the ARMS estimator [Dimitriev and Zhou, 2021], which also32

uses multiple antithetic samples, but only works for binary variables. For two categories, CARMS33

reduces to it, while for independent samples, CARMS reduces to the leave-one-out-REINFORCE34

(LOORF) estimator. Our approach achieves higher ELBO with VAE models than the state of the art,35

as well as higher log likelihood for conditional image completion.36
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Related work One widely used group of gradient estimators for categorical variables is based on37

trading off bias for lower variance. This includes the straight through (ST) estimator [Bengio et al.,38

2013], the direct argmax [Lorberbom et al., 2019], as well as the concurrently developed equivalent39

Gumbel-Softmax (GS) [Jang et al., 2017] or Concrete [Maddison et al., 2017] that uses a continuous40

relaxation. These were further improved by combining them with REINFORCE to obtain unbiased41

estimators, which includes REBAR [Tucker et al., 2017], as well as RELAX [Grathwohl et al., 2018],42

which uses a free form neural network.43

In practice, REINFORCE is almost always augmented by baselines, e.g. in variational inference [Mnih44

and Gregor, 2014, Ranganath et al., 2014, Paisley et al., 2012, Ruiz et al., 2016, Kucukelbir et al.,45

2017]. MuProp [Gu et al., 2016] uses a first order mean field Taylor approximation, but requires f46

to be differentiable. Other estimators apply Rao-Blackwellization, e.g., to one latent variable at a47

time [Titsias and Lázaro-Gredilla, 2015] or to the reparameterized Dirichlet vector in ARSM [Dong48

et al., 2021]. Besides REINFORCE and reparameterization type gradients, there is also the measure49

valued gradient [Rosca et al., 2019] and finite differences [Fu, 2006], but are less common in practice.50

A comprehensive review can be found in Mohamed et al. [2020].51

The more recent approaches for categorical variables are unbiased and REINFORCE based, building52

on the idea of using multiple samples to construct a baseline for variance reduction. One such53

baseline is LOORF [Kool et al., 2019a], originally introduced in Salimans and Knowles [2014] and54

also known as VarGrad [Richter et al., 2020], where its theoretical properties are further analyzed.55

VIMCO [Mnih and Rezende, 2016] has a similar form, but is specific to the importance weighted56

multi sample bound [Burda et al., 2016]. A different approach is ARSM [Yin et al., 2019], which57

reparameterizes the gradient with a Dirichlet distribution and uses swaps to obtain multiple correlated58

samples. However, it adds some amount of variance due to the continuous reparameterization, and59

can require up to C(C − 1)/2 function evaluations per step, which can be computationally expensive.60

More recently, the unordered set estimator (UNORD) [Kool et al., 2020] uses the Gumbel top-k trick61

to sample without replacement, and then constructs a baseline using a multiplicative term to preserve62

unbiasedness.63

2 Background64

Let z = (z1, ...,zD) denote D independent categorical variables, where zd is a one hot encoded65

categorical sample from zd ∼ qφd(zd) = Cat(σ(φd)), with σ(x)i = exi/
∑
j e
xj being the softmax66

function. Let also ı̂ be the basis vector with its ith coordinate set to one, and otherwise zero, such that67

P (z = ı̂) = σ(φ)i, or equivalently E[z] = σ(φ). Unless otherwise stated, superscripts denote the68

dimension, and subscripts denote different samples, with vectors and matrices being bold lowercase69

and bold uppercase symbols, respectively. We are interested in optimizing the following objective70

with respect to the logits φ = (φ1, ...,φD):71

L(φ) = Ez∼qφ(z)[f(z)], qφ(z) =

D∏
d=1

qφd(zd).

Although the score function gradient contains two terms:72

∇φL(φ) = Ez∼qφ(z)

[
∇φf(z) + f(z)∇φ ln qφ(z)

]
the first term is easily estimated, so we omit the subscript in f for notational clarity, and we focus on73

the latter term in this work. Since CARMS generalizes the multisample LOORF estimator beyond74

independent samples, we review it here. We also review the ARMS estimator, which uses a copula to75

generate antithetic samples, but is restricted to binary variables.76

2.1 LOORF77

Leave-one-out-REINFORCE (LOORF) [Salimans and Knowles, 2014, Kool et al., 2019a], also78

known as VarGrad [Richter et al., 2020], is a general score function based gradient estimator that uses79

N i.i.d. samples to construct a baseline for variance reduction, and is competitive with state of the80

art estimators. Its theoretical properties have recently been analyzed in Richter et al. [2020], where81

the same estimator results from minimizing the variance of the log ratio between the posterior and82

approximating distribution in variational inference. The only requirements for LOORF are the ability83
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to sample z ∼ qφ(z) and evaluate f(z). Given N samples z1, ...,zN
iid∼ Cat(σ(φ)), it has the form:84

85

gLOORF = 1
N−1

N∑
n=1

(
f(zn)− f̄(z)

)
∇φ ln qφ(zn) = 1

N−1

N∑
n=1

(
f(zn)− f̄(z)

)(
zn − σ(φn)

)
, (1)

where f̄(z) = 1
N

∑N
n=1 f(zn). It is commonly used due to its simplicity and strong performance.86

2.2 ARMS87

The Antithetic-REINFORCE-MultiSample (ARMS) [Dimitriev and Zhou, 2021] estimator is a recent88

work that uses any numberN of mutually negatively correlated samples. However, although unbiased,89

it is limited to binary variables, which motivated us to extend it to the categorical case. Since any90

antithetic copula in two dimensions reduces to the pair (u, 1 − u), it generalizes DisARM [Dong91

et al., 2020], independently discovered as U2G [Yin et al., 2020], which use N = 2 samples. ARMS92

achieves this generalization by using a copula, which is any multivariate distribution whose marginals93

are uniform random variables:94

u = (u1, ..., uN ) ∼ CN , ∀i : ui ∼ Unif(0, 1).

More specifically, ARMS uses a Dirichlet or a Gaussian copula, which both have very strong negative95

dependence between each dimension of u. However any copula can be used instead, with the only96

two requirements being the ability to generate samples easily, as well as being able to evaluate the97

bivariate CDF Φ(ui,uj) of the copula, so that the debiasing term can be calculated. Given a copula98

sample u, it uses inverse CDF sampling to convert it into N antithetic Bern(p) samples, which are99

simply bi = 1ui<p, ∀i. For a D-dimensional vector of antithetic Bernoulli variables b1, ..., bN with100

probabilities σ(φ), the N -sample unbiased estimator has the following simple form:101

gARMS =
1

N − 1

N∑
n=1

(
f(bn)− 1

n

N∑
m=1

f(bm)

)
bn − σ(φ)

1− ρ
, (2)

with ρ = (ρ1, ..., ρD), and ρd = corr(bdi , b
d
j ) being the correlation of the dth Bernoulli variable. It is102

easy to compute given the bivariate CDF of the copula.103

3 CARMS104

The CARMS estimator has a similar form to LOORF, but requires a multiplicative term to remain105

unbiased. It has two requirements: an easy way to sample antithetic categorical variables, and being106

able to compute the bivariate probability mass function (PMF), which should be identical for any107

pair. For clarity, we begin by assuming the ability to do this, and derive the univariate version for108

two samples, which we then extend to N samples. Next, we generalize CARMS to any number of109

categorical variables. Lastly, in Section 3.2, we show two different ways of sampling that satisfy110

both conditions: inverse CDF sampling with an easily computable analytical bivariate PMF, and the111

Gumbel max trick combined with an empirical estimate of the PMF.112

The two sample version of CARMS can be obtained by replacing the two i.i.d. samples in 2-LOORF113

with an arbitrarily correlated pair of categorical variables and an added debiasing term. For N = 2114

samples z, z′ ∼ Cat(σ(φ)), LOORF has the following simple form:115

gLOORF(z, z′) =
1

2

(
f(z)− f(z′)

)
(z − z′), (3)

which, importantly, is unbiased [Kool et al., 2019a, Dimitriev and Zhou, 2021]. This means that116

using a simple importance weight preserves its unbiasedness, for an arbitrary bivariate categorical117

distribution (z, z′) ∼ Cat
(
σ(φ), σ(φ)

)
:118

E
[
gLOORF(z, z′)

P (z = ı̂)P (z′ = ̂)

P (z = ı̂, z′ = ̂)

]
=
∑
i,j

P (z = ı̂, z′ = ̂)
P (z = ı̂)P (z′ = ̂)

P (z = ı̂, z′ = ̂)
gLOORF(̂ı, ̂)

=
∑
i,j

P (z = ı̂)P (z′ = ̂)gLOORF(̂ı, ̂) = E
z,z′

iid∼Cat(σ(φ))

[
gLOORF(z, z′)

]
= ∇φL(φ).
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We summarize the derivation of the two sample version of CARMS, which we denote as the119

Categorical-Antithetic-REINFORCE-Two-Sample (CARTS) estimator in the following theorem.120

Theorem 1 Let (z, z′) be a sample from an arbitrary bivariate Categorical distribution with121

marginal distributions z, z′ ∼ Cat(σ(φ)), and a known bivariate PMF. An unbiased estimator122

of∇φE[f(z)] is:123

gCARTS(z, z′) =
1

2

(
f(z)− f(z′)

)
(z − z′)zTRz′, Rij =

σ(φ)iσ(φ)j
P (z = ı̂, z′ = ̂)

. (4)

The intuition behind using negatively correlated variables is that we want to avoid the case when124

z = z′, because the sample is then “wasted.” We formalize this intuition below, and defer the proof125

to the appendix.126

Theorem 2 Let (z, z′) ∼ Cat(σ(φ), σ(φ)). If the bivariate PMF satisfies:127

∀i 6= j : P (z = ı̂, z′ = ̂) ≥ P (z = ı̂)P (z′ = ̂),

with strict inequality for at least one pair, then Var[gCARTS(z, z′)] < Var[gLOORF(z, z′)].128

We now extend CARTS to N samples, using the following identity, the proof of which can be found129

in Dimitriev and Zhou [2021]. It states that N -sample LOORF is equivalent to averaging 2-sample130

LOORF over all
(
N
2

)
pairs:131

gLOORF(z1, ..,zN ) =
1

N

N∑
n=1

(
f(zn)− 1

N

N∑
m=1

f(zm)

)
(zn − σ(φ))

= 1
N(N−1)

∑
n 6=m

1

2

(
f(zn)− f(zm)

)(
zn − zm

)
= 1

N(N−1)

∑
n 6=m

gLOORF(zn, zm)

With the above identity it easily follows that given N antithetic Categorical samples Z =132

[z1, ...,zN ]T , applying CARTS to all pairs results in an unbiased estimator, due to linearity of133

expectations:134

E [gCARMS(Z,R)] = E
[

1
N(N−1)

∑
n 6=m

gCARTS(zn, zm,R)

]
= E

[
1

N(N−1)

∑
n 6=m

gLOORF(zn, zm)

]
= E [gLOORF(Z)] = ∇φL(φ).

We summarize CARMS in the next theorem. and we also rewrite it in a simpler matrix form used in135

our implementation. The matrix form can be obtained after some algebra, which can be found in the136

appendix.137

Theorem 3 Let Z = [z1, ...,zN ]T be a sample from an arbitrary N -variate Categorical dis-138

tribution with identical marginal and bivariate distributions, such that zi ∼ Cat(σ(φ)), and139

Rij = σ(φ)iσ(φ)j/P (zn = ı̂, zm = ̂). An unbiased estimator of∇φE[f(z)] is:140

gCARMS(Z) = 1
N(N−1)

∑
n 6=m

1

2

(
f(zn)− f(zm)

)
(zn − zm)zTnRz′m

Lemma 4 Let f(Z) = [f(z1), ..., f(zN )]T , ◦ denote the Hadamard product, 1N×N a matrix of141

ones, and IN the identity matrix. Define O = 1
N−1 (1NxN − IN )◦ (ZRZT ), and D = diag(O1N ),142

to be a diagonal matrix. The CARMS estimator can equivalently be written in the following form:143

gCARMS(Z) =
1

N
f(Z)T (D −O)

(
Z − 1Nσ(φ)T

)
. (5)

Furthermore, for independent samples, ZRZT = 1N×N and LOORF has the form:144

gLOORF(Z) =
1

N
f(Z)T

(
IN×N − 1

N−1 (1NxN − IN )
) (
Z − 1Nσ(φ)T

)
(6)
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3.1 Multivariate CARMS145

In the univariate case, Monte Carlo estimators are not necessary, as the expectation has C terms146

and can simply be analytically summed, but for many categorical variables, stochastic gradients are147

required. For D dimensions, we can sample Zd ∼ Cat(σ(φd)) independently and combine them148

into a D ×N × C tensor Z, with the corresponding D × C × C importance ratio tensor R. Below,149

we use superscripts and subscripts to index the first and second dimension of the tensors. Focusing150

on the dth dimension, we have:151

∇φdE [f(Z)] = EZ−d
[
∇φdEZd

[
f(Z−d,Zd)

]]
= EZ−d

EZd
 1
N(N−1)

∑
n6=m

1

2

(
f(Z−dn ,Zdn)− f(Z−dm ,Zdm)

)
(Zdn −Zdm)Zdn

TRdZdm


= E

 1
N(N−1)

∑
n 6=m

1

2
(f(Zn)− f(Zm))

(
Zdn −Zdm

)
Zdn

TRdZdm

 .
Just like the univariate case, we only need N evaluations of f regardless of the dimensionality D.152

3.2 Antithetic categorical variables153

To be able to use CARMS in practice, we describe two ways to generate antithetic categorical154

variables in this section. Both methods are based on transformations of uniform random variables,155

which makes them amenable to antithetic copulas, such as the Gaussian or Dirichlet copula [Dimitriev156

and Zhou, 2021].157

3.2.1 Inverse CDF sampling158

The inverse transform sampling is a commonly used identity to transform uniform random variables,159

which are easy to generate, to another distribution:160

x ∼ Fx(x) ⇐⇒ u ∼ Unif(0, 1), x = F−1x (u),

where Fx(x) denotes the CDF of the desired distribution, and is simple for categorical variables. Let161

p(o) = (p
(o)
1 , ..., p

(o)
C ) be a vector of probabilities, which are reordered according to some ordering o.162

Define the left and right boundaries:163

l
(o)
i =

j−1∑
j=1

p
(o)
k , r

(o)
j =

i∑
j=1

p
(o)
j . (7)

Then, we can transform u ∼ Unif(0, 1) by setting z = ̂, where j is such that u ∈ [l
(o)
j , r

(o)
j ]. To164

obtain N antithetic categorical variables, we can sample u ∼ CN for a given copula and set zn165

in a vectorized manner. Importantly, this sampling approach allows us to analytically evaluate the166

bivariate PMF:167

P (z(o) = ı̂, z′(o) = ̂) = P
(
u ∈ [l

(o)
i , r

(o)
i ], u′ ∈ [l

(o)
j , r

(o)
j ]
)

=

ΦC(l
(o)
i , l

(o)
j ) + ΦC(r

(o)
i , r

(o)
j )− ΦC(l

(o)
i , r

(o)
j )− ΦC(r

(o)
i , l

(o)
j ), (8)

where ΦC denotes the bivariate CDF of the copula. Unfortunately, keeping to one specific ordering168

does not allow for all possible pairs to have non-zero probabilities, so we randomly reorder p at every169

sampling step in the following manner. An ordering o consists of two indexes: i, j uniformly sampled170

from {1, ..., C}. First we translate p i elements to the right, then swap the last element with the jth:171

∀k : pk = p(k+i) mod C , and pj ↔ pC . (9)

This guarantees at least one of the C(C − 1)/2 orderings has i and j as the first and last elements,172

respectively. And since i, j are uniformly chosen, this allows us to easily compute the needed bivariate173
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Algorithm 1 Antithetic inverse CDF categorical sampling
Input: Number of samples N , probabilities p = σ(φ), copula C.
Sample u = (u1, ..., uN ) ∼ CN .
Shuffle p according to Eq. 9, and define the left and right boundaries l, r according to Eq. 7.
Set ∀n: zn = ̂, where j is such that un ∈ [lj , rj ].
For i, j ∈ {1, ..., C}: compute Rij = pipj/P (z = ı̂, z′ = ̂) according to Eq. 8.
return: (z1, ...,zN ), R.
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Figure 1: Correlation matrix for each pair of variables ρij = corr(zi, zj) using both types of
categorical sampling and different copulas.

PMF for R, given all of the orderings:174

P (z = ı̂, z′ = ̂) = 2
C(C−1)

∑
o∈O

P (z(o) = ı̂, z′(o) = ̂) (10)

Although it would be simpler to permute the elements randomly, a sum over C! orderings would175

quickly become prohibitive as C increases. We summarize the inverse CDF sampling method in176

Algorithm 1.177

3.2.2 Gumbel max sampling178

It is not strictly necessary to analytically calculate the bivariate PMF. If the variance is not too large,179

a Monte Carlo estimation suffices. In such a case, we can use a simpler sampling approach using180

the well known Gumbel max trick [Gumbel, 1954, Jang et al., 2017, Maddison et al., 2017]. Since181

a Gumbel distribution g ∼ Gumbel(0, 1) ⇐⇒ g = − ln(− ln(u)), u ∼ Unif(0, 1) we can again182

use copulas to encode negative correlations between samples. Given u ∼ CN , an antithetic Gumbel183

categorical sample is z = ̂ such that j = argmaxiφi − ln(− ln(ui)), where φ are the logits of the184

desired categorical distribution. This is also equivalent to the following exponential racing [Yin et al.,185

2019, Zhang and Zhou, 2018] sampling: z = ̂, such that j = argminiεi, where εi ∼ Exp(eφi).186

If we let Z = [z1, ..,zN ]T as before, an simple empirical estimate of the bivariate PMF computed187

using all pairs and only matrix operations is:188

P (z = ı̂, z′ = ̂) ≈ 1
N(N−1)Z

T (1NxN − IN )Z.

In Fig. 1 we show what bivariate PMF both approaches produce. The results are similar for both189

a(n inverted) Dirichlet or Gaussian copula, with larger differences between the categorical sampling190

method.191

4 Experimental results192

In this section, we first illustrate the variance reduction that CARMS offers on a toy example. We193

also optimize a categorical variational autoencoder (VAE) [Kingma and Welling, 2014, Rezende194

et al., 2014], and a stochastic network for structured output prediction, which are standard tasks [Jang195

et al., 2017] for categorical variables, done on three different benchmark datasets. Each experiment196

uses both antithetic categorical approaches for CARMS: inverse CDF sampling and the Gumbel max197

trick, denoted as CARMS-I and CARMS-G, respectively. For CARMS-G we clip the empirical ratio198

values to avoid numerical instabilities, and we use the Dirichlet copula for both. We compare our199

approach to three state-of-the-art unbiased estimators: LOORF/VarGrad [Kool et al., 2019a, Richter200
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Figure 2: Log variance of the gradient of different estimators with respect to the logits on a toy
problem. Columns correspond to different entropy levels of the logits.

et al., 2020], the unordered set estimator (UNORD) [Kool et al., 2020] and ARSM [Yin et al., 2019].201

The code for all experiments is available in the supplementary material.202

4.1 Toy example203

We first showcase the variance reduction over other methods in a simple toy example, where we take204

the gradient with respect to the logits φ of:205

L(φ) = E[f(z1, . . . ,zD)], zd ∼ Cat(σ(φd)), f(z1, . . . ,zD) =
D∑
d=1

C∑
c=1

d · c · zdc.

For simplicity, let the number of categories, dimensions, and samples be C = D = N = 3. The206

probabilities are randomly sampled from a Dirichlet distribution: σ(φ) ∼ Dir(1C · α), but are207

identical for all methods for a given α. We vary the entropy of the probabilities from high (α = 1)208

to low (α = 1000). In a high entropy setting, there is little difference between the estimators, as209

the variance itself is very high, but differences emerge as we increase α and lower the entropy. The210

combined log variance of the gradient of each logit, for different methods and different α, is shown211

in Fig 2.212

4.2 Categorical variational autoencoder213

For this task, we follow the experimental setting from ARMS [Dimitriev and Zhou, 2021], except we214

use categorical instead of binary latent variables, and maximize the ELBO:215

ELBO(φ) = E
[

ln
p(x|z)p(z)

qφ(z|x)

]
≈

N∑
n=1

ln
p(x|zn)p(zn)

qφ(zn|x)
, z1, . . . , zN ∼ CatN (σ(φ)),

where CatN (σ(φ)) denotes an N -variate categorical distribution with identical marginals. The216

number of categories is C ∈ {3, 5, 10} with D = b200/Cc latent variables, respectively, to make the217

total computational effort similar. In the binary case C = 2, CARMS reduces to ARMS, for which218

a thorough comparison has already been produced. The task is training a categorical VAE using219

either a linear or nonlinear encoder/decoder pair on three different datasets: Dynamic(ally binarized)220

MNIST [LeCun et al., 2010], Fashion MNIST [Xiao et al., 2017], and Omniglot [Lake et al., 2015].221

All datasets are freely available under the MIT license, and do not contain any personally identifiable222

information or offensive content. For a fair comparison, all methods use the same learning rate,223

optimizer, model architecture, and number of samples. Since ARSM uses a variable number of224

function evaluations per step, we use one sample per step, for which ARSM uses around twice as225

many evaluations as the other methods. The results are combined from five independent runs for each226

experimental configuration.227

The VAE consists of a stochastic layer with b200/Cc units, each of which is a C-way categorical228

variable. For the nonlinear case, there are additionally two layers of 200 units with LeakyReLU [Maas229

et al., 2013] activations. The prior logits are optimized using SGD with a learning rate of 10−2,230

whereas the encoder and decoder are optimized using Adam [Kingma and Ba, 2015] with a learning231

rate of 10−4, following Yin et al. [2019]. The optimization is run for 106 steps, with a batch size232

of 50, from which the global dataset mean is subtracted. The models are trained on an Intel Xeon233

Platinum 8280 2.7GHz CPU, and an individual run took 5-8 hours on one core of the machine, with234

a total carbon emissions estimated to be 28.19 kg of CO2 [Lacoste et al., 2019]. An exception is235

UNORD for 10 samples, which was significantly more computation heavy. Although the paper states236

that a step can be performed in O(2C), the provided code requires O(C!) evaluations per step.237
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Table 1: Final training 100 sample log likelihood of VAEs using different estimators, where the
stochastic layer contains C=3, 5, or 10 categories, with b200/Cc latent variables and C samples per
gradient step, respectively. Results are reported on three datasets: Dynamic MNIST, Fashion MNIST,
and Omniglot over 5 runs, with the best performing methods in bold.

Categories CARMS-I CARMS-G LOORF UNORD ARSM
D

yn
am

ic
M

N
IS

T

L
in

ea
r 3 -105.34 ± 0.25 -105.36 ± 0.24 -105.64 ± 0.23 -105.23 ± 0.23 -107.35 ± 0.56

5 -103.53 ± 0.13 -103.35 ± 0.18 -103.54 ± 0.15 -103.50 ± 0.13 -106.13 ± 0.53
10 -103.22 ± 0.05 -103.12 ± 0.06 -103.48 ± 0.06 -103.56 ± 0.06 -106.71 ± 0.58

N
on

lin
r 3 -94.85 ± 0.28 -94.60 ± 0.28 -95.12 ± 0.21 -95.21 ± 0.22 -99.62 ± 0.50

5 -93.05 ± 0.14 -92.60 ± 0.12 -92.91 ± 0.16 -92.98 ± 0.12 -98.89 ± 0.43
10 -92.13 ± 0.05 -92.42 ± 0.10 -92.44 ± 0.04 -93.05 ± 0.14 -97.76 ± 0.41

Fa
sh

io
n

M
N

IS
T

L
in

ea
r 3 -245.44 ± 0.22 -245.69 ± 0.19 -245.8 ± 0.19 -245.90 ± 0.21 -247.51 ± 0.45

5 -242.06 ± 0.13 -241.90 ± 0.10 -242.17 ± 0.09 -242.43 ± 0.12 -244.63 ± 0.47
10 -240.44 ± 0.03 -240.52 ± 0.04 -240.91 ± 0.04 -241.08 ± 0.06 -243.29 ± 0.36

N
on

lin
r 3 -233.13 ± 0.16 -233.20 ± 0.16 -233.75 ± 0.10 -233.34 ± 0.12 -237.93 ± 0.20

5 -231.72 ± 0.09 -231.67 ± 0.13 -232.01 ± 0.05 -232.19 ± 0.09 -237.29 ± 0.34
10 -230.77 ± 0.05 -231.16 ± 0.05 -231.35 ± 0.03 -231.74 ± 0.02 -235.88 ± 0.17

O
m

ni
gl

ot

L
in

ea
r 3 -114.53 ± 0.12 -114.73 ± 0.15 -114.90 ± 0.13 -114.77 ± 0.15 -116.34 ± 0.42

5 -114.01 ± 0.10 -113.93 ± 0.11 -114.01 ± 0.10 -114.00 ± 0.09 -115.72 ± 0.35
10 -114.97 ± 0.06 -114.99 ± 0.06 -115.17 ± 0.05 -115.55 ± 0.08 -117.48 ± 0.35

N
on

lin
r 3 -110.19 ± 0.23 -110.16 ± 0.21 -110.33 ± 0.27 -110.31 ± 0.21 -115.13 ± 0.51

5 -109.14 ± 0.09 -109.35 ± 0.13 -109.39 ± 0.16 -109.55 ± 0.14 -115.07 ± 0.37
10 -108.66 ± 0.08 -108.62 ± 0.07 -108.98 ± 0.06 -109.54 ± 0.15 -115.11 ± 0.34
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Figure 3: Training a nonlinear categorical VAE with different estimators on Dynamic MNIST
using ELBO. Columns correspond to C ∈ {3, 5, 10} categories with C samples per gradient step,
respectively. Rows correspond to the 100 sample training and test log likelihood, and the variance of
the gradient with respect to the logits of the encoder network. Results for different datasets and other
networks can be found in the Appendix.

In Fig 3, we plot the training and test log likelihood using 100 samples, and gradient variance w.r.t238

the logits over time, for a nonlinear network on dynamic MNIST. Similar plots for other datasets239

and network types can be found in the appendix. Also shown in Table 1 is the final training log240

likelihood using 100 samples for all three datasets, network types, categories, and gradient estimators.241

The corresponding table with the final test log likelihood can be found in the appendix. In general,242

both versions of CARMS perform comparably, and result in slightly higher log likelihood than other243

methods. Because Gumbel CARMS uses an empirical estimate of the debiasing ratio, it has higher244

variance and slightly worse performance. When limiting the number of function evaluations, there245

is a gap between ARSM (which used on average 2C evaluations per step, out of a maximum of246

C(C − 1)/2 per step) compared to the other methods, which used C evaluations. This is possibly247

due to the continuous reparameterization that ARSM uses, which adds variance.248
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Table 2: Final training log likelihood of a categorical network for conditional estimation using
different gradient estimators, where the stochastic layer contains C = 3, 5, or 10 categories, with
b200/Cc latent variables and C samples per gradient step, respectively. Results are reported on three
datasets: Dynamic MNIST, Fashion MNIST, and Omniglot over 5 runs, with the best performing
methods in bold.

Categories CARMS-I CARMS-G LOORF UNORD ARSM

Dynamic 3 57.98 ± 0.10 58.35 ± 0.14 58.19 ± 0.14 58.06 ± 0.04 60.22 ± 0.19
MNIST 5 57.57 ± 0.05 57.85 ± 0.12 57.78 ± 0.08 57.6 ± 0.05 59.38 ± 0.13

10 58.17 ± 0.26 58.33 ± 0.13 58.20 ± 0.14 58.18 ± 0.17 59.32 ± 0.11

Fashion 3 132.83 ± 0.08 132.90 ± 0.08 133.10 ± 0.05 133.06 ± 0.06 134.56 ± 0.35
MNIST 5 132.68 ± 0.05 132.81 ± 0.12 132.91 ± 0.07 132.94 ± 0.14 134.09 ± 0.12

10 133.32 ± 0.15 133.43 ± 0.23 133.54 ± 0.17 133.38 ± 0.10 134.02 ± 0.21

Omniglot 3 65.57 ± 0.10 66.05 ± 0.14 65.92 ± 0.26 65.81 ± 0.09 68.00 ± 0.09
5 65.65 ± 0.18 66.16 ± 0.32 65.92 ± 0.23 65.78 ± 0.06 67.99 ± 0.32

10 66.76 ± 0.31 66.94 ± 0.24 66.87 ± 0.07 66.66 ± 0.24 68.35 ± 0.16

4.3 Structured prediction with stochastic categorical networks249

We also compare all methods on the standard benchmark task of predicting the lower half of an image250

from the upper half, i.e. the conditional distribution p(xl|xu), where xu and xl denote the upper251

and lower half of an image, respectively. We use a stochastic categorical network to estimate this252

distribution, with the objective: Ez∼p(zm|xu)
[

1
M

∑M
m=1 ln p(xl|zm)

]
, where z denotes a stochastic253

categorical layer. The encoder/decoder pair each contain one hidden layer with b200/Cc latent254

variables and a LeakyReLU activation, with the optimization performed for C ∈ {3, 5, 10} categories,255

on all three datasets, with identical settings for each gradient estimator for a fair comparison. We use256

M = 1 for training, and M = 1000 for evaluation on both the train and test set. In Table 2, we show257

the final training set log likelihood, with the corresponding test log likelihood table in the appendix,258

though the results are qualitatively similar. The results are similar to the VAE experiment, with the259

inverse CDF CARMS having a slightly higher log likelihood. However, the differences between260

estimators are less pronounced, with the unordered set estimator is being mostly on par with CARMS,261

and ARSM only slightly trailing the other methods, with a much smaller gap.262

5 Discussion263

We have presented a novel approach for training categorical variables, which extends the ARMS264

estimator for the binary case. It goes beyond i.i.d. samples by using a copula to generate antithetic265

categorical samples, but preserves unbiasedness by including a multiplicative term. For i.i.d. samples,266

the form of the estimator reduces to LOORF. We showcase its usefulness on several datasets, a267

different number of categories and types of deep neural networks. In variational inference tasks, and268

conditional estimation, CARMS outperforms other state of the art estimators. The main limitation269

of this work is its specificity to categorical (including binary) variables. We hope to extend this,270

e.g. to Plackett-Luce models for top-k sampling [Kool et al., 2019b, Grover et al., 2019], which271

has important applications in ranking [Dadaneh et al., 2020]. There is also a general limitation that272

CARMS shares with other state-of-the-art estimators, which is higher complexity than LOORF, a very273

simple but strong baseline. Future work includes investigating theoretical properties and large scale274

applications, as well as possible general antithetic gradient estimators, and we plan to investigate275

adaptive correlations that take into account the properties of f to further reduce the variance.276

Potential societal impact This work is focused on better optimization for categorical variables,277

which includes any network containing a stochastic categorical layer. In particular, generative models278

such as VAEs are widely used, and are sometimes trained on more human centered datasets. These279

models can sometimes be used to impersonate a person’s face or voice. We only used non-human280

datasets such as MNIST, but with enough knowledge and using the available code, anyone, including281

bad actors, can train the same model on human content for malicious purposes. However, we strongly282

believe that wide knowledge dissemination and open source code is crucial for reproducibility in all283

of science.284
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