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ABSTRACT

Classifying sequential data as early and as accurately as possible is a challenging
yet critical problem, especially when a sampling cost is high. One algorithm
that achieves this goal is the sequential probability ratio test (SPRT), which is
known as Bayes-optimal: it can keep the expected number of data samples as
small as possible, given the desired error upper-bound. The SPRT has recently
been found to be the best model that explains the activities of the neurons in the
primate parietal cortex that are thought to mediate our complex decision-making
processes. However, the original SPRT makes two critical assumptions that limit its
application in real-world scenarios: (i) samples are independently and identically
distributed, and (ii) the likelihood of the data being derived from each class can
be calculated precisely. Here, we propose the SPRT-TANDEM, a deep neural
network-based SPRT algorithm that overcomes the above two obstacles. The
SPRT-TANDEM estimates the log-likelihood ratio of two alternative hypotheses
by leveraging a novel Loss function for Log-Likelihood Ratio estimation (LLLR)
while allowing for correlations up to N(2 N) preceding samples. In tests on one
original and two public video databases, Nosaic MNIST, UCF101, and SiW, the
SPRT-TANDEM achieves statistically significantly better classification accuracy
than other baseline classifiers, with a smaller number of data samples. The code
and Nosaic MNIST are publicly available at https://anonymous.4open.
science/r/8e802b42-ec6f-4545-b34e-fb320cba4c4d/#home.

1 INTRODUCTION

The sequential probability ratio test, or SPRT, was originally invented by Abraham Wald, and an
equivalent approach was also independently developed and used by Alan Turing in the 1940s (Good,
1979; Simpson, 2010; Wald, 1945). SPRT calculates the log-likelihood ratio (LLR) of two competing
hypotheses and updates the LLR every time a new sample is acquired until the LLR reaches one of
the two thresholds for alternative hypotheses (Figure 1). Wald and his colleagues proved that when
sequential data are sampled from independently and identically distributed (i.i.d.) data, SPRT can
minimize the required number of samples to achieve the desired upper-bounds of false positive and
false negative rates comparably to the Neyman-Pearson test, known as the most powerful likelihood
test (Wald & Wolfowitz, 1948) (see also Theorem (A.5) in Appendix A). Note that Wald used the
i.i.d. assumption only for ensuring a finite decision time (i.e., LLR reaches a threshold within finite
steps) and for facilitating LLR calculation: the non-i.i.d. property does not affect other aspects of
the SPRT including the error upper bounds (Wald, 1947). More recently, Tartakovsky et al. verified
that the non-i.i.d. SPRT is optimal or at least asymptotically optimal as the sample size increases
(Tartakovsky et al., 2014), opening the possibility of potential applications of the SPRT to non-i.i.d.
data series. About 70 years after Wald’s invention, neuroscientists found that neurons in the part of
the primate brain called the lateral intraparietal cortex (LIP) showed neural activities reminiscent
of the SPRT (Kira et al., 2015); when a monkey sequentially collects random pieces of evidence to
make a binary choice, LIP neurons show activities proportional to the LLR. Importantly, the time of
the decision can be predicted from when the neural activity reaches a fixed threshold, the same as the
SPRT’s decision rule. Thus, the SPRT, the optimal sequential decision strategy, was re-discovered to
be an algorithm explaining primate brains’ computing strategy. It remains an open question, however,
what algorithm will be used in the brain when the sequential evidence is correlated, non-i.i.d. series.

1

https://anonymous.4open.science/r/8e802b42-ec6f-4545-b34e-fb320cba4c4d/%23home
https://anonymous.4open.science/r/8e802b42-ec6f-4545-b34e-fb320cba4c4d/%23home


Under review as a conference paper at ICLR 2021

Time

Decision value: Log-likelihood ratio

Undecided

Threshold

Threshold

Early decision 
accepting the hypothesis 

Late, ''careful'' decision 
accepting the hypothesis

Figure 1: Conceptual figure explaining the SPRT. The SPRT calculates the log-likelihood ratio (LLR) of two competing hypotheses and updates
the LLR every time a new sample (x(t)) is acquired, until the LLR reaches one of the two thresholds. For data that is easy to be
classified, the SPRT outputs an answer after taking a few samples, whereas for difficult data, the SPRT takes in numerous samples in
order to make a “careful” decision. For formal definitions and the optimality in early classification of time series, see Appendix A.

The SPRT is now used for several engineering applications (Cabri et al., 2018; Chen et al., 2017;
Kulldorff et al., 2011). However, its i.i.d. assumption is too crude for it to be applied to other
real-world scenarios, including time-series classification, where data are highly correlated, and key
dynamic features for classification often extend across more than one data point, violating the i.i.d.
assumption. Moreover, the LLR of alternative hypotheses needs to be calculated as precisely as
possible, which is infeasible in many practical applications.

In this paper, we overcome the above difficulties by using an SPRT-based algorithm that Treats
data series As an N-th orDEr Markov process (SPRT-TANDEM), aided by a sequential probability
density ratio estimation based on deep neural networks. Additionally, we propose a novel Loss
function for Log-Likelihood Ratio estimation (LLLR), in order to efficiently estimate the density
ratio. The SPRT-TANDEM can classify non-i.i.d. data series with user-defined model complexity by
changing N(2 N), the order of approximation, to define the number of past samples on which the
given sample depends. By dynamically changing the number of samples used for classification, the
SPRT-TANDEM can maintain high classification accuracy while minimizing the sample size as much
as possible. Moreover, the SPRT-TANDEM enables a user to flexibly control the speed-accuracy
tradeoff without additional training, making it applicable to various practical applications.

We test the SPRT-TANDEM on our new database, Nosaic MNIST (NMNIST), in addition to the
publicly available UCF101 action recognition database (Soomro et al., 2012) and Spoofing in the
Wild (SiW) database (Liu et al., 2018). Two-way analysis of variance (ANOVA, Fisher (1925))
followed by a Tukey-Kramer multi-comparison test (Tukey, 1949) shows that our proposed SPRT-
TANDEM provides statistically significantly higher accuracy than other fixed-length and variable-
length classifiers at a smaller number of data samples, making Wald’s SPRT applicable even to
non-i.i.d. data series. Our contribution is fivefold:

1. We invented a deep neural network-based algorithm, SPRT-TANDEM, that extends Wald’s
SPRT to non-i.i.d. data series without prior knowledge of the LLR.

2. The SPRT-TANDEM sequentially estimates LLR for earlier and more precise classification
of non-i.i.d. data series than other methods, as demonstrated on the three public databases.

3. Using the SPRT-TANDEM, a user can control the speed-accuracy tradeoff and handle
variable-length data without additional training.

4. We present the novel loss function, LLLR, to train neural networks for the LLR estimation.

5. We introduce Nosaic MNIST, a novel early-classification database.

2 RELATED WORK

The SPRT-TANDEM has multiple interdisciplinary intersections with other fields of research: Wald’s
classical SPRT, probability density estimation, neurophysiological decision making, and time-series
classification. The comprehensive review is left to Appendix B, while in the following, we introduce
the SPRT, probability density estimation algorithms, and early classification of the time series.

Sequential Probability Ratio Test (SPRT). The SPRT, denoted by �⇤, is defined as the tuple of a
decision rule and a stopping rule (Tartakovsky et al., 2014; Wald, 1947):

2



Under review as a conference paper at ICLR 2021

Definition 2.1. Sequential Probability Ratio Test (SPRT). Let �t as the LLR at time t. Given the
absolute values of lower and upper decision threshold, a0 � 0 and a1 � 0, SPRT, �⇤, is defined as

�⇤ = (d⇤, ⌧⇤), (1)
where the decision rule d⇤ and stopping time ⌧⇤ are

d⇤(X(1,T )) =

⇢
1 if �⌧⇤ � a1
0 if �⌧⇤  �a0 ,

(2)

⌧⇤ = inf{T � 0|�T /2 (�a0, a1)} . (3)

We leave detailed definitions to Appendix A, while an intuitive explanation can be found in Figure 1.

Probability density ratio estimation. Instead of estimating numerator and denominator of a
density ratio separately, the probability density ratio estimation algorithms estimate the ratio as a
whole, reducing the degree of freedom for more precise estimation (Sugiyama et al., 2010; 2012).
Two of the probability density ratio estimation algorithms that closely related to our work are the
probabilistic classification (Bickel et al., 2007; Cheng & Chu, 2004; Qin, 1998) and ratio matching
(Kanamori et al., 2009; Sugiyama et al., 2008; Tsuboi et al., 2009) algorithms. As we show in Section
3 and 4, the SPRT-TANDEM sequentially estimates the LLR by combining the two algorithms.

Early classification of time series. To make decision time as short as possible, algorithms for early
classification of time series can handle variable length of data (Mori et al., 2018; Mori et al., 2016;
Xing et al., 2009; 2012) to minimize high sampling costs (e.g., medical diagnostics (Evans et al., 2015;
Griffin & Moorman, 2001), or stock crisis identification (Ghalwash et al., 2014)). Leveraging deep
neural networks is no exception in the early classification of time series (Dennis et al., 2018; Suzuki
et al., 2018). Long short-term memory (LSTM)-s/LSTM-m impose monotonicity on classification
score and inter-class margin, respectively, to speed up action detection (Ma et al., 2016). Early and
Adaptive Recurrent Label ESTimator (EARLIEST) combines reinforcement learning and a recurrent
neural network to decide when to classify and assign a class label (Hartvigsen et al., 2019).

3 PROPOSED ALGORITHM: SPRT-TANDEM

In this section, we propose the TANDEM formula, which provides the N -th order approximation
of the LLR with respect to posterior probabilities. The i.i.d. assumption of Wald’s SPRT greatly
simplifies the LLR calculation at the expense of the precise temporal relationship between data
samples. On the other hand, incorporating a long correlation among multiple data may improve
the LLR estimation; however, calculating too long a correlation may potentially be detrimental in
the following cases. First, if a class signature is significantly shorter than the correlation length in
consideration, uninformative data samples are included in calculating LLR, resulting in a late or
wrong decision. Second, long correlations requires calculating a long-range of backpropagation,
prone to gradient vanishing problem during training a neural network. Thus, we relax the i.i.d.
assumption by keeping only up to the N -th order correlation to calculate the LLR.

The TANDEM formula. Here, we introduce the TANDEM formula, which computes the approxi-
mated LLR, the decision value of the SPRT-TANDEM algorithm. The data series is approximated as
an N -th order Markov process. For the complete derivation of the 0th (i.i.d.), 1st, and N -th order
TANDEM formula, see Appendix C. Given a maximum timestamp T 2 N, let X(1,T ) and y be a
sequential data X(1,T ) := {x(t)}Tt=1 and a class label y 2 {1, 0}, respectively, where x(t) 2 Rdx and
dx 2 N. By using Bayes’ rule with the N -th order Markov assumption, the joint LLR of data at a
timestamp t is written as follows:

log

✓
p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)

◆

=
tX

s=N+1

log

✓
p(y = 1|x(s�N), ..., x(s))

p(y = 0|x(s�N), ..., x(s))

◆
�

tX

s=N+2

log

✓
p(y = 1|x(s�N), ..., x(s�1))

p(y = 0|x(s�N), ..., x(s�1))

◆

� log

✓
p(y = 1)

p(y = 0)

◆
(4)
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Figure 2: Conceptual diagram of neural network for the SPRT-TANDEM where the order of approximation N = 1. The feature extractor
(red) extracts the feature vector for classification and outputs it to the temporal integrator (blue). Note that the temporal integrator
memorizes up to N preceding states in order to calculate the TANDEM formula (Equation (4)). LLR is calculated using the estimated
probability densities that are output from the temporal integrator. We use ·̂ to highlight a quantity estimated by a neural network.
Trainable weight parameters are shared across the boxes with the same color in the figure.

(see Equation (82) and (83) in Appendix C for the full formula). Hereafter we use terms k-let
or multiplet to indicate the posterior probabilities, p(y|x(1), ..., x(k)) = p(y|X(1,k)) that consider
correlation across k data points. The first two terms of the TANDEM formula (Equation (4)), N + 1-
let and N -let, have the opposite signs working in “tandem” adjusting each other to compute the LLR.
The third term is a prior (bias) term. In the experiment, we assume a flat prior or zero bias term, but
a user may impose a non-flat prior to handling the biased distribution of a dataset. The TANDEM
formula can be interpreted as a realization of the probability matching approach of the probability
density estimation, under an N -th order Markov assumption of data series.

Neural network that calculates the SPRT-TANDEM formula. The SPRT-TANDEM is designed
to explicitly calculate the N -th order TANDEM formula to realize density ratio estimation, which
is the critical difference between our SPRT-TANDEM network and other architecture based on
convolutional neural networks (CNNs) and recurrent neural networks (RNN). Figure 2 illustrates
a conceptual diagram explaining a generalized neural network structure, in accordance with the
1st-order TANDEM formula for simplicity. The network consists of a feature extractor and a temporal
integrator (highlighted by red and blue boxes, respectively). They are arbitrary networks that a user
can choose depending on classification problems or available computational resources. The feature
extractor and temporal integrator are separately trained because we find that this achieves better
performance than the end-to-end approach (also see Appendix D). The feature extractor outputs
single-frame features (e.g., outputs from a global average pooling layer), which are the input vectors
of the temporal integrator. The output vectors from the temporal integrator are transformed with a
fully-connected layer into two-dimensional logits, which are then input to the softmax layer to obtain
posterior probabilities. They are used to compute the LLR to run the SPRT (Equation (2)). Note that
during the training phase of the feature extractor, the global average pooling layer is followed by a
fully-connected layer for binary classification.

How to choose the hyperparameter N? By tuning the hyperparameter N , a user can efficiently
boost the model performance depending on databases; in Section 5, we change N to visualize the
model performance as a function of N . Here, we provide two ways to choose N . One is to choose
N based on the “specific time scale,” a concept introduced in Appendix D, where we describe in
detail how to guess on the best N depending on databases. The other is to use a hyperparameter
tuning algorithm such as Optuna Akiba et al. (2019) to objectively choose N . Note that tuning N
is not computationally expensive, because N is only related to the temporal integrator, not to the
feature extractor. In fact, the training speed of the temporal integrator is 60� 200 times faster than
the feature extractor in our experiment.
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4 PROPOSED LOSS FUNCTION: MULTIPLET CROSS-ENTROPY LOSS AND LLLR

Given a maximum timestamp T 2 N and dataset size M 2 N, let S := {(X(1,T ), yi)}Mi=1 be a
sequential dataset. Training our network to calculate the TANDEM formula involves the following
loss functions in combination: (i) multiplet cross-entropy loss, Lmultiplet, and (ii) the Loss for Log
Likelihood Ratio estimation (LLLR), LLLR. The total loss, Ltotal is defined as

Ltotal = Lmultiplet + LLLR . (5)

Multiplet cross-entropy loss. Under the N -th order TANDEM formula, correlations among up to
N + 1 data point are taken into account when estimating the LLR. To precisely estimate LLR at any
timestamp, we apply a binary cross-entropy loss to all of the multiplets, from singlet to N + 1-let:

Lmultiplet :=
N+1X

k=1

Lk-let , (6)

where

Lk-let :=
1

M(T �N)

MX

i=1

T�(N+1�k)X

t=k

⇣
� log p̂(yi|x(t�k+1)

i , ..., x(t)
i )
⌘
. (7)

We use p̂ to highlight a probability density estimated by a neural network. Minimizing the mul-
tiplet cross-entropy losses is equivalent to minimizing the Kullback-Leibler divergence (Kullback
& Leibler, 1951) of the estimated posterior k-let, p̂(yi|x(t�k+1)

i , ..., x(t)
i ), and the true posterior

p(yi|x(t�k+1)
i , ..., x(t)

i ), as we provide a proof in Appendix E.

Loss for Log-Likelihood Ratio estimation (LLLR). As stated above, optimization using the mul-
tiplet cross-entropy loss should lead to the precise estimation of true posterior, and consequently,
provide the true LLR of data approximated as an N -th order Markov process. However, the optimiza-
tion process is not guaranteed to reach global minima in an actual experiment. Thus, we propose a
novel loss function that optimizes the estimated LLR as a whole, unlike the multiplet cross-entropy
loss, which optimizes the TANDEM formula’s local components.

To minimize the Kullback-Leibler divergence between the estimated and the true LLRs, we introduce
LLLR below:

LLLR =
1

MT

MX

i=1

TX

t=1

�����yi � �

 
log

 
p̂(x(1)

i , x(2)
i , ..., x(t)

i |y = 1)

p̂(x(1)
i , x(2)

i , ..., x(t)
i |y = 0)

!!����� , (8)

where � is the sigmoid function. The LLLR can be interpreted as a ratio matching approach of the
probability density ratio estimation. As we provide a proof in Appendix F, the LLLR is a normalized
variant of KLIEP (Khan et al., 2019; Sugiyama et al., 2008), a ratio matching algorithm minimizing
the Kullback-Leibler divergence between the estimated and true density ratio. The original KLIEP
algorithm has unbounded terms and often causes a diverging loss value when used as a loss function.
In contrast, the LLLR can readily be used together with conventional loss functions such as the
cross-entropy loss. In Appendix F, we experimentally test the above theoretical predictions: The
LLLR used together with the multiplet cross-entropy loss has a statistically significantly smaller
classification error than the loss without LLLR (p-value < 0.001) and the bounded KLIEP loss with
the multiplet cross-entropy loss (p-value < 0.001).

5 EXPERIMENTS AND RESULTS

In the following experiments, we use two quantities as evaluation criteria: (i) balanced accuracy, the
arithmetic mean of the true positive and true negative rates, and (ii) mean hitting time, the average
number of data samples used for classification. Note that the balanced accuracy is robust to class
imbalance (Luque et al., 2019), and is equal to accuracy on balanced datasets.

Evaluated public databases are NMNIST, UCF, and SiW. Training, validation, and test datasets are
split and fixed throughout the experiment. We selected three early-classification models (LSTM-s
(Ma et al., 2016), LSTM-m (Ma et al., 2016), and EARLIEST (Hartvigsen et al., 2019)) and one
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Figure 3: Experimental results. (a-c) Speed-accuracy tradeoff (SAT) curves for three databases: NMNIST, UCF, and SiW. Note that only
representative results are shown. Error bars show the standard error of the mean (SEM). (d) Example LLR trajectories calculated
on the NMNIST database with the 10th-order SPRT-TANDEM. Red and blue trajectories represent odd and even digits, respectively.
(e) SAT curves of the ablation test comparing the effect of the Lmultiplet and the LLLR. (f) SAT curves comparing the SPRT and
Neyman-Pearson test (NPT) using the same 1st-order SPRT-TANDEM network trained on the NMNIST database.

fixed-length classifier (3DResNet (Hara et al., 2017)), as baseline models. All the early-classification
models share the same feature extractor as that of the SPRT-TANDEM for a fair comparison.

Hyperparameters of all the models are individually optimized with Optuna unless otherwise noted
so that no models are disadvantaged by choice of hyperparameters. See Appendix G for the search
spaces and fixed final parameters. After fixing hyperparameters, experiments are repeated with
different random seeds to obtain statistics. In each of the training runs, we evaluate the validation
set after each training epoch and then save the weight parameters if the balanced accuracy on the
validation set updates the largest value. The last saved weights are used as the model of that run. The
model evaluation is performed on the test dataset. During the test stage of the SPRT-TANDEM, we
used various values of the SPRT thresholds to obtain a range of balanced accuracy-mean hitting time
combinations for a SAT curve. If all the samples in a video are used up, the thresholds are collapsed
to a1 = a0 = 0 to force a decision. To objectively compare all the models with various trial numbers,
we conducted the two-way ANOVA followed by the Tukey-Kramer multi-comparison test to compute
statistical significance. For the details of the statistical test, see Appendix H.

We show our experimental results below. Due to space limitations, we can only show representative
results. For more details, see Appendix I. For our computing infrastructure, see Appendix J.

Nosaic MNIST (Noise + mosaic MNIST) database. We introduce a novel dataset, NMNIST,
whose video is buried with noise at the first frame, and gradually denoised toward the last, 20th frame
(see Appendix K for example data). The motivation to create NMNIST instead of using a preexisting
time-series database is as follows: for simple video databases such as Moving MNIST (MMNIST,
(Srivastava et al.)), each data sample contains too much information so that well-trained classifiers
can correctly classify a video only with one or two frames (see Appendix L for the results of the
SPRT-TANDEM and LSTM-m on MMNIST).

We design a parity classification task, classifying 0� 9 digits into an odd or even class. The training,
validation, and test datasets contain 50,000, 10,000, and 10,000 videos with frames of size 28⇥28⇥1
(gray scale). Each pixel value is divided by 127.5, before subtracted by 1. The feature extractor of the
SPRT-TANDEM is ResNet-110 (He et al., 2016a), with the final output reduced to 128 channels. The
temporal integrator is a peephole-LSTM (Gers & Schmidhuber, 2000; Hochreiter & Schmidhuber,
1997), with hidden layers of 128 units. The total numbers of trainable parameters on the feature
extractor and temporal integrator are 6.9M and 0.1M, respectively. We train 0th, 1st, 2nd, 3rd,
4th, 5th, 10th, and 19th order SPRT-TANDEM networks. LSTM-s / LSTM-m and EARLIEST use
peephole-LSTM and LSTM, respectively, both with hidden layers of 128 units. 3DResNet has 101
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layers with 128 final output channels so that the total number of trainable parameters is in the same
order (7.7M) as that of the SPRT-TANDEM.

Figure 3a and Table 1 show representative results of the experiment. Figure 3d shows example
LLR trajectories calculated with the 10th order SPRT-TANDEM. The SPRT-TANDEM outperforms
other baseline algorithms by large margins at all mean hitting times. The best performing model is
the 10th order TANDEM, which achieves statistically significantly higher balanced accuracy than
other algorithms (p-value < 0.001). The superiority of the SPRT-TANDEM over other algorithms
indicates that the SPRT-TANDEM sequentially computes and minimizes the distance between the
estimated LLR and the true LLR, approaching Bayes optimally if not reaches.

Table 1: Representative mean balanced accuracy (%) calculated on NMNIST. For the complete list including standard errors, see Appendix I.

Model
Mean hitting time

#trials2 3 4 4.37 5 6 10 15 19 19.66

SPRT-
TANDEM
(proposed)

0th 92.43 97.47 98.82 99.03 99.20 99.37 99.50 99.50 99.50 99.50 100
1st 93.81 98.04 99.07 99.21 99.34 99.46 99.50 99.50 99.50 99.50 100
2nd 93.73 98.01 99.07 99.22 99.36 99.45 99.49 99.49 99.49 99.50 120
10th 93.77 98.02 99.09 99.23 99.37 99.47 99.51 99.51 99.51 99.51 139

19th (max) 94.25 98.26 99.12 99.23 99.37 99.46 99.50 99.50 99.50 99.50 100

LSTM-m 88.74 93.89 96.15 97.62 98.35 99.19 99.42 99.48 138
LSTM-s 89.01 94.13 96.47 97.91 98.43 99.28 99.45 99.52 120

EARLIEST 97.48 99.34 130
3DResNet 93.81 96.98 100

UCF101 action recognition database. To create a more challenging task, we selected two classes,
handstand-pushups and handstand-walking, from the 101 classes in the UCF database. At a glimpse
of one frame, the two classes are hard to distinguish. Thus, to correctly classify these classes,
temporal information must be properly used. We resize each video’s duration as multiples of 50
frames and sample every 50 frames with 25 frames of stride as one data. Training, validation, and test
datasets contain 1026, 106, and 105 videos with frames of size 224⇥ 224⇥ 3, randomly cropped
to 200 ⇥ 200 ⇥ 3 at training. The mean and variance of a frame are normalized to zero and one,
respectively. The feature extractor of the SPRT-TANDEM is ResNet-50 (He et al., 2016b), with the
final output reduced to 64 channels. The temporal integrator is a peephole-LSTM, with hidden layers
of 64 units. The total numbers of trainable parameters in the feature extractor and temporal integrator
are 26K and 33K, respectively. We train 0th, 1st, 2nd, 3rd, 5th, 10th, 19th, 24th, and 49th-order
SPRT-TANDEM. LSTM-s / LSTM-m and EARLIEST use peephole-LSTM and LSTM, respectively,
both with hidden layers of 64 units. 3DResNet has 50 layers with 64 final output channels so that the
total number of trainable parameters (52K) is on the same order as that of the SPRT-TANDEM.

Figure 3b shows representative results of the experiment. The best performing model is the 10th order
TANDEM, which achieves statistically significantly higher balanced accuracy than other models
(p-value < 0.001). The superiority of the higher-order TANDEM indicates that a classifier needs to
integrate longer temporal information in order to distinguish the two classes (also see Appendix D).

Table 2: Representative mean balanced accuracy (%) calculated on UCF. For the complete list including standard errors, see Appendix I.

Model
Mean hitting time

#trials2 2.01 2.09 3 4 5 10 15 25 49

SPRT-
TANDEM
(proposed)

0th 92.92 92.94 93.00 93.38 94.06 94.66 96.04 96.83 96.91 96.91 200
1st 93.79 93.78 93.73 93.57 93.93 94.56 95.96 96.55 96.87 96.87 200
2nd 94.20 94.20 94.18 93.97 94.01 94.09 95.84 96.46 96.76 96.79 200
10th 94.37 94.37 94.31 94.29 94.77 95.10 96.18 96.85 97.12 97.25 256

49th (max) 94.52 94.51 94.52 94.40 94.36 94.51 96.20 97.03 96.96 96.72 200

LSTM-m 93.14 93.59 93.23 93.31 94.32 94.59 95.93 96.68 100
LSTM-s 90.87 92.36 92.82 93.17 93.75 94.23 95.93 96.45 101

EARLIEST 93.38 93.48 50
3DResNet 64.42 90.08 100

Spoofing in the Wild (SiW) database. To test the SPRT-TANDEM in a more practical situation,
we conducted experiments on the SiW database. We use a sliding window of 50 frames-length and 25
frames-stride to sample data, which yields training, validation, and test datasets of 46,729, 4,968, and
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43,878 videos of live or spoofing face. Each frame is resized to 256⇥ 256⇥ 3 pixels and randomly
cropped to 244 ⇥ 244 ⇥ 3 at training. The mean and variance of a frame are normalized to zero
and one, respectively. The feature extractor of the SPRT-TANDEM is ResNet-152, with the final
output reduced to 512 channels. The temporal integrator is a peephole-LSTM, with hidden layers of
512 units. The total number of trainable parameters in the feature extractor and temporal integrator
is 3.7M and 2.1M, respectively. We train 0th, 1st, 2nd, 3rd, 5th, 10th, 19th, 24th, and 49th-order
SPRT-TANDEM networks. LSTM-s / LSTM-m and EARLIEST use peephole-LSTM and LSTM,
respectively, both with hidden layers of 512 units. 3DResNet has 101 layers with 512 final output
channels so that the total number of trainable parameters (5.3M) is in the same order as that of the
SPRT-TANDEM. Optuna is not applied due to the large database and network size.

Figure 3c shows representative results of the experiment. The best performing model is the 10th order
TANDEM, which achieves statistically significantly higher balanced accuracy than other models
(p-value < 0.001). The superiority of the lower-order TANDEM indicates that each video frame
contains a high amount of information necessary for the classification, imposing less need to collect a
large number of frames (also see Appendix D).

Table 3: Representative mean balanced accuracy (%) calculated on SiW. For the complete list including standard errors, see Appendix I.

Model
Mean hitting time

#trials1.19 2 3 5 8.21 10 15 25 32.06 49

SPRT-
TANDEM
(proposed)

0th 99.78 99.82 99.85 99.87 99.87 99.87 99.87 99.87 99.87 99.87 100
1st 99.81 99.84 99.86 99.87 99.88 99.89 99.89 99.89 99.89 99.89 112
2nd 99.82 99.86 99.88 99.89 99.89 99.89 99.90 99.90 99.90 99.90 110
10th 99.84 99.87 99.88 99.88 99.88 99.88 99.88 99.89 99.88 99.88 107

49th (max) 99.83 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 96.72 73

LSTM-m 99.77 99.80 99.80 99.81 99.83 99.85 99.88 63
LSTM-s 99.77 99.80 99.80 99.81 99.83 99.84 99.87 58

EARLIEST 99.72 99.77 99.76 30
3DResNet 98.82 98.97 98.56 5

Ablation study. To understand contributions of the Lmultiplet and LLLR to the SAT curve, we
conduct an ablation study. The 1st-order SPRT-TANDEM is trained with Lmultiplet only, LLLR

only, and both Lmultiplet and LLLR. The hyperparameters of the three models are independently
optimized using Optuna (see Appendix G). The evaluated database and model are NMNIST and the
1st-order SPRT-TANDEM, respectively. Figure 3e shows the three SAT curves. The result shows that
Lmultiplet enables faster classification, whereas LLLR leads to higher classification accuracy. The
best performance is obtained by using both Lmultiplet and LLLR. We also confirmed this tendency
with the 19th order SPRT-TANDEM, as shown in Appendix M.

SPRT vs. Neyman-Pearson test. As we discuss in Appendix A, the Neyman-Person test is the
optimal likelihood ratio test with a fixed number of samples. The SPRT, however, reaches the accuracy
with much smaller data samples in the early classification of time series, i.e., in the test with flexible
numbers of samples. To experimentally test this prediction, we compare the SPRT-TANDEM and
corresponding the Neyman-Pearson test. By using the calculated LLR trajectory, the Neyman-Pearson
test classifies the entire data into two classes at each number of frames, using threshold � = 0. Results
support the theoretical prediction, as shown in Figure 3f: the Neyman-Pearson test needs a larger
number of samples than the SPRT-TANDEM at the early phase with few frames, asymptotically
approaches the SPRT-TANDEM at the later phase with many frames.

6 CONCLUSION

We presented the SPRT-TANDEM, a novel algorithm making Wald’s SPRT applicable to non-i.i.d.
data series without prior knowledge of the LLR. Leveraging deep neural networks and the novel loss
function, LLLR, the SPRT-TANDEM minimizes the distance of the true LLR and the LLR estimated
by the TANDEM formula, enabling wide application of the SPRT in real-world scenarios. Tested
on the three publicly available databases, we confirm that the SPRT-TANDEM achieves statistically
significantly higher accuracy over other existing algorithms with a smaller number of data. The
SPRT-TANDEM enables a user to control the speed-accuracy tradeoff without additional training,
opening up various potential applications where either high-accuracy or high-speed is required.
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