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ABSTRACT

The performance of Federated Learning (FL) typically suffers from client drift
caused by heterogeneous data, where data distributions vary with clients. Recent
studies show that the gradient dissimilarity between clients induced by the data
distribution discrepancy causes the client drift. Thus, existing methods mainly fo-
cus on correcting the gradients. However, it is challenging to identify which client
should (or not) be corrected. This challenge raises a series of questions: will the
local training, without gradient correction, contribute to the server model’s general-
ization on other clients’ distributions? when does the generalization contribution
hold? how to address the challenge when it fails? To answer these questions, we
analyze the generalization contribution of local training and conclude that the gen-
eralization contribution of local training is bounded by the conditional Wasserstein
distance between clients’ distributions. Thus, the key to promote generalization
contribution is to leverage similar conditional distributions for local training. As
collecting data distribution can cause privacy leakage, we propose decoupling
the deep models, i.e., splitting the model into a high-level model and a low-level
one, for harnessing client drift. High-level models are trained on shared feature
distributions, causing promoted generalization contribution and alleviated gradient
dissimilarity. Experimental results demonstrate that FL with decoupled gradient
dissimilarity is robust to data heterogeneity.

1 INTRODUCTION

To protect data privacy while cooperatively training machine learning models between personal users
and organizations, Federated Learning (FL) (Brendan McMahan et al., 2016) is widely exploited
as a powerful framework in recent years. In the FL framework, many clients train models without
communicating private data. Federated Average (FedAvg) is proposed to make FL practical in low-
bandwidth and low-computing resources environments. However, when data distributions between
clients are severely heterogeneous (Non-Independent and Identically Distributed, Non-IID), the
convergence rate and the generalization performance of FL are much worse than centralized training
which collects all the data (Li et al., 2020a; Karimireddy et al., 2019; Kairouz et al., 2019).

The FL community theoretically and empirically found that the “client drift” caused by the heteroge-
neous data is the main bottleneck of FedAvg (Li et al., 2020a; Karimireddy et al., 2019; Kairouz et al.,
2019; Wang et al., 2020a). It means that, after several or more training epochs on private datasets,
local models on clients become extremely far away from each other. Recent convergence analysis (Li
et al., 2020a; Reddi et al., 2021; Woodworth et al., 2020) of FedAvg shows that the degree of client
drift is linearly upper bounded by gradient dissimilarity. Therefore, most existing works (Karimireddy
et al., 2019; Wang et al., 2020a) focus on gradient correction techniques to accelerate the convergence
rate of local training.

However, how to correct the gradients during the local training is still an open problem (Kairouz et al.,
2019; Woodworth et al., 2020; Karimireddy et al., 2019), especially for achieving better generalization
ability. The challenge lies in the lack of criterion for identifying which client should (or not) be
corrected. This challenge raises a fundamental question in FL systems: Can the local training on a
specific client m contribute to the generalization performance of the server model when evaluted on
other clients’ distributions? Moreover, it is also unclear under which conditions the local training can
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lead to generalization contribution. The in-depth question is how to deal with the conditions where
local training cannot contribute to the server models’ generalizability to other clients.
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Figure 1: Training process of our frame-
work. The low-level model uses the raw
data ξm as inputs, and outputs hm. The
high-level model uses hm and samples ĥ
from a shared distribution Hϕr as inputs
for forward and backward propagation.

To answer these questions, we formulate the objective of
local training in FL systems as a generalization contri-
bution problem. The generalization contribution means
how much local training on one client can improve the
generalization performance on other clients’ distributions
for server models. Specifically, we evaluate the generaliza-
tion performance of a server model locally trained on one
client using other clients’ data distributions. Our theoret-
ical analysis shows that the generalization contribution of
local training is bounded by the conditional Wasserstein
distance between clients’ distributions. This implies that
even if the marginal distributions on different clients are
the same, it is insufficient to achieve a guaranteed gener-
alization performance of local training. Therefore, the key
to promoting generalization contribution is to leverage the
same or similar conditional distributions for local training.

However, collecting data to construct identical distribu-
tions shared across clients is forbidden due to privacy
concerns. To avoid privacy leakage, we propose decou-
pling a deep neural network into a low-level model and a
high-level one, i.e., a feature extractor network and a clas-
sifier network. Consequently, we can construct a shared
identical distribution in the feature space. Namely, on each
client, we estimate the feature distribution obtained by the
low-level network and send the estimated distribution to the server model. After aggregating the
received distributions, the server sends the aggregated distribution and the server model to clients
simultaneously. Theoretically, we show that introducing such a simple decoupling strategy promotes
the generalization contribution and alleviates gradient dissimilarity. Our extensive experimental
results demonstrate the effectiveness of our method, where we consider the global test accuracy of
four datasets under various FL settings following previous works (He et al., 2020b; Li et al., 2020a;
Wang et al., 2020a).

Our main contributions include: (1) We theoretically show that the generalization contribution
from clients during training is bounded by the conditional Wasserstein distance between clients’
distributions, answering the question that when the local training on one client can contribute
to the generalization performance of server models on other clients’ distributions. (2) We are
the first to theoretically propose that sharing similar features between clients can improve the
generalization contribution from local training, and significantly reduce the gradient dissimilarity.
(3) We experimentally validate the gradient dissimilarity reduction and benefits of our method on
generalization performance.

2 RELATED WORKS

We review FL algorithms aiming to address the Non-IID problem and introduce other works related to
measuring client contribution and decoupled training. Due to limited space, we leave a more detailed
discussion of the literature review in Appendix C.

2.1 ADDRESSING NON-IID PROBLEM IN FL
Model Regularization focuses on calibrating the local models to restrict them not to be excessively
far away from the server model. A number of works like FedProx (Li et al., 2020a), FedDyn (Acar
et al., 2021), SCAFFOLD (Karimireddy et al., 2019) and FedIR (Hsu et al., 2020) add a regularizer
of local-global model difference. MOON (Li et al., 2021b) adds the local-global contrastive loss to
learn a similar representation between clients.

Reducing Gradient Variance tries to correct the directions of local updates at clients via other
gradient information. This kind of method aims to accelerate and stabilize the convergence, like Fed-
Nova (Wang et al., 2020a), FedAvgM (Hsu et al., 2019), FedAdaGrad, FedYogi, and FedAdam (Reddi
et al., 2021). Our theorem 4.2 provides a new angle to reduce gradient variance.
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Personalized Federated Learning aims to make clients optimize different personal models to learn
knowledge from other clients and adapt to their own datasets (Tan et al., 2022). The knowledge
transfer of personalization is mainly implemented by introducing personalized parameters (Liang
et al., 2020; Thapa et al., 2020; Li et al., 2021a), or knowledge distillation on shared local features
or extra datasets (He et al., 2020a; Lin et al., 2020; Li & Wang, 2019). Due to the preference
for optimizing local objective functions, however, personalized federated models do not have a
comparable generic performance (evaluated on global test dataset) to normal FL (Chen & Chao,
2021). Some works (Collins et al., 2021; Arivazhagan et al., 2019) also propose to share feature
representations for personalized FL.

2.2 MEASURING CONTRIBUTION FROM CLIENTS

Clients are only willing to participate in an FL training when given enough rewards. Thus, it is
important to measure their contributions to the model performance (Yu et al., 2020; Ng et al., 2020;
Liu et al., 2022; Sim et al., 2020). Some works (Yuan et al., 2022) propose to measure the performance
gaps from the unseen client distributions experimentally. Data shapley (Ghorbani & Zou, 2019;
Sim et al., 2020; Liu et al., 2022) is proposed to measure the generalization performance gain of
client participation. Precisely, these works measure the generalization performance gap with or
without some clients that never join the whole process of FL. However, we hope to understand the
contribution of clients at each communication round. Consequently, our theoretical conclusion guides
a modification on data distributions that cannot provide generalization contribution, so that they can
improve the generalization performance of the trained model.

2.3 SPLIT TRAINING

Some works propose Split FL (SFL) to utilize split training to accelerate federated learning (Oh et al.,
2022; Thapa et al., 2020). In SFL, the model is split into client-side and server-side parts. At each
communication round, the client only downloads the client-side model from the server, and conducts
forward propagation, and sends the hidden features to the server to compute the loss and conduct
backward propagation. These methods aim to accelerate the training speed of FL on the client side
and cannot support local updates. In addition, sending all raw features could introduce a high risk of
data leakage. Thus, we omit the comparisons to these methods.

2.4 PRIVACY CONCERNS

There are many other works (Luo et al., 2021; Chang et al., 2019; Li & Wang, 2019; Bistritz et al.,
2020; He et al., 2020a; Liang et al., 2020; Thapa et al., 2020; Oh et al., 2022) that propose to share
the hidden features to the server or other clients. Different from them, our decoupling strategy shares
the parameters of the estimated feature distributions instead of the raw features, avoiding privacy
leakage. We demystify the differences between our method and others in Appendix C.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Suppose we have a set of clients M = {1, 2, · · · ,M} with M being the total number of participating
clients. FL aims to make these clients with their own distribution Dm cooperatively learn a machine
learning model parameterized as θ ∈ Rd. Formally, the global optimization problem of FL can be
formulated as (McMahan et al., 2017; Li et al., 2020a):

min
θ∈Rd

F (θ) :=

M∑
m=1

pmFm(θ) =

M∑
m=1

pmEξm∼Dmf(θ; ξm), (1)

where Fm(θ) = Eξm∼Dm
f(θ; ξm) is the local objective function of client m with f(θ; ξm) =

CE(ρ(θ; ξm), ym), CE denotes the cross-entropy loss, ρ(θ; ξm) is the model output, ym is the label
of ξm, pm > 0 and

∑M
m=1 pm = 1. Usually, pm is set as nm

N , where nm denotes the number of
samples on client m and N =

∑M
m=1 nm.

The clients usually have a low communication bandwidth, causing extremely long training time. To
address this issue, the classical FL algorithm FedAvg (McMahan et al., 2017) proposes to utilize local
updates. Specifically, at each round r, the server sends the global model θr−1 to a subset of clients
Sr ⊆ M which are randomly chosen. Then, all selected clients conduct some iterations of updates to
obtain new client models {θrm}, which are sent back to the server. Finally, the server averages local
models according to the dataset size of clients to obtain a new global model θr.
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3.2 GENERALIZATION QUANTIFICATION

Besides defining the metric for the training procedure, we also introduce a metric for the testing
phase. Specifically, we define criteria for measuring the generalization performance for a given
deep model. Built upon the margin theory (Koltchinskii & Panchenko, 2002), for a given model
ρ(θ; ·) parameterized with θ, we use the worst-case margin 1 to measure the generalizability on the
distribution D:

Definition 1. (Worst-case margin.) Given a distribution D, the worst-case margin of model ρ(θ; ·) is
defined as Wd(ρ(θ),D) = E(ξ,y)∼D infρ(θ;ξ′ )̸=y d(ξ

′, ξ) with d being a specific distance.

According to the definition, we can leverage the defined worst-case margin to quantify the generaliza-
tion performance for a given model ρ and a data distribution D under a specific distance. Moreover,
the defined margin is always not less than zero. It is clear that if the margin is equal to zero, the
model mis-classifies almost all samples of the given distribution.

4 DECOUPLED TRAINING AGAINST DATA HETEROGENEITY

This section formulates the generalization contribution in FL systems and decoupling gradient
dissimilarity.

4.1 GENERALIZATION CONTRIBUTION

Although Eq. 1 quantifies the performance of model ρ with parameter θ, it focuses more on the
training distribution. In FL, we cooperatively train machine learning models because of a belief that
introducing more clients seems to contribute to the performance of the server models. Given client m,
we quantify the “belief”, i.e., the generalization contribution, in FL systems as follows:

E∆:L(Dm)Wd(ρ(θ +∆),D\Dm)), (2)

where ∆ is a pseudo gradient 2 obtained by applying a learning algorithm L(·) to a distribution Dm,
Wd is the quantification of generalization, and D\Dm means the distribution of all clients except for
client m. Eq. 2 depicts the contribution of client m to generalization ability. Intuitively, we prefer the
client where the generalization contribution can be lower bounded.
Definition 2. The Conditional Wasserstein distance Cd(D,D′) between the distribution D and D′:

Cd(D,D′) =
1

2
E(·,y)∼D inf

J∈J (D|y,D′|y)
E(ξ,ξ′)∼Jd(ξ, ξ

′)+
1

2
E(·,y)∼D′ inf

J∈J (D|y,D′|y)
E(ξ,ξ′)∼Jd(ξ, ξ

′). (3)

Built upon Definition 1, 2, and Eq. 2, we are ready to state the following theorem (proof in
Appendix B.1).

Theorem 4.1. With the pseudo gradient ∆ obtained by L(Dm), the generalization contribution is
lower bounded:

E∆:L(Dm)Wd(ρ,D\Dm)) ≥ E∆:L(Dm)Wd(ρ, D̃m)− |E∆:L(Dm)Wd(ρ,Dm))−Wd(ρ, D̃m))|
− 2Cd(Dm,D\Dm),

where D̃m represents the dataset sampled from Dm.

Remark 1. Theorem 4.1 implies that: a) the generalization contribution of the training distribution is
expected to be large on the training set; b) the generalization contribution on the training distribution
should be similar to that on the training dataset; c) promoting the generalization performance requires
constructing similar conditional distributions of clients, i.e., the distribution distance Cd(Dm,D\Dm)
is expected to be small. Both the Definition 2 and Theorem 4.1 use distributions conditioned on the
label y, so we write the feature distribution H|y as H for brevity in rest of the paper.

Built upon the theoretical analysis, it is straightforward to make all client models trained on similar
distributions to obtain higher generalization performance. However, collecting data to construct such
a distribution is forbidden in FL due to privacy concerns. To address this challenge, we propose
decoupling a deep neural network into a feature extractor network φθlow parameterized by θlow ∈ Rdl

and a classifier network parameterized by θhigh ∈ Rdh , and making the classifier network trained on

1The same definition is used in the literature (Franceschi et al., 2018).
2The pseudo gradient at round r is calculated as: ∆r = θr−1

T − θr−1
0 with the maximum local iterations T .
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the similar conditional distributions, as shown in Figure 1. Here, dl and dh represent the dimensions
of parameters θlow and θhigh, respectively.

Specifically, client m can calculate the hidden feature distribution using φθlow(ξm), ξm ∼ Dm and
send it to the server for the distribution approximation. Then, the server aggregates the received
distributions to obtain the global feature distribution H and broadcasts it, being similar to the widely
used FedAvg strategy. Finally, the classifier network thus can receive a distribution shared across
clients and perform local training on both the local and the received feature distribution during the
local training. In what follows, we show that such a decoupling strategy can reduce the gradient
dissimilarity, besides the promoted generalization performance.

4.2 DECOUPLED GRADIENT DISSIMILARITY

The gradient dissimilarity in FL resulted from heterogeneous data, i.e., the data distribution on client
m, Dm, is different from that on client k, Dk (Karimireddy et al., 2019; Li et al., 2020a). The
commonly used quantitative measure of gradient dissimilarity is defined as inter-client gradient
variance (CGV).
Definition 3. Inter-client Gradient Variance (CGV): (Kairouz et al., 2019; Karimireddy et al., 2019;
Woodworth et al., 2020; Koloskova et al., 2020) CGV(F, θ) = Eξm ||∇fm(θ; ξm)−∇F (θ)||2. CGV
is usually assumed to be upper bounded (Kairouz et al., 2019; Woodworth et al., 2020; Lian et al.,
2017), i.e., CGV(F, θ) = Eξm ||∇fm(θ; ξm)−∇F (θ)||2 ≤ σ2 with a constant σ.

Lower bounded gradient dissimilarity benefits the theoretical convergence rate (Woodworth et al.,
2020). Specifically, lower gradient dissimilarity directly causes higher convergence rate (Karimireddy
et al., 2019; Li et al., 2020a; Woodworth et al., 2020). This means that the decoupling strategy can
also benefit the convergence rate if the gradient dissimilarity can be reduced. Now, we are ready
to demonstrate how to reduce the gradient dissimilarity CGV with our decoupling strategy. With
representing ∇fm(θ; ξm) as

{
∇θlowfm(θ; ξm),∇θhigh

fm(θ; ξm)
}

, we propose that the CGV can be
divided into two terms of the different parts of θ (see Appendix B.2 for details):

CGV(F, θ) = Eξm ||∇fm(θ; ξm)−∇F (θ)||2

= Eξm

[
||∇θlowfm(θ; ξm)−∇θlowF (θ)||2 + ||∇θhigh

fm(θ; ξm)−∇θhigh
F (θ)||2

]
.

(4)

According to the chain rule of the gradients of a deep model, we can derive that the high-level part
of gradients that are calculated with the raw data ξm is equal to gradients with the hidden features
hm = φθlow(ξm) (proof in Appendix B.2):

∇θhigh
fm(θ; ξm) = ∇θhigh

fm(θ;hm),∇θhigh
F (θ) =

M∑
m=1

pmEξm∼Dm∇θhigh
f(θ;hm), (5)

in which fm(θ;hm) is computed by forwarding the hm through the high-level model without the
low-level part.

We propose to let all clients share a global feature distribution H which approximates all features of
clients. Client m will sample ĥ ∼ H and hm = φθlow(ξm)|ξm∼Dm to train their classifier network,
then the objective function becomes as 3:

min
θ∈Rd

F̂ (θ) :=

M∑
m=1

p̂mEξm∼Dm

ĥ∼H
f̂(θ; ξm, ĥ) =

M∑
m=1

p̂mEξm∼Dm

ĥ∼H

[
f(θ;φθlow(ξm)) + f(θ; ĥ)

]
. (6)

Here, p̂m = nm+n̂m

N+N̂
with nm and n̂m being the sampling size of ξm and ĥ respectively, and

N̂ =
∑M

m=1 n̂m. Now, we are ready to state the following theorem of reducing gradient dissimilarity
by sampling features from the same distribution (proof in Appendix B.3).
Theorem 4.2. Under the gradient variance measure CGV (Definition 3), with n̂m satisfying

n̂m

nm+n̂m
= N̂

N+N̂
, the objective function F̂ (θ) causes a tighter bounded gradient dissimilar-

ity, i.e., the CGV(F̂ , θ) = Eξm ||∇θlowfm(θ; ξm) − ∇θlowF (θ)||2 + N2

(N+N̂)2
||∇θhigh

fm(θ; ξm) −
∇θhigh

F (θ)||2 ≤ CGV(F, θ).
3We reuse f here for brevity, the input of f can be the input data ξm or the hidden feature φθlow (ξm).
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Remark 2. Theorem 4.2 shows that the high-level gradient dissimilarity can be reduced as N2

(N+N̂)2

times by sampling the same features between clients. Hence, estimating and sharing feature distribu-
tions is the key to promoting the generalization contribution and the reduction of gradient dissimilarity.
Note that choosing N̂ = ∞ can eliminate high-level dissimilarity. However, two reasons make it
impractical to sample infinite features ĥ. First, the distribution is estimated using limited samples,
leading to biased estimations. Second, infinite sampling will dramatically increase the calculating
cost. We set N̂ = N in our experiments.

4.3 TRAINING PROCEDURE

Algorithm 1 Framework of our method.
server input: initial θ0, maximum communication
round R
client m’s input: local iterations T

Initialization: server distributes the initial model θ0

to all clients, and the initial global parameter ϕ0 .

Server_Executes:
for each round r = 0, 1, · · · , R do

server samples a set of clients Sr ⊆ {1, ...,M}.
server communicates θr and ϕr to all clients

m ∈ S.
for each client m ∈ Sr in parallel do do
θr+1
m,E−1, ϕr+1

m ← ClientUpdate(m, θr, ϕr).
end for
θr+1 ←

∑M
m=1 pmθr+1

m,E−1.

Update ϕr+1 using ϕr+1
m .

end for

ClientUpdate(m, θ, ϕ):
for each local iteration t with t = 0, · · · , T − 1 do

Sample raw data ξm ∼ Dm and ĥ ∼ Hϕ(ĥ|y).

θm,t+1 ← θm,t − ηm,t∇θ f̂(θ; ξm, ĥ), i.e., Eq. 6

Update ϕm using ĥm = φθlow (ξm).
end for
Return θ and ϕm to server.

The training procedure of the proposed decou-
pling strategy is simple to implement. Specif-
ically, it merely requires two extra steps com-
pared with the vanilla FedAvg method: a) esti-
mating and broadcasting a global distribution H;
b) performing local training with both the local
data and the ĥ ∼ H.

Moreover, sampling ĥ ∼ H has two additional
advantages as follows. First, directly sharing
the raw hidden features may incur privacy con-
cerns. The raw data may be reconstructed by
feature inversion methods (Zhao et al., 2021).
The ĥ ∼ H is the approximation of the real hm.
One can use different distribution approximation
methods to estimate {hm|m ∈ M} to avoid ex-
posing the raw data. Second, the hidden features
usually have much higher dimensions than the
raw data (Lin et al., 2021). Hence, communicat-
ing and saving them between clients and servers
may not be practical. We can use different distri-
bution approximation methods to obtain H with
different sizes of parameters ϕ. Transmitting ϕ
can consume less communication resource than
a set of distributions {hm|m ∈ M}.

Following previous work (Kendall & Gal, 2017),
we simply assume a Gaussian distribution to
approximate the feature distributions. Namely,
on the client-side, we use a Gaussian Dis-
tribution N (σm, µm) parameterized with σm

and µm to approximate the feature distribution
φθlow(ξm), ξm ∼ Dm on client m. As shown
in Figure 1 and Algorithm 1, during the local
training, clients update σm and µm using the real feature hm following a moving average strategy
which is widely used in the literature (Ioffe & Szegedy, 2015; Wang et al., 2021):

σ(t+1)
m = βmσ(t)

m + (1− βm)× mean(hm),

µ(t+1)
m = βmµ(t)

m + (1− βm)× varaince(hm),
(7)

where t is the iteration of the local training, βm is the momentum coefficient. On the server side, σg

and µg are aggregated as:

σg =
1

|Sr|
∑
i∈Sr

σT
i , µg =

1

|Sr|
∑
i∈Sr

µT
i , (8)

where T stands for the maximum iteration of local training.

We perform the second step of the proposed decoupling strategy by optimizing the designed objective
function, i.e., Eq. 6. Built upon the above analysis, the decoupling strategy can benefit both the
performance contribution, i.e., conclusion of Theorem 4.1, and the convergence rate, i.e., Theorem 4.2.
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Table 1: Best test accuracy (%) of all experimental results.

Dataset Cent. FL Setting FL Test Accuracy
Acc. a E M FedAvg FedProx SCAFFOLD FedNova Ours

CIFAR-10 92.53

0.1 1 10 83.65 83.22 82.33 84.97 88.45
0.05 1 10 75.36 77.49 33.6 73.49 81.75
0.1 5 10 85.69 85.33 84.4 86.92 88.10
0.1 1 100 73.42 68.59 59.22 74.94 77.56

Average 79.53 78.66 64.89 80.08 83.97

FMNIST 93.7

0.1 1 10 88.67 88.92 87.81 87.97 90.83
0.05 1 10 82.73 83.66 76.16 81.89 86.42
0.1 5 10 87.6 88.41 88.44 87.66 89.87
0.1 1 100 90.12 90.39 88.24 90.40 90.98

Average 87.28 87.85 85.16 86.98 89.53

SVHN 95.27

0.1 1 10 88.20 87.04 83.87 88.48 92.37
0.05 1 10 80.67 82.39 82.29 84.01 90.25
0.1 5 10 86.32 86.05 83.14 88.10 91.58
0.1 1 100 92.42 92.29 92.06 92.44 93.42

Average 86.90 86.94 85.34 88.26 91.91

CIFAR-100 74.25

0.1 1 10 69.38 69.78 65.74 69.52 70.28
0.05 1 10 63.80 64.75 61.49 64.57 66.60
0.1 5 10 68.39 68.71 68.67 67.99 68.79
0.1 1 100 53.22 54.10 23.77 55.40 56.07

Average 63.70 64.34 54.92 64.37 65.44

“Cent.” means centralized training. “Acc.” means the test accuracy.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Federated Datasets and Models. We verify our method with four datasets commonly used in
the FL community, i.e., CIFAR-10 (Krizhevsky & Hinton, 2009), FMNIST (Xiao et al., 2017),
SVHN (Netzer et al., 2011) and CIFAR-100 (Krizhevsky & Hinton, 2009). We use the Latent
Dirichlet Sampling (LDA) partition method to simulate the Non-IID data distribution, which is the
most used partition method in FL (He et al., 2020b; Li et al., 2021b; Luo et al., 2021). We conduct
experiments with two different Non-IID degrees, a = 0.1 and a = 0.05.

Baselines and Metrics. We choose the classical FL algorithm, FedAvg (McMahan et al., 2017), and
recent effective FL algorithms proposed to address the client drift problem, including FedProx (Li
et al., 2020a), SCAFFOLD (Karimireddy et al., 2019), and FedNova (Wang et al., 2020a), as our
baselines. The detailed hyper-parameters of all experiments are reported in Appendix D. We use two
metrics, the best accuracy and the number of communication rounds to achieve a target accuracy,
which is set to the best accuracy of FedAvg. We also measure the client drift (Karimireddy et al.,
2019), 1

|Sr|
∑

i∈Sr ∥θ̄ − θi∥, as it reflects the effect on gradient dissimilarity reduction.

5.2 EXPERIMENTAL RESULTS

Basic FL setting. As shown in Table 1, using the classical FL training setting, i.e. a = 0.1, E = 5
and M = 10, for CIFAR-10, FMNIST and SVHN, our method achieves much higher generalization
performance than other methods. We also find that, for CIFAR-100, the performance of our method
is similar to FedProx. We conjecture that CIFAR-100 dataset has more classes than other datasets,
leading to the results. Thus, a powerful feature estimation approach instead of a simple Gaussian
assumption can be a promising direction to enhance the performance.

Impacts of Non-IID Degree. As shown in Table 1, for all datasets with high Non-IID degree
(a = 0.05), our methods obtain more performance gains than the case of lower Non-IID degree
(a = 0.1). For example, we obtain 92.37% test accuracy on SVHN with a = 0.1, higher than the
FedNova by 3.89%. Furthermore, when Non-IID degree increases to a = 0.05, we obtain 90.25%
test accuracy, higher than FedNova by 6.14%. And for CIFAR-100, our method shows benefits when
a = 0.05, demonstrating that our method can defend against more severe data heterogeneity.

Different Number of Clients. We also show the results of 100-client FL setting in Table 1. Our
method works well with all datasets, demonstrating excellent scalability with more clients.
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Table 2: Communication Round to attain the target accuracy.

Dataset FL Setting Target Communication Round to attain the target accuracy
a E M Acc. FedAvg FedProx SCAFFOLD FedNova Ours

CIFAR-10

0.1 1 10 82.0 142 128 863 142 128
0.05 1 10 73.0 247 121 NaN 407 112
0.1 5 10 84.0 128 128 360 80 78
0.1 1 100 73.0 957 NaN NaN 992 706

FMNIST

0.1 1 10 87.0 83 76 275 83 32
0.05 1 10 81.0 94 94 NaN 395 52
0.1 5 10 87.0 147 31 163 88 17
0.1 1 100 90.0 375 470 NaN 317 441

SVHN

0.1 1 10 87.0 292 247 NaN 251 50
0.05 1 10 80.0 578 68 358 242 50
0.1 5 10 86.0 251 350 NaN NaN 11
0.1 1 100 92.0 471 356 669 356 346

CIFAR-100

0.1 1 10 69.0 712 857 NaN 733 614
0.05 1 10 61.0 386 386 755 366 313
0.1 5 10 68.0 335 307 182 282 300
0.1 1 100 53.0 992 939 NaN 910 854

“NaN.” means that this algorithm does not achieve the target.

Different Local Epochs. More local training epochs E could reduce the communication rounds,
saving communication cost in practical scenarios. In Table 1, the results of E = 5 on CIFAR-10,
FMNIST, and SVHN verify that our method works well when increasing local training time.
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Figure 2: CIFAR10 with a = 0.1, E = 1, M = 10.

Client Drift. We show the client drift of differ-
ent methods in Figure 2 (b), where FedNova is
excluded due to its significant client drift. At
the initial training stage, the client drift is sim-
ilar for different methods. During this stage, the
low-level model is still unstable and the feature
estimation is not accurate. After about 500 com-
munication rounds, our method begins to show
lower client drift than others.

Convergence Speed. Figure 2 (a) shows that
our method can accelerate the convergence of FL.4 And we compare the communication rounds that
different algorithms need to attain the target accuracy in Table 2. The results show that our method
can improve the convergence speed. The possible reasons for failure cases may be due to the too
many categories in the dataset.

5.3 ABLATION STUDY

Table 3: Splitting at different layers.

Layer 5-th 9-th 13-th 17-th

Test Acc. (%) 87.64 88.45 87.86 84.08

To verify the impacts of the depth of gradient
decoupling, we conduct experiments by splitting
at different layers, including the 5-th, 9-th, 13-th
and 17-th layers.

Results are shown in Table 3, demonstrating
that our method can obtain benefits at low or
middle layers. Decoupling at the 17-th layer
will decrease the performance, which is consistent with our conclusion in Sec. 4.2. Specifically,
decoupling at a very high layer may not be enough to resist gradient dissimilarity, leading to weak
data heterogeneity mitigation. Interestingly, according to Theorem 4.2, decoupling at the 5-th layer
should diminish more gradient dissimilarity than the 9-th and 13-th layers; but it does not show
performance gains. We conjecture that it is due to the difficulty of distribution estimation, since

4Due to the high instability of training with severe data heterogeneity, we show the actual test accuracy as
semitransparent lines and the smoothed test accuracy as opaque lines for better visualization. We also provide
more convergence figures in Appendix D.
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biased estimation leads to poor generalization contribution. As other works (Lin et al., 2021) indicate,
features at the lower level usually are richer larger than at the higher level. Thus, estimating the
lower-level features is much more difficult than the higher-level.

5.4 DISCUSSION
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Figure 3: Layer divergence of FedAvg.

In this section, we provide some more experi-
mental support for our method. All experiment
results of this section are conducted on CIFAR-
10, a = 0.1, E = 1 and M = 10.

Our method only guarantees the reduction of
high-level gradient dissimilarity without con-
sidering the low-level part. We experimentally
find that low-level client drift shrinks faster than
high-level. Here, we show the layer-wise diver-
gence (Karimireddy et al., 2019; Li et al., 2020a)
1

|Sr|
∑

i∈Sr ∥θ̄l − θi,l∥ of ResNet-18 trained by FedAvg in Figure 3. We choose and show the diver-
gence of 10 layers of ResNet-18 in Figure 3 (a), and the different stages of ResNet-18 in Figure 3 (b).
As we hope to demonstrate the divergence trend, we normalize each line with its maximum value.
The results show that the low-level divergence shrinks faster than the high-level divergence. This
means that reducing the high-level gradient dissimilarity is more important than the low-level.
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Figure 4: Long Training Time.

We conduct FedAvg with many communication rounds with and
without learning rate decay. We show the results of the first 5000
rounds in Figure 4 (We offer the results of longer training time in
Appendix D). FedAvg without learning rate decay can only achieve
86.96% accuracy, and FedAvg with learning rate decay only achieves
82.65% accuracy. The results show that the longer training time
cannot fill the generalization performance gap between FedAvg and
centralized training, encouraging us to develop new optimization
schemes to improve the performance of FL.

6 LIMITATIONS

Estimation of Feature Distribution. In this work, we only use the
Gaussian Distribution to estimate the feature distribution. This significantly limits the performance
of this framework, while it can work well in our experiments. Future works may exploit better
feature estimators like generative models (Goodfellow et al., 2014; Karras et al., 2019) to sample
higher-quality features.

Extra Communication and Calculation Cost. Our method only needs to communicate the parame-
ters of the estimated feature distribution, which is much less than all features of clients. However, in
some low-bandwidth scenarios like IoT devices, people may not want to increase this communication
overhead. Furthermore, our method doubles the calculation costs of the forward and backward
process of the high-level model. Thus, more reducing gradient dissimilarity, more calculation costs.
This plays as a trade-off and needs to be further studied in the future.

7 CONCLUSION

In this paper, we raise a series of fundamental questions related to measuring the generalization
contribution of local training from the clients. Then, we theoretically show the relationship of this
generalization contribution with the conditional Wasserstein distance between clients’ distributions.
The theoretical conclusion inspires us to propose decoupling gradient dissimilarity, which greatly
reduces the gradient dissimilarity by training with a shared feature distribution without privacy
concerns. We theoretically verify the gradient dissimilarity reduction and experimentally validate
our methods’ benefits on generalization performance. Our work opens a new view of promoting FL
performance from a generalization perspective.
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APPENDIX

A BROADER IMPACT

Measuring Client Contribution During Local Training. As discussed in the section 2, current
works mainly focus on measuring generalization contribution from clients from participating during
the whole training process. We consider measuring this contribution during each communication
round, which opens a new angle toward the convergence analysis of FL. Future works may fill the
generalization gap between FL and centralized training with all datasets.

Relationship between Privacy and Performance. We analyze the relationship between the sharing
features and the raw data in section 4.2 and Appendix. However, we do not deeply investigate how
sharing features or parameters of estimated feature distribution threatens the privacy of private raw
data. Sharing features at a lower level may reduce gradient dissimilarity and high generalization
performance of FL, yet leading to higher risks of data privacy. Future works may consider figuring
out the trade-off between data privacy and the generalization performance with sharing features.

Connections of our work to knowledge distillation and domain generalization. The approximation
of features generated based on the client data and low-level models can be seen as a kind of knowledge
distillation of other clients. More in-depth analyses of this problem would be an exciting direction,
which will be added to our future works. The domain generalization is also an exciting connection to
federated learning. It is interesting to connect the measurements of client contribution to the domain
generalization.

B PROOF

B.1 BOUNDED GENERALIZATION CONTRIBUTION

Given client m, we quantify the generalization contribution, in FL systems as follows:

E∆:L(Dm)Wd(ρ(θ +∆),D\Dm)), (9)

where ∆ is a pseudo gradient obtained by applying a learning algorithm L(Dm) to a distribution Dm,
Wd is the quantification of generalization, and D\Dm) means the distribution of all clients except for
client m.
Theorem B.1. With the pseudo gradient ∆ obtained by L(Dm), the generalization contribution is
lower bounded:

E∆:L(Dm)Wd(ρ,D\Dm)) ≥ E∆:L(Dm)Wd(ρ, D̃m)− |E∆:L(Dm)Wd(ρ,Dm))−Wd(ρ, D̃m))|
− 2Cd(Dm,D\Dm),

where D̃m represents the dataset sampled from Dm.

Proof. To derive the lower bound, we decompose the conditional quantification of generalization,
i.e., Wd(ρ(θ +∆),D\Dm):

Wd(ρ,D\Dm) = Wd(ρ,D\Dm)−Wd(ρ,Dm) +Wd(ρ,Dm)−Wd(ρ, D̃m) +Wd(ρ, D̃m), (10)

where we denote ρ as ρ(θ +∆) for brevity and D̃m stands for the dataset sampled from Dm. Built
upon the decomposition, we have:

E∆:L(Dm)Wd(ρ,D\Dm)) ≥ E∆:L(Dm)Wd(ρ, D̃m)− |E∆:L(Dm)Wd(ρ,Dm))−Wd(ρ, D̃m))|
− |E∆:L(Dm)Wd(ρ,D\Dm))−Wd(ρ,Dm))|.

(11)

The first term in Eq. 11 represents the empirical generalization performance. The second term in
Eq. 11 means that the performance gap between the model trained on sampled dataset and that trained
on the distribution, rigorous analysis can be found in (Montasser et al., 2019). Note that, the first
two terms are independent on the distribution D\Dm), so the focus of generalization contribution is
mainly on the last term, i.e., |E∆:L(Dm)Wd(ρ,D\Dm))−Wd(ρ,Dm))|.
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The proof is relatively straightforward, as long as we derive the upper bound of Wd(ρ,Dm) and
Wd(ρ,D\Dm). For Wd(f,Dm), we have:

Wd(ρ,Dm) = E(·|y)∼Dm
Ex∼Dm|y inf

ρ(x′ )̸=y
d(x, x′) = E(·|y)∼Dm

E(x,x′′)∼Jy
inf

ρ(x′ )̸=y
d(x, x′)

≤ E(·|y)∼Dm
E(x,x′′)∼Jy

inf
ρ(x′ )̸=y

d(x′, x′′) + d(x, x′′)

= E(·|y)∼Dm
E(x,x′′)∼Jy

inf
ρ(x′ )̸=y

d(x′, x′′) + E(·|y)∼Dm
E(x,x′′)∼Jy

d(x, x′′)

= E(·|y)∼Dm
Ex′′∼D\Dm|y inf

ρ(x′ )̸=y
d(x′, x′′) + E(·|y)∼Dm

E(x,x′′)∼Jy
d(x, x′′),

where Jy stands for the optimal transport between the conditional distribution Dm|y and D\Dm|y.
Similarly, we have:

Wd(ρ,D\Dm) ≤ E(·|y)∼D\Dm
Ex′′∼Dm|y inf

ρ(x′) ̸=y
d(x′, x′′) + E(·|y)∼D\Dm

E(x,x′′)∼Jy
d(x, x′′).

Combining these two inequality, we have:

|Wd(ρ,Dm)−Wd(ρ,D\Dm)| ≤ 2Cd(Dm,D\Dm)) + max {δ(Dm,D\Dm), γ(Dm,D\Dm)} ,
(12)

where

δ(Dm,D\Dm) = E(·|y)∼DmEx′′∼D\Dm|y inf
ρ(x′ )̸=y

d(x′, x′′)− E(·|y)∼D\DmEx′′∼D\Dm|y inf
ρ(x′ )̸=y

d(x′, x′′),

and

γ(Dm,D\Dm) = E(·|y)∼D\DmEx′′∼Dm|y inf
ρ(x′) ̸=y

d(x′, x′′)− E(·|y)∼DmEx′′∼Dm|y inf
ρ(x′) ̸=y

d(x′, x′′).

The upper bound is straightforward. For example, if the label distributions are the same, i.e.
y ∼ D\Dm is equal to y ∼ Dm, we have:

|Wd(ρ,Dm)−Wd(ρ,D\Dm)| ≤ 2Cd(Dm,D\Dm)).

According to Eq. 12, the last term in Eq. 11 is bounded:

|E∆:L(Dm)Wd(ρ,Dm))−Wd(ρ, D̃m))| ≤ E∆:L(Dm)|Wd(ρ,Dm))−Wd(ρ, D̃m))|, (13)

which is further upper bounded by conditional Wasserstein distance when the label distributions are
not the same:

E∆:L(Dm)|Wd(ρ,Dm))−Wd(ρ, D̃m))| ≤ 2Cd(Dm,D\Dm)) + max {δ(Dm,D\Dm), γ(Dm,D\Dm)} .
(14)

Thus, the label distribution will have additional impact on the bound. If the label distributions are
the same, then we have

E∆:L(Dm)|Wd(ρ,Dm))−Wd(ρ, D̃m))| ≤ 2Cd(Dm,D\Dm)), (15)

which completes the proof.

B.2 JUSTIFICATION OF DECOUPLING GRADIENT VARAINCE

The derivation of Equation 4. Because ∇fm =
{
∇θlowfm,∇θhigh

fm
}
∈ Rd, ∇θlowfm ∈ Rdl and

∇θhigh
fm ∈ Rdh , we have

Eξm ||∇fm(θ; ξm)−∇F (θ)||2 (16)

=

d∑
i=1

(∇fm(θ; ξm)(i) −∇F (θ)(i))
2

=

dl∑
i=1

(∇fm(θ; ξm)(i) −∇F (θ)(i))
2 +

dh∑
i=dl+1

(∇fm(θ; ξm)(i) −∇F (θ)(i))
2

=Eξm

[
||∇θlowfm(θ; ξm)−∇θlowF (θ)||2 + ||∇θhigh

fm(θ; ξm)−∇θhigh
F (θ)||2

]
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The derivation of Equation 5. Assuming a multi-layers neural network consists L linear layers,
each of which is followed by an activation function. And the loss function is CE(·). The forward
function can be formulated as:

f(θ, x) = CE(τn(θn(τn−1(θn−1τn−2(...τ1(θ1x))))) (17)

Then the gradient on l-th weight should be:

gl =
∂f

∂θl
=

∂f

∂τn(zn)

∂τn(zn)

∂zn

∂zn
∂τn−1(zn−1)

∂τn−1(zn−1)

∂zn−1

∂zn−1

∂τn−2(zn−2)
...
∂τl+1(zl+1)

∂zl+1

∂zl
∂θl

(18)

=
∂f

∂τn(zn)
τ ′n(zn)θnτ

′
n(zn−1)θn−1...τ

′
l+1(zl+1)τl(zl) (19)

=
∂f

∂τn(zn)

(
n∏

i=l+2

τ ′i(zi)θi

)
τ ′l+1(zl+1)τl(zl), (20)

in which θl, τl, zl, is the weight, activation function, output of the l-th layer, respectively. Thus, we
can see that the gradient of l-th layer is independent of the data, hidden features, and weights before
l-th layer if we directly input a zl to l-th layer.

B.3 PROOF OF THEOREM 4.2

We restate the optimization goals of using the private raw data of clients and the shared hidden
features ĥ ∼ H(h) as following:

min
θ∈Rd

F̂ (θ) :=

M∑
m=1

p̂mEξm∼Dm

ĥ∼H
f̂(θ; ξm, ĥ) =

M∑
m=1

p̂mEξm∼Dm

ĥ∼H

[
f(θ; ξm) + f(θ; ĥ)

]
, (21)

Theorem B.2. Under the gradient variance measure CGV (Definition 3), with n̂m satisfying
n̂m

nm+n̂m
= N̂

N+N̂
, the objective function F̂ (θ) causes a tighter bounded gradient dissimilar-

ity, i.e., the CGV(F̂ , θ) = Eξm ||∇θlowfm(θ; ξm) − ∇θlowF (θ)||2 + N2

(N+N̂)2
||∇θhigh

fm(θ; ξm) −
∇θhigh

F (θ)||2 ≤ CGV(F, θ).

Proof.

CGV(F̂ , θ) =Eξm∼Dm

ĥ∼H
||∇f̂m(θ; ξm, ĥ)−∇F̂ (θ)||2

=Eξm∼Dm
[||∇θlowfm(θ; ξm)−∇θlowF (θ)||2]

+ Eξm∼Dm

ĥ∼H
[||∇θhigh

fm(θ; ξm) +∇θhigh
fm(θ; ĥ)−∇θhigh

F̄ (θ)||2. (22)

(23)

On m-th client, the number of samples of ξm is nm and the ĥm is n̂m. Then the high-level gradient
variance becomes:

Eξm∼Dm

ĥ∼H
[|| nm

nm + n̂m
∇θhigh

fm(θ; ξm) +
n̂m

nm + n̂m
∇θhigh

fm(θ; ĥ)−∇θhigh
F̄ (θ)||2

=Eξm∼Dm

ĥ∼H
[|| nm

nm + n̂m
∇θhigh

fm(θ; ξm) +
n̂m

nm + n̂m
∇θhigh

fm(θ; ĥ)

−
M∑

m=1

nm + n̂m

N + N̂
(

nm

nm + n̂m
∇θhigh

fm(θ; ξm) +
n̂m

nm + n̂m
∇θhigh

fm(θ; ĥ))||2

=Eξm∼Dm || nm

nm + n̂m
∇θhigh

fm(θ; ξm)−
M∑

m=1

nm

N + N̂
∇θhigh

fm(θ; ξm)||2

=
N2

(N + N̂)2
Eξm∼Dm

||∇θhigh
fm(θ; ξm)−

M∑
m=1

nm

N
∇θhigh

fm(θ; ξm)||2. (24)
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Combining Equation 24 and 22, we obtain

CGV(F̂ , θ) = Eξm ||∇θlowfm(θ; ξm)−∇θlowF (θ)||2+ N2

(N + N̂)2
||∇θhigh

fm(θ; ξm)−∇θhigh
F (θ)||2,

which completes the proof.

For the convergence analysis, there have been many convergence analyses of FedAvg from a gra-
dient dissimilarity viewpoint (Woodworth et al., 2020; Lian et al., 2017; Karimireddy et al., 2019).
Specifically, the convergence rate is upper bounded by many factors, among which the gradient
dissimilarity plays a crucial role in the bound. In this work, we propose a novel approach inspired by
the generalization view to reduce the gradient dissimilarity, we thus provide a tighter bound regarding
the convergence rate. This is consistent with our experiments, see Table 2.

C MORE RELATED WORK

C.1 ADDRESSING NON-IID PROBLEM IN FL

The convergence and generalization performance of Federated Learning (FL) (McMahan et al., 2017)
suffers from the heterogeneous data distribution across all clients (Zhao et al., 2018; Li et al., 2020b;
Kairouz et al., 2019). There exists a severe divergence between local objective functions of clients,
making local models of FL diverge (Li et al., 2020a; Karimireddy et al., 2019), which is called client
drift.

Although researchers have designed many new optimization methods to address this problem, it is
still an open problem. The performance of federated learning under severe Non-IID data distribution
is far behind the centralized training. The previous methods that address Non-IID data problems can
be classified into the following directions.

Model Regularization focuses on calibrating the local models to restrict them not to be excessively
far away from the server model. A number of works (Li et al., 2020a; Acar et al., 2021; Karimireddy
et al., 2019) add a regularizer of local-global model difference. FedProx (Li et al., 2020a) adds a
penalty of the L2 distance between local models to the server model. SCAFFOLD (Karimireddy et al.,
2019) utilizes the history information to correct the local updates of clients. FedDyn (Acar et al.,
2021) proposes to dynamically update the risk objective to ensure the device optima is asymptotically
consistent. FedIR (Hsu et al., 2020) applies important weight to the client’s local objectives to obtain
an unbiased estimator of loss. MOON (Li et al., 2021b) adds the local-global contrastive loss to learn
a similar representation between clients. CCVR (Luo et al., 2021) transmits the statistics of logits
and label information of data samples to calibrate the classifier.

Reducing Gradient Variance tries to correct the local updates directions of clients via other gradient
information. This kind (Wang et al., 2020a; Hsu et al., 2019; Reddi et al., 2021) of methods aims
to accelerate and stabilize the convergence. FedNova (Wang et al., 2020a) normalizes the local
updates to eliminate the inconsistency between the local and global optimization objective functions.
FedAvgM (Hsu et al., 2019) exploits the history updates of the server model to rectify clients’ updates.
FEDOPT (Reddi et al., 2021) proposes a unified framework of FL. It considers the clients’ updates as
the gradients in centralized training to generalize the optimization methods in centralized training
into FL. FedAdaGrad and FedAdam are FL versions of AdaGrad and Adam.

Sharing Features. Personalized Federated Learning hopes to make clients optimize different
personal models to learn knowledge from other clients and adapt their own datasets (Tan et al.,
2022). The knowledge transfer of personalization is mainly implemented by introducing personalized
parameters (Liang et al., 2020; Thapa et al., 2020; Li et al., 2021a), or knowledge distillation (He
et al., 2020a; Lin et al., 2020; Li & Wang, 2019; Bistritz et al., 2020) on shared local features or
extra datasets. Due to the preference for optimizing local objective functions, however, personalized
federated models do not have a comparable generic performance (evaluated on global test dataset) to
normal FL (Chen & Chao, 2021). Our main goal is to learn a better generic model. Thus, we omit
comparisons to personalized FL algorithms.

Except Personalized Federated Learning, some other works propose to share features to improve
federated learning. Cronus (Chang et al., 2019) proposes sharing the logits to defend the poisoning
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attack. CCVR (Luo et al., 2021) transmit the logits statistics of data samples to calibrate the last layer
of Federated models. CCVR (Luo et al., 2021) also share the parameters of local feature distribution.
However, we do not need to share the number of different labels with the server, which protects the
privacy of label distribution of clients. Moreover, our method acts as a framework for exploiting
the sharing features to reduce gradient dissimilarity. The feature estimator does not need to be the
Gaussian distribution of local features. One may utilize other estimators or even features of some
extra datasets rather than the private ones.

Sharing Data. The original cause of client drift is data heterogeneity. Some researchers find that
sharing a part of private data can significantly improve the convergence speed and generalization
performance (Zhao et al., 2018), yet it sacrifices the privacy of clients’ data.

Thus, to both reduce data heterogeneity and protect data privacy, a series of works (Hardt & Rothblum,
2010; Hardt et al., 2012; Chatalic et al., 2021; Johnson et al., 2018; Cai et al., 2021) add noise on
data to implement sharing data with privacy guarantee to some degree. Some other works focus on
sharing a part of synthetic data(Jeong et al., 2018; Long et al., 2021; Goetz & Tewari, 2020; Hao
et al., 2021) or data statistics (Shin et al., 2020; Yoon et al., 2021) to help reduce data heterogeneity
rather than raw data.

FedDF (Lin et al., 2020) utilizes other data and conducts knowledge distillation based on these data
to transfer knowledge of models between server and clients. The core idea of FedDF is to conduct
finetuning on the aggregated model via the knowledge distillation with the new shared data.

C.2 MEASURING CONTRIBUTION FROM CLIENTS

Generalization Contribution. Clients are only willing to participate a FL training when given
enough rewards. Thus, it is important to measure their contributions to the model performance (Yu
et al., 2020; Ng et al., 2020; Liu et al., 2022; Sim et al., 2020).

There have been some works (Yuan et al., 2022; Yu et al., 2020; Ng et al., 2020; Liu et al., 2022;
Sim et al., 2020) proposed to measure the generalization contribution from clients in FL. Some
works (Yuan et al., 2022) propose to experimentally measure the performance gaps from the unseen
client distributions. Data shapley (Ghorbani & Zou, 2019; Yu et al., 2020) is proposed to measure the
generalization performance gain of client participation. (Liu et al., 2022) improves the calculation
efficiency of Data Shapley. And there is some other work that proposes to measure the contribution by
learning-based methods (Zhan et al., 2020). Our proposed questions are different from these works.
Precisely, these works measure the generalization performance gap with or without some clients that
never join the collaborative training of clients. However, we hope to understand the contribution of
clients at each communication round. Based on this understanding, we can further improve the FL
training and obtain a better generalization performance.

It has been empirically verified that a large number of selected clients introduces new challenges to
optimization and generalization of FL (Charles et al., 2021), although some theoretical works show
the benefits from it (Yang et al., 2020). This encourages us to understand what happens during the
local training and aggregation.

Client Selection. Several works (Cho et al., 2020; Goetz et al., 2019; Ribero & Vikalo, 2020; Lai
et al., 2021) propose new algorithms to strategically select clients rather than randomly. However,
these methods only consider the hardware resources or local generalization ability. How local training
affects the global generalization ability has not been explored.

C.3 SPLIT TRAINING

To efficiently train neural networks, split training instead of end-to-end training is proposed to break
the forward, backward, or model updating dependency between layers of neural networks.

To break the backward dependency on subsequent layers, hidden features could be forwarded to
another loss function to obtain the Local Error Signals (Marquez et al., 2018; Nøkland & Eidnes,
2019; Löwe et al., 2019; Wang et al., 2020b; Zhuang et al., 2021). How to design a suitable local
error still remains as an open problem. Some works propose to utilize extra modules to synthesize
gradients (Jaderberg et al., 2017), so that the backward and updates of different layers can be
decoupled. Features Replay (Huo et al., 2018) is to reload the history features of the preceding
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Table 4: Demystifying different FL algorithms related to the sharing data and features.
Shared Thing Low-level Model Objective

(Chatalic et al., 2021; Cai et al., 2021) Raw Data With Noise Shared Others
(Long et al., 2021; Hao et al., 2021) Params. of Data Generator Shared Global Model Performance
(Yoon et al., 2021; Shin et al., 2020) STAT. of raw Data Shared Global Model Performance

(Luo et al., 2021) STAT. of Logis, Label Distribution Shared Global Model Performance
(Chang et al., 2019) Hidden Features Shared Defend Poisoning Attack

(Li & Wang, 2019; Bistritz et al., 2020) logits Private Personalized FL
(He et al., 2020a; Liang et al., 2020) Hidden Features Private Personalized FL
(Thapa et al., 2020; Oh et al., 2022) Hidden Features Shared Accelerate Training

Ours Params. of Estimated Feat. Distribution Shared Global Model Performance

Note: “STAT.” means statistic information, like mean or standard deviation, “Feat.” means hidden features, “Params.” means parameters.

layers into the next layers. By reusing the history features, the calculation on different layers could
be asynchronously conducted.

Some works propose Split FL (SFL) to utilize split training to accelerate federated learning (Oh et al.,
2022; Thapa et al., 2020). In SFL, the model is split into client-side and server-side parts. At each
communication round, the client only downloads the client-side model from the server, conducts
forward propagation, and sends the hidden features to the server for computing loss and backward
propagation. This method aims to accelerate FL’s training speed on the client side and cannot support
local updates. In addition, sending all raw features could introduce a high data privacy risk. Thus, we
omit the comparisons to these methods.

We demystify different FL algorithms related to the shared features in Table 4.

D DETAILS OF EXPERIMENT CONFIGURATION AND ADDITIONAL
EXPERIMENTS

D.1 HARDWARE AND SOFTWARE CONFIGURATION

We conduct experiments using GPU GTX-2080 Ti, CPU Intel(R) Xeon(R) Gold 5115 CPU @
2.40GHz. The operating system is Ubuntu 16.04.6 LTS. The Pytorch version is 1.8.1. The Cuda
version is 10.2.

D.2 HYPER-PARAMETERS

The learning rate configuration has been listed in Table 5. We report the best results and their learning
rates (grid search in {0.0001, 0.001, 0.01, 0.1}).

And for all experiments, we use SGD as optimizer for all experiments, with batch size of 128 and
weight decay of 0.0001. Note that we set momentum as 0 for baselines, as we find the momentum of
0.9 may harm the convergence and performance of FedAvg in severe Non-IID situations. We also
report the best test accuracy of baselines that are trained with momentum of 0.9 in Table 6.

For K = 10 and K = 100, the maximum communication round is 1000, For K = 10 and E = 5,
the maximum communication round is 400 (due to the E = 5 increase the calculation cost). The
number of clients selected for calculation is 5 per round for K = 10, and 10 for K = 100.

Except the Figure 2 in the main paper, we provide more convergence results as Figures 5, 6, 7 and
8. These results show that our method can accelerate FL training and obtain higher generalization
performance.

D.3 ADDITIONAL EXPERIMENTS

Training with Longer Time. To demonstrate the difficulty of optimization of FedAvg in
heterogeneous-data environment, we show the results of training 10000 rounds, as shown in Figure 9
(a). During this 10000 rounds, the highest test accuracy of FedAvg with fixed learning rate is 88.5%,
and it of the FedAvg with decayed learnign rate is 82.65%. Note that we set the learning rate decay
exponentially decay at each communication round, wich rate 0.997. Even after 2000 rounds, the
learning rate becomes as the around 0.0026 times as the original learning rate.
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Table 5: Learning rate of all experiments.

Dataset FL Setting FedAvg FedProx SCAFFOLD FedNova Ours
a E K

CIFAR-10

0.1 1 10 0.1 0.1 0.1 0.1 0.1
0.05 1 10 0.1 0.1 0.01 0.1 0.1
0.1 5 10 0.1 0.1 0.1 0.1 0.1
0.1 1 100 0.1 0.1 0.01 0.1 0.1

FMNIST

0.1 1 10 0.1 0.1 0.1 0.1 0.1
0.05 1 10 0.1 0.1 0.001 0.1 0.1
0.1 5 10 0.1 0.1 0.1 0.1 0.1
0.1 1 100 0.1 0.1 0.01 0.1 0.1

SVHN

0.1 1 10 0.1 0.1 0.01 0.1 0.1
0.05 1 10 0.1 0.1 0.01 0.1 0.1
0.1 5 10 0.1 0.01 0.01 0.01 0.1
0.1 1 100 0.1 0.1 0.001 0.1 0.1

CIFAR-100

0.1 1 10 0.1 0.1 0.1 0.1 0.1
0.05 1 10 0.1 0.1 0.1 0.1 0.1
0.1 5 10 0.1 0.1 0.1 0.1 0.1
0.1 1 100 0.1 0.1 0.1 0.1 0.1

Table 6: Baselines with Momentum-SGD.

Dataset FL Setting FedAvg FedProx SCAFFOLD FedNova
a E K

CIFAR-10

0.1 1 10 79.98 83.56 83.58 81.35
0.05 1 10 69.02 78.66 38.55 64.78
0.1 5 10 84.79 82,18 86.20 86.09
0.1 1 100 49.61 49.97 52.24 46.53

FMNIST

0.1 1 10 86.81 87.12 86.21 86.99
0.05 1 10 78.57 81.96 76.08 79.06
0.1 5 10 87.45 86.07 87.10 87.53
0.1 1 100 90.11 90.71 85.99 87.09

SVHN

0.1 1 10 88.56 86.51 80.61 89.12
0.05 1 10 82.67 78.57 74.23 82.22
0.1 5 10 87.92 78.43 81.07 88.17
0.1 1 100 89.44 89.51 89.55 82.08

CIFAR-100

0.1 1 10 67.95 65.29 67.14 68.26
0.05 1 10 62.07 61.52 59.04 60.35
0.1 5 10 69.81 62.62 70.68 70.05
0.1 1 100 48.33 48.14 51.63 48.12
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(a) a = 0.1, K = 10,
E = 1

0 50 100 150 200 250 300 350 400
Round

40

50

60

70

80

90

To
p-

1 
Te

st
 A

cc
ur

ac
y 

[%
]

FedAvg
FedProx
Scaffold
FedNova
Ours

(b) a = 0.1, K = 10,
E = 5
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(c) a = 0.1, K = 100,
E = 1
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(d) a = 0.05, K = 10,
E = 1

Figure 5: Convergence comparison of CIFAR-10.

Sharing Estimating Parameters with noise. To enhance the security of the sharing feature distribu-
tion, we add the noise ϵ ∼ N (0, µϵ) on the σm and µm. The privacy degree could be enhanced by
the larger µϵ. We show the results of our method with different µϵ in Figure 9 (b) and Table 7. The
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(a) a = 0.1, K = 10,
E = 1
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(b) a = 0.1, K = 10,
E = 5
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(c) a = 0.1, K = 100,
E = 1
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(d) a = 0.05, K = 10,
E = 1

Figure 6: Convergence comparison of FMNIST.
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(a) a = 0.1, K = 10,
E = 1
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(b) a = 0.1, K = 10,
E = 5
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(c) a = 0.1, K = 100,
E = 1
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(d) a = 0.05, K = 10,
E = 1

Figure 7: Convergence comparison of SVHN.
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(a) a = 0.1, K = 10,
E = 1
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(b) a = 0.1, K = 10,
E = 5

0 200 400 600 800 1000
Round

20

30

40

50

60

70

To
p-

1 
Te

st
 A

cc
ur

ac
y 

[%
]

FedAvg
FedProx
Scaffold
FedNova
Ours

(c) a = 0.1, K = 100,
E = 1
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(d) a = 0.05, K = 10,
E = 1

Figure 8: Convergence comparison of CIFAR100.
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(a) Long Training Time
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(b) Our method with different degrees of noise

Figure 9: Additional experiments on CIFAR-10 with a = 0.1, K = 10, E = 1.

Table 7: Test Accuracy of our method with different degrees of noise.

µϵ 0.0 0.001 0.005 0.01 0.05 0.1 0.5

Test Accuracy (%) 88.45 88.43 88.23 88.26 88.07 88.11 88.3

results show that under the high perturbation of the estimated parameters, our method attains both
high privacy and generalization gains.
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