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Abstract

Social recommendation has shown promising improvements over traditional sys-1

tems since it leverages social correlation data as an additional input. Most existing2

works assume that all data are available to the recommendation platform. However,3

in practice, user-item interaction data (e.g., rating) and user-user social data are4

usually generated by different platforms, both of which contain sensitive infor-5

mation. Therefore, How to perform secure and efficient social recommendation6

across different platforms, where the data are highly-sparse in nature remains an7

important challenge. In this work, we bring secure computation techniques into8

social recommendation, and propose S3Rec, a sparsity-aware secure cross-platform9

social recommendation framework. As a result, S3Rec can not only improve the10

recommendation performance of the rating platform by incorporating the sparse11

social data on the social platform, but also protect data privacy of both platforms.12

Moreover, to further improve model training efficiency, we propose two secure13

sparse matrix multiplication protocols based on homomorphic encryption and14

private information retrieval. Our experiments on two benchmark datasets demon-15

strate that S3Rec improves the computation time and communication size of the16

state-of-the-art model by about 40× and 423× in average, respectively.17

1 Introduction18

The recent advances of social recommendation have achieved remarkable performances in recom-19

mendation tasks [10, 26]. Unlike traditional methods, social recommendation leverages user-item20

rating data (e.g. from Netflix) with user-user social data (e.g. from Facebook) to facilitate model21

training. The cross-platform nature, the high sparsity and sensitivity of recommendation/social data22

make social recommendation hard-to-deploy in the real world [5]. Therefore, the main problem is,23

How to perform secure and efficient social recommendation across different platforms, where the24

data are highly-sparse in nature?25

Specifically, we focus on the problem of collaborative social recommendation in the two-party model,26

where one party (denoted as P0) holds user-item rating data, and the other party (denoted as P1)27

holds user-user social data. We also assume that the adversaries are semi-honest and non-colluding,28

which is commonly used in literature [8]. That is, the adversary will not deviate from the pre-defined29

protocol, but will try to learn as much information as possible from its received messages.30

Choices of privacy enhancing techniques. Currently, many anonymization techniques have been31

used in publishing recommendation data, such as k-anonymity and differential privacy [9]. On the32

other hand, cryptographic methods like secure multiparty computation (MPC) [9] and homomorphic33

encryption (HE) have been proposed to enable calculation on the protected data. Since k-anonymity34

has been demonstrated risky in practice (e.g., the re-identification attack on Netflix Prize dataset35
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[20]), and differential privacy introduces random noises to the dataset which eventually affects36

model accuracy, we consider they are not the ideal choice for our framework. Instead, we choose37

a combination of cryptographic tools (i.e., MPC and HE, but mainly MPC) which allows multiple38

parties to jointly compute a function depending on their private inputs while providing security39

guarantees.40

Choice of social recommendation model. In literature, many social recommendation models have41

been proposed [7, 16, 25] using matrix factorization or neural networks. Existing MPC-based42

neural network protocols [19, 27] usually suffer from accuracy loss and inefficiency due to their43

approximation of non-linear operations. Especially for the case of social recommendation, training44

data could exceed to millions, and this makes NN-based model a less ideal choice. Therefore, we45

choose the classic social recommendation model, Soreg [16], as a typical example, and present how46

to build a secure and efficient version of Soreg under cross-domain social recommendation scenario.47

Dealing with sparse data in secure machine learning. One important property of social recom-48

mendation data is its high sparsity. Take LibraryThing dataset [29] for example, its social matrix49

density is less than 0.02%. Recently, Schoppmann et al. introduced the ROOM framework [24]50

for secure computation over sparse data. However, their solution only works on column-sparse or51

row-sparse data, and in addition, it requires secure matrix multiplication protocol (for instance, based52

on Beaver’s multiplication triple). Different from their work, in this paper, we propose a PIR-based53

matrix multiplication which does not reply on pre-generated correlated randomness.54

Our framework. In this paper, we propose S3Rec, a sparsity-aware secure cross-platform social55

recommendation framework. Starting with the classic Soreg model, we observe that the training56

process of Soreg involves two types of calculation terms: (1) the rating term which could be calculated57

by P0 locally, and (2) the social term which needs to be calculated by P0 and P1 collaboratively.58

Therefore, the key to S3Rec is designing secure and efficient protocols for calculating the social term.59

To begin with, we first let both parties perform local calculation. Then both parties invoke a secure60

social term calculation protocol and let P0 finally receive the plaintext social term, and update the61

model accordingly. In this way, the security of our protocol relies significantly on the secure social62

term calculation protocol (for simplicity, we refer this protocol as the ‘ST-MPC’ protocol), and we63

propose a secure instantiation and prove its security. Similarly, the efficiency of S3Rec relies heavily64

on the performance of ST-MPC, and at the core, it relies on the efficiency of a matrix multiplication65

protocol. The naïve secure matrix multiplication protocol is traditionally evaluated through Beaver’s66

triples [3], and has O(km2) asymptotic communication complexity, where k is the dimension of67

latent factors and m is the number of users. To improve the communication efficiency, we propose68

two secure sparse matrix multiplication protocols for ST-MPC, based on two sparsity settings: (1)69

insensitive sparsity, which is a weaker variant of matrix multiplication where we assume both parties70

know the locations of non-zero values in the sparse matrix, and (2) sensitive sparsity, which is71

also a weaker variant of matrix multiplication, but stronger than (1), and we assume ‘only’ the72

number of zeros is public. Nevertheless, we present secure constructions for MatrixMul in both73

cases by leveraging two cryptography primitives called Private Information Retrieval (PIR) [1] and74

Homomorphic Encryption (HE) [22]. PIR can hide the locations of the non-zero values in the sparse75

matrix while HE enables additions and multiplications on ciphertexts. To this end, we drop the76

communication complexity of secure MatrixMul to O(km) for the insensitive sparsity case and to77

O(αkm) for the sensitive sparsity case, where α denotes the density of user social matrix.78

Summary of our experimental results. We conduct experiments on two popularly used dataset,79

i.e., Epinions [17] and LibraryThing [29]. The results demonstrate that (1) S3Rec achieves the same80

performance as existing social recommendation models, and (2) S3Rec improves the computation81

time and communication size of the state-of-the-art (SeSoRec) by about 40× and 423× in average.82

Contributions. We summarize our main contributions below: (1) We propose S3Rec, a privacy-83

preserving cross-platform social recommendation framework, which relies on a general protocol84

for calculating the social term securely; (2) We propose two secure sparse matrix multiplication85

protocols based on different sparsity visibility, i.e., insensitive sparsity and sensitive sparsity. We86

prove that both protocols are secure under semi-honest adversaries; and (3) We empirically evaluate87

the performance of S3Rec on benchmark datasets.88
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2 Preliminaries and Recommendation Model89

2.1 Preliminaries90

We begin with the syntax., we use [n] to denote the set {1, ..., n}, and |x| to denote the length of x.91

In terms of MPC, we denote a secret shared value of x in ZN as JxK, where N is a positive integer.92

Also, we let JxK0 denote P0’s share, and JxK1 denote P1’s share, where JxK = JxK0 + JxK1 ∈ ZN .93

JZK← MatrixMul(X,Y)

1 : P0, P1 jointly generate km2 Beaver’s triples

. . . . . . . . . . . . . . Offline Completed . . . . . . . . . . . . . .

2 : ∀xi,j ∈ X, P0 invokes Jxi,jK← Shr(xi,j)

3 : ∀yi,j ∈ Y, P1 invokes Jyi,jK← Shr(yi,j)

4 : foreach i ∈ [k], j ∈ [m], let Jzi,jK = 0,

5 : foreach a ∈ [m], b ∈ [m],

6 : JtmpK← Mul(Jxi,aK, Jyb,jK)
7 : Jzi,jK← Add(JtmpK, Jzi,jK)
8 : endfor

9 : endfor

10 : return JZK

Figure 1: Matrix multiplication protocol.

Multi-Party Computation (MPC). MPC is a94

cryptographic tool which enables multiple par-95

ties (say, n parties) to jointly compute a function96

f(x1, ..., xn), where xi is i-th party’s private in-97

put. MPC protocols ensure that, at the end of98

the protocol, parties eventually learn nothing but99

their own input and the function output. MPC100

has been widely-used in secure machine learn-101

ing systems such as PrivColl [28] and CrypT-102

Flow [13], most of which support a wide range103

of linear (e.g. addition, multiplication) and non-104

linear functions (e.g. equality test, comparison).105

Here, we present three popular MPC protocols,106

which we will use later in our protocol,107

– JzK← Add(JxK, JyK): P0 lets JzK0 = JxK0 +108

JyK0, and P1 lets JzK1 = JxK1 + JyK1;109

– JzK← Mul(JxK, JyK): Multiplication is eval-110

uated via Beaver’s Triples [3].111

Homomorphic Encryption (HE) scheme. HE is essentially a specific type of encryption scheme112

which allows manipulation on encrypted data. More specifically, HE involves a key pair (pk, sk),113

where the public key pk is used for encryption and the secret key sk is used for decryption. In this114

work, we use an additive HE scheme (i.e., Paillier [22]) which allows the following operations:115

– z ← Encpk(x)⊕ Encpk(y): addition between two ciphertexts, where z = Encpk(x+ y);116

– z ← Encpk(x)⊗ y: multiplication between a ciphertext and a plaintext, where z = Encpk(x · y).117

Private Information Retrieval (PIR). Now, we introduce single-server PIR [1]. In this setting, we118

assume there is a server and a client, where the server holds a database DB = {d1, ..., dn} with n119

elements, and the client wants to retrieve DBi while hiding the query index i from the server. Roughly,120

a PIR protocol consists of a tuple of algorithm (PIR.Query,PIR.Response,PIR.Extract). First, the121

client generates a query q ← PIR.Query(i) from an index i, and then sends query q to the server.122

The server then is able to generate a response r ← PIR.Response(DB, q) based on the query and123

database DB, and returns r to the client. Finally, the client extracts the result from server’s response124

DBi ← PIR.Extract(r).125

Client Server

q ← PIR.Query(i) q

r r ← PIR.Response(DB, q)

DBi ← PIR.Extract(r)

Figure 2: An overview of Private Information Retrieval

2.2 Recommendation model126

Recall that we assume there are two platforms, a rating platform P0, and a social platform P1. We127

assume P0 holds a private rating matrix R ∈ Rm×n, and P1 holds a private user social matrix128
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Global Parameter: Regularization strength γ, and learning rate θ.
Input: Private rating matrix R from platform P0, private user social matrix S from platform P1.
Output: Platform P0 receives the user latent matrix U and item latent matrix V.

1 : Platform P0 initializes U and V,
2 : while not coverage,
3 : P0 and P1 securely calculate the social term←
4 : P0 locally computes the rating terms
5 : P0 locally updates U by U← U− θ · ∂L/∂U
6 : P0 locally updates V by V← V− θ · ∂L/∂V
7 : endwhile

8 : return U and V to platform P0

ST-MPC(γ,U,D,E,S)

1 : JR0K← MatrixMul(γU/2,DT + ET )

2 : JR1K← MatrixMul(−γU, ST )
3 : JRK← Add(JR0K, JR1K)
4 : return Rec(JRK) to P0

Figure 3: Our proposed S3Rec framework, where MatrixMul stands for secure matrix multiplication
protocol, Add stands for secure add protocol, Rec stands for reconstruction protocol for secret sharing.

S ∈ Rm×m, where n and m denote the number of items and their common users, respectively. Also,129

we denote the user latent factor matrix as U ∈ Rk×m and item latent factor matrix as V ∈ Rk×n,130

where k is the dimension of latent factors. We further define an indication matrix I ∈ Rm×n, where131

Ii,j denotes whether user i has rated item j.132

Existing work [25] summarizes factorization based social recommendation models as the combination133

of a “basic factorization model” and a “social information model”. To date, different kinds of social134

information models have been proposed [16, 12], and their common intuition is that users with social135

relations tend to have similar preferences. In this work, we focus on the classic social recommendation136

model, i.e., Soreg [16], which aims to learn U and V by minimizing the following objective function,137

m∑
i=1

n∑
j=1

1

2
Ii,j
(
ri,j − u∗,iT v∗,j

)2
+
λ

2

m∑
i=1

‖u∗,i‖2F +
λ

2

n∑
j=1

‖v∗,j‖2F +
γ

2

m∑
i=1

m∑
f=1

si,f‖u∗,i−u∗,f‖2F ,

(1)
where the first term is the basic factorization model, the last term is the social information model, and138

the middle two terms are regularizers, ‖ · ‖2F is the Frobenius norm, λ and γ are hyper-parameters. If139

we denote D ∈ Rm×m as a diagonal matrix with diagonal element db =
∑m

c=1 sb,c and E ∈ Rm×m140

as a diagonal matrix with diagonal element ei =
∑m

b=1 sb,i. The gradients of L in Eq. (1) with141

respect to U and V are,142

∂L
∂U

= −V
((

R− UT V
)T
◦ I
)
+ λU︸ ︷︷ ︸

Rating term: computed byP0 locally

+
γ

2
U(DT + ET )− γUST︸ ︷︷ ︸

Social term: computed byP0 and P1 collaboratively

, (2)

143

∂L
∂V

= −U
((

R− UT V
)T
◦ I
)
+ λV︸ ︷︷ ︸

Rating term: computed byP0 locally

. (3)

3 Framework144

We summarize our proposed S3Rec framework in Figure 3. To begin with, we assume that party145

P0 holds the rating matrix R and P1 holds the social matrix S. At first, P0 randomly initializes146

U←$Rk×m and V←$Rk×n. Then, for each iteration (while the model dose not coverage), we let147

P0 and P1 jointly evaluate the social term defined in Eq 2. P0 then locally calculates the rating term148

in Eq 2 and Eq 3, as well as ∂L/∂U and ∂L/∂V. Party P0 then locally updates U and V accordingly149

and ends the iteration.150

Communication efficiency. In our framework, the only communication between two parties occurs151

in the ST-MPC protocol. Since we choose additive secret sharing, the Add protocol contains only152

local computation, we claim that the communication efficiency of S3Rec significantly relies on153
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Protocol: JZK← MatrixMul(X,Y)

1 : P0, P1 jointly generate km2 Beaver’s triples

. . . . . . . . . . . . . . . . . . . . . . . . . . . Offline Completed . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 : ∀(i, j) ∈ ly, P1 pushes yi,j into Ty(j)
3 : for j ∈ [k] do

4 : P1 lets Ty = ∅
5 : ∀a ∈ [m], b ∈ [m], if (i, a) ∈ ly, P0 pushes xa,b into Tx(a)
6 : for j ∈ [m] do

7 : Both parties let Jzi,jK = 0, then, for all values v ∈ Tx(i), u ∈ Ty(j)
8 : P0 invokes JvK← Shr(v), P1 invokes JvK← Shr(u)

9 : Jzi,jK = Add(Mul(JvK, JuK), Jzi,jK)
10 : endfor

11 : endfor

Figure 5: Dense-sparse MatrixMul(X,Y) with insensitive sparsity, that is, X ∈ Rk×m,Y ∈ Rm×m,
and Y’s location vector ly is public.

the efficiency of matrix multiplication protocol. We give a popular MatrixMul protocol in Figure154

1 and analyze its efficiency in our framework. The protocol in Figure 1 requires km2 log2N bit155

online communication, where m is the number of users and k is the dimension of latent factors. As156

for the usual case where the number of users is ≈ 104, k = 10, and logN = 64, one invocation of157

MatrixMul protocol would have a total communication of around 7.4GB. Considering 100 iterations158

of our framework, this leads to ≈ 1491GB communication, which is impractical. Fortunately, the159

social matrices (D, E, and S) are highly sparse in social recommendation. In the following section,160

we propose a PIR-based sparse matrix multiplication protocol with better communication efficiency.161

3.1 Secure sparse matrix multiplication162

Essentially, any matrix could be represented by a value vector and a location vector, where the value163

vector contains all non-zero values and the location vector contains locations of those values. That is,164

a sparse matrix Y ∈ Rm×m can be represented by a pair of vectors (ly ∈ Nt
m2 , vy ∈ Rt), where t is165

the number of non-zero values in Y.166

Tx(i)

Ty(j)

xi,∗filter with ly

filter with ly
yj,∗

P0

P1

Tx

Ty

Many Mul()
and Add()

Figure 4: Matrix multiplication
with insensitive sparsity.

Dense-sparse matrix multiplication. Considering the case167

where X ∈ Rk×m is the dense matrix from P0 and Y ∈ Rm×m168

is the sparse matrix from P1. Now we consider the following169

two cases.170

Case 1: insensitive sparsity, i.e., insensitive ly and sensitive171

vy. This refers to the case where the locations of zero values172

are public or contain no sensitive information. Take the social173

matrices (D and E) for example, both of them are diagonal, and174

thus the location vector is insensitive while the value vector is175

still sensitive.176

Our protocol mainly works as follows. First, P0 and P1 parse X177

and Y into two tables Tx and Ty separately, where the value set178

of each bin in Tx is a subset of one row in X, that is, Tx(i) ⊆179

xi,∗. Similarly, bin set in Ty is a subset of one column in Y,180

Ty(i) ⊆ y∗,i. The intuition behind is to use bins to contain only181

the necessary values needed to calculate the output value (which means filter out the zero multiplies182

in each bin). Take the first bin for example (that is, Tx(0) and Ty(0)), for j ∈ [m], Tx(0) contains183

all x0,j where yj,0 is a non-zero value, and Ty(0) contains all non-zero yj,0. In order to get the final184

result, we perform the secure inner product protocol on Tx(0) and Ty(0), and denote the result as185

Jz0,0K. We show the high level idea in Figure 4. By doing this, our protocol concretely consumes186

k|ly| Beaver’s triples and therefore has O(k|ly|) online communication complexity. Figure 5 shows187
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Protocol: JZK← MatrixMul(X,Y)

1 : P0 generates an additive HE key pair (pk, sk) , then sends pk to P1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Offline Completed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 : ∀i ∈ [k], j ∈ [m], P0 lets ei,j = Enc(pk, xi,j), and lets E be the encrypted matrix
3 : ∀(i, j) ∈ ly, P1 pushes yi,j into Ty(j), also, P1 invokes qi,j ← PIR.Query(i+ jk)

4 : P1 sends the query set (denoted as q) to P0

5 : ∀qi,j ∈ q, P0 invokes ri,j ← PIR.Response(E, qi,j).
6 : P0 sends the response set (denoted as r) to P1

7 : ∀ri,j ∈ r, P1 invokes ei,j ← PIR.Extract(ri,j) and pushes ei,j to T ′
e(i)

8 : for i ∈ [k], j ∈ [m] do

9 : P0 lets βi,j = Encpk(0)

10 : ∀v ∈ T ′
e(i), u ∈ Ty(j), P0 invokes βi,j = v ⊗ u⊕ βi,j

11 : P0 samples random numbers gi,j ←$Zδ, then letsβi,j = gi,j ⊕ βi,j
12 : P0 sends βi,j to P1, then letsJzi,jK0 = −gi,j
13 : endfor

14 : P0decrypts all receving messages and lets Jzi,jK1 = Decsk(βi,j)

15 : return JZK

Figure 6: Dense-sparse MatrixMul with sensitive sparsity, that is, X ∈ Rk×m,Y ∈ Rm×m, and Y’s
location vector ly is private.

the technical details of our proposed protocol for case 1. For Line 1 in ST-MPC (Figure 3), clearly188

both parties know that D and E are diagonal matrices, that is, |ly| = m. Therefore, our proposed189

protocol in Figure 4 can drop the complexity from O(km2) to O(km).190

Lemma 1. The protocol in Figure 5 is secure in the MPC-hybrid model.191

Proof. Please find the proof in the Technical Appendix.192

Ty(j)

filter with ly yj,∗

P0

P1

Ty

encrypt matrix E← Enc(X)

T ′e(i)T ′e

PIR

ly

Many ⊕ and ⊗

Figure 7: Matrix multiplication
with sensitive sparsity.

Case 2: sensitive sparsity, i.e., sensitive ly and sensitive vy.193

For a more general case, where both the location vector and194

the value vector contain sensitive information. Take the social195

matrix S for instance, its location vector indicates the existence196

of a social relation between two users, its value vector further197

shows the strength of their relation, and both of which are198

sensitive.199

In this case, both the dense matrix X and the entire sparse ma-200

trix Y are sensitive. Following the idea in case 1, the matrix201

multiplication protocol should first generate Tx, Ty according202

to vx, vy and ly, and then perform the inner product multipli-203

cation for each aligned bins in Tx, Ty. Still, P1 can generate204

Ty according to its own inputs vy, ly. However, P0 cannot205

generate Tx directly, since vx is kept by itself while ly is held206

by P1. We make a communication and computation trade-off207

by leveraging PIR techniques, and as a result, our PIR-based208

approach has lower concrete communication, and overall is faster than the baseline protocol.209

We show the high-level idea of our PIR-based protocol in Figure 7. The intuition behind is to let P1210

obliviously filter each bin in Tx since both value vector and location vector are sensitive. In summary,211

first P0 encrypts all the values in Tx, the encrypted table is denoted as Te. Then P1 and P0 invoke PIR212

protocol, where P0 acts as server and sets Te as PIR database, P1 acts as client and parses ly to many213

PIR queries. At the end of PIR protocol, P1 receives the encrypted and filtered table T ′e. Afterwards214

P1 performs secure inner product evaluation. By doing this, the communication complexity drops215
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from O(km2) to O(αkm), compared with the simple solution. The details of our protocol are shown216

in Figure 6. For Line 2 in ST-MPC (Figure 3), the social matrix (S) is sparse in nature, and thus our217

proposed protocol in Figure 7 can significantly improve its efficiency. In summary, with our proposed218

two secure MatrixMul protocols, one can securely calculate the social term efficiently. For instance,219

again considering the social recommendation with ≈ 104 users, our proposal only requires a total of220

≈ 3.6GB communication for each iteration.221

Lemma 2. The protocol in Figure 6 is secure in the PIR-hybrid model with the leakage of |ly|.222

Proof. Please find the proof in the Technical Appendix.223

3.2 Security discussions of the social term224

In S3Rec, P0 and P1 securely calculate the social term ST = γU(DT + ET )/2− γUST and reveal225

the result to P0 (Eq.(2)). We denote the ideal functionality of secure calculating the social term as Fst.226

During each epoch in Algorithm 3, P0 sends U to Fst, and P1 sends D,E,S to Fst accordingly. From227

the view of P0, after each iteration, it additionally learns the output of Fst, that is, the social term ST.228

The security of S3Rec relies on whether P0 can resolve the social matrix ST given its own inputs U229

and the social term ST. We claim that this is difficult because, the number of equations (#epoch, 100230

in our experiments) is much smaller than that of the variables (#user, much more than 100 in practice),231

which indicates that there are infinite solutions for this. Moreover, the reveal of the social term to P0232

could be avoided by taking the whole model training procedure as an MPC functionality and designing233

a complicated protocol for it. Inevitably, such protocol introduces impractical communication costs,234

and we leave how to solve this efficiently as a future work.235

4 Experiments236

Our experiments intend to answer the following questions. Q1: How do the social recommendation237

models using both rating data on P0 and social data on P1 outperform the model that only uses rating238

data on P0 (Section 4)? Q2: How does our model perform compared with SeSoRec (Section 4)? Q3:239

How does the social data sparsity affect the performance of SeSoRec and our model (Section 4)?240

Implementation and setup. We run our experiments on a machine with 4-Core 2.4GHz Intel Core241

i5 with 16G memory, we compile our program using a modern C++ compiler (with support for C++242

standard 17). In addition, our tests were run in a local network, with ≈ 3ms network latency. For243

additive HE scheme, we choose the implementation of libpaillier1. Also, we use Seal-PIR2 with same244

parameter setting as the original paper [1]. For security, we choose 128-bit computational security245

and 40-bit statistical security as recommended by NIST [2]. Similarly we leverage the generic ABY246

library3 to implement SeSoRec [5] and MPC building blocks such as addition, multiplication, and247

truncation. In particular, we choose 64-bit secret sharing in all our experiments.248

Dataset. We choose two popular benchmark datasets to evaluate the performance of our proposed249

model, i.e., Epinions [17] and LibraryThing (Lthing) [29], both of which are popularly used for250

evaluating social recommendation tasks. Following existing work [5], we remove the users and items251

that have less than 15 interactions for both datasets. We summarize the statistics of both datasets after252

process in Table 1. Notice that we assume users’ rating data are located at P0, users’ social data are253

located at P1, and P0 and P1 share the same user set.254

Table 1: Dataset statistics

Dataset #user #item #rating rating density #social relation social density

Epinions 11,500 7,596 283,319 0.32% 275,117 0.21%
Lthing 15,039 14,957 529,992 0.24% 44,710 0.02%

1libpaillier: http://acsc.cs.utexas.edu/libpaillier/, GPL license
2Seal-PIR: https://github.com/microsoft/SealPIR, MIT license
3ABY: https://github.com/encryptogroup/ABY, LGPL license
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Table 2: Comparison results of different models in terms of model accuracy (in RMSE), running time
(in seconds), and communication size (in GB), on Epinions and Lthing datasets.

Models Epinions dataset Lthing dataset
MF Soreg SeSoRec S3Rec MF Soreg SeSoRec S3Rec

RMSE 1.193 1.062 1.062 1.062 0.927 0.908 0.908 0.908
Offline Time - - 7,271 10.86 - - 14,450 8.912
Total Time 3.846 40.50 7,799 419.9 9.596 57.76 16,084 262.1

Offline Comm. - - 788.3 0 - - 1,348 0
Total Comm. - - 798.6 3.552 - - 1,365 2.201

Table 3: Comparison results by varying social data sparsity on Epinions and Lthing datasets.

Metric Models Epinions Lthing
0.4 0.6 0.8 0.4 0.6 0.8

Total time
(Seconds)

SesoRec 7,799 7,799 7,799 16,084 16,084 16,084
S3Rec 366.3 381.2 401.8 194 217 238

(Improvement) (21.29x) (20.46x) (19.41x) (82.91x) (74.12x) (67.58x)

Total communication
(GB)

SesoRec 798 798 798 1,366 1,366 1,366
S3Rec 3.12 3.29 3.46 1.62 1.82 2.01

(Improvement) (255x) (243x) (231x) (843x) (751x) (680x)

Comparison Methods. We compare S3Rec with the following classic and state-of-the-art models:255

– MF [18] is a classic matrix factorization model that only uses rating data on P0, i.e., when γ = 0256

for S3Rec.257

– Soreg [16] is a classic social recommendation model, which does not consider data privacy and258

assumes both rating data and social data are available on P0.259

– SeSoRec [5] tries to solve the privacy-preserving cross-platform social recommendation problem,260

but suffers from security and efficiency problem.261

Hyper-parameters. For all the model, during comparison, we set k = 10. We tune learning rate θ262

and regularizer parameter λ in {10−3, 10−2, ..., 101} to achieve their best values. We also report the263

effect of K on model performance.264

Metrics. We will evaluate both accuracy and efficiency of our proposed model. For accuracy, we265

choose Root Mean Square Error (RMSE) as the evaluation metric, since ratings range in [0, 5]. For266

efficiency, we report the computation time (in seconds) and the communication size between P0 and267

P1 (in gigabytes), if has, for all the models. We use five-fold cross-validation during experiments.268

Performance Comparison. We first compare the model performances in terms of accuracy (RMSE)269

and efficiency (total time and communication). Table 2 shows the time and communication for each270

epoch, where time is shown in seconds, and communication is shown in GB.271

From those Tables, we find that: (1) the use of social information can indeed improve the recom-272

mendation performance of the rating platform, e.g., 1.193 vs. 1.062 and 0.927 vs. 0.098 in terms of273

RMSE on Epinions and Lthing, respectively. This result is consistent with existing work from [16, 5];274

(2) despite the same RMSE as SeSoRec and Soreg, S3Rec significantly improves the efficiency of275

SeSoRec, especially on the more sparse Lthing dataset, reducing the total time for one epoch from276

around 4.5 hours to around 4.5 minutes, and reducing the total communication from nearly 1.3TB to277

around 2.2GB. This yields an improvement of 18.57× faster, and 224.8× less communication on278

Epinions and 61.37× faster and 620.2× less communication on Lthing, respectively.279

Effect of Social Data Sparsity. Next, we try to study the effect of social data sparsity on training280

efficiency. In order to do this, we sample the social relation of both datasets with a rate of 0.8,281

0.6, and 0.4. As the result, the RMSEs of both SeSoRec and S3Rec decrease to 1.0932, 1.1373,282
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Table 4: Effect of k on running time and communication size on Epinions dataset

Models SeSoRec S3Rec
k = 10 k = 15 k = 20 k = 10 k = 15 k = 20

Offline Time 7,271 12,651 17,676 10.86 9.667 9.815
Total Time 7,799 13,565 19,585 419.9 449.6 527.4

Offline Comm. 788.3 1,182 1,577 0 0 0.
Total Comm. 798.6 1,198 1,597 3.552 3.552 3.552

1.1751 on Epinions dataset, and 0.9112, 0.9187, 0.9210 on Lthing dataset. The rational behind is283

that recommendation performance decreases with the number of social relations. We also report the284

efficiency of both models on Epinions and Lthing datasets in Table 3. From it, we can find that the285

computation time and communication size of SeSoRec are constant no mater what the sample rate is.286

In contrast, the computation time and communication size of S3Rec decrease linearly with sample287

rate. This result benefits from that S3Rec can deal with sparse social data with our proposed sparse288

matrix multiplication protocols.289

Effect of k. For efficiency, we report the running time and communication size of SeSoRec and290

PriorRec w.r.t k in Table 4, where we use the Epinions dataset. From it, we can get that in average,291

S3Rec improves SeSoRec 18.6x in terms of total running time and 225x in terms of communication.292

More specifically, we observe that (1) the total running time of both SeSoRec and PriorRec increase293

with k, but the increase rate of S3Rec is slower than that of SeSoRec; (2) the communication size294

of SeSoRec increases with k, in contrast, the communication size of S3Rec is constant. This result295

demonstrates that our proposed S3Rec has better scalability than SeSoRec in terms of both running296

time and communication size.297

5 Related Work298

Traditional recommender systems that only consider user-item rating information suffer from severe299

data sparsity problem [18]. On the one hand, researchers extensively incorporate other kinds of300

information, e.g., social [25], review [23], location [14], and time [6], to further improve recommen-301

dation performance. On the other hand, existing studies begin to explore information on multiple302

platforms or domains to address the data sparsity problem, i.e., cross-platform and cross-domain303

recommendation [15, 30]. However, most of them cannot solve the data isolation problem in practice.304

So far, there has been several works that may be applied for privacy-preserving cross-domain305

recommendations. For example, [21] applied garbled circuits for secure matrix factorization, and it306

has high security but low efficiency. Chai et al. [4] adopted homomorphic encryption for federated307

matrix factorization, but it assumes the existence of a semi-honest server and is not provable secure.308

[11] uses differential privacy to protect user location privacy using transfer learning technique, which309

is not provable secure and does not suitable to our problem. The most similar work to ours is SeSoRec310

[5], however, it suffers from two main shortcomings: (1) as admitted by SeSoRec, it improves311

efficiency by sacrificing security. That is, it reveals the sum of two rows or two columns of the input312

matrix. We emphasis that this raises serious security concern in the social recommendation since313

one may infer detailed social relations from the element-wise sum of two rows/columns of the user314

social matrix, especially when social relations are binary values; (2) SeSoRec treats the social data as315

a dense matrix and thus still has serious efficiency issue under the practical sparse social data setting.316

6 Conclusion317

This paper aims to solve the data isolation problem in cross-platform social recommendation. To do318

this, we proposed S3Rec, a sparsity-aware secure cross-platform social recommendation framework.319

S3Rec conducts social recommendation task and preserves data privacy at the same time. We also320

proposed two secure sparse matrix multiplication protocols to improve the model training efficiency.321

Experiments conducted on two datasets demonstrate that S3Rec improves the computation time and322

communication size by around 40× and 423× on average, compared with the state-of-the-art work.323
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