
KS-GNN: Keywords Search over Incomplete Graphs
via Graphs Neural Network

Anonymous Author(s)
Affiliation
Address
email

Abstract

Keyword search is a fundamental task to retrieve information that is the most1

relevant to the query keywords. Keyword search over graphs aims to find subtrees2

or subgraphs containing all query keywords ranked according to some criteria.3

Existing studies all assume that the graphs have complete information. However,4

real-world graphs may usually contain some missing information (such as edges or5

keywords), thus making the problem much more challenging. To solve the problem6

of keyword search over incomplete graphs, we propose a novel model named7

KS-GNN based on the graph neural network and the auto-encoder. By considering8

the latent relationships and the frequency of different keywords, the proposed9

KS-GNN aims to alleviate the effect of missing information and is able to learn10

low-dimensional representative node embeddings that preserve both graph structure11

and keyword features. Our model can effectively answer keyword search queries12

with linear time complexity over incomplete graphs. The experiments on four13

real-world datasets show that our model consistently achieves better performance14

than state-of-the-art baseline methods in graphs having missing information.15

1 Introduction16

Query 𝑞𝑞= {c, e, f}

12

3 4

5

{a, d, e}{b, c}

{a, b}

{c, f}
{a, e}

{d, f}
6

(a) Graph 𝐺𝐺 (b) Incomplete Graph 𝐺𝐺𝐺
Answers = {𝑣𝑣1 , 𝑣𝑣2 , 𝑣𝑣6}

12

3 4

5

{a, d, e}{b, c}

{a, b}

{c, f}
{a, e}

{d, f}
6

Answer = {𝑣𝑣4}

Figure 1: Example of keyword search on incom-
plete graphs

Keyword search is an important research topic17

which allows users to provide query keywords18

and returns the most relevant results. The key-19

word search over graph data [1] usually retrieves20

top-k subtrees or subgraphs which contain all21

the query keywords ranked according to some22

criteria. For example, He et al. [2] propose a23

general scoring function considering both graph24

structure and content, and they aim to find top-k25

nodes where each node can reach all query key-26

words, and the sum of its shortest path distances27

to these keywords is as small as possible. This28

ranking method is commonly used in later graph29

keyword search works [3, 4].30

All existing studies assume that the graph data is complete and has no missing information. However,31

real-world graphs may usually have some missing edges [5] and missing attributes on some nodes [6].32

This renders previous graph keyword search methods fail in finding exact answers when dealing33

with such incomplete graphs. Figure 1 shows an example keyword search query over graphs. Given34

q={c, e, f}, on the left graph G with no missing information, the best node is v4, since it contains35

keywords c and f , it can reach v5 containing e, and its sum of the shortest path distances to all36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

query keywords is the smallest which is 1 (the shortest distances of v4 to c, e, and f are 0, 1, and37

0). However, on the right graph G′ which has a missing edge and a node with missing attributes, the38

result becomes v1, v2 or v6, and the subtree consists of {v1, v2, v6}, with a total distance of 2.39

To handle the missing information, one simple idea is to first utilize some state-of-the-art graph40

completion models (such as SAT [6]) to predict the missing information and then apply the existing41

algorithms (such as BLINKS [2]) to find the answers from the graph with predicted keywords and42

edges. However, such a completed graph contains many noises and errors comparing with the original43

graph, and thus this method has poor performance as shown in our experimental study. To capture44

the latent information of the incomplete graphs, we propose to utilize the graph neural network45

(GNN) for graph keyword search. GNN has been widely applied in tasks such as link prediction,46

node classification, and node clustering [7, 6, 8], but existing models cannot be directly applied to47

keyword search since they usually embed all the features (keywords) of a node into a single vector48

and they cannot obtain the representation for the individual query keywords.49

We firstly design two naive approaches based on GNN and dimension reduction. To achieve better50

performance, we propose a novel auto-encoder and GNN-based model using the message passing51

mechanism, called KS-GNN. The model mainly consists of three components: an encoder that52

transforms the original keyword information to low-dimensional embedding vectors; a decoder53

that aims to reconstruct the high-dimensional representation of keywords from the embedding; a54

message passing-based aggregation mechanism that preserves the shortest path information between55

keywords and the target node. Different from the existing graph keyword search works, we propose to56

leverage GNN to obtain representative node embedding that contains the keyword information, taking57

the latent graph structure, keyword distribution, and keyword frequency information into account.58

Meantime, the proposed KS-GNN is able to encode the input query as a low-dimensional vector by59

its learned powerful encoder, and the results are obtained by computing the similarity between the60

query embedding and node embeddings. This also speeds up the query processing to the cost of linear61

time complexity.62

The main contributions of our approach are as follows:63

• To our best knowledge, this is the first work on keyword search in graphs with missing64

information.65

• We propose an auto-encoder and GNN-based model KS-GNN to solve the problem effec-66

tively without having to know the complete information of the input graph.67

• The experimental results on several real-world datasets show that our proposed model68

consistently outperforms several baseline methods.69

2 Related Work70

Keyword Search in Graphs. Keyword search over graph data aims to find the top-k subtrees or71

subgraphs according to some ranking criteria. The conventional methods design algorithms assuming72

that the graphs have complete information. For example, DBXplorer [9] proposes to utilize the73

number of the answer’s edges as the scoring function. BANKS [10] model tuples as nodes in a graph74

and then performs keyword search using proximity-based ranking. He et al. [2] proposes a general75

ranking function considering both graph structure and content. BLINKS also builds an efficient76

bi-level index structure to improve efficiency. Kargar and An, motivated by the Steiner tree problem,77

use the total edge weight in ranking answers [11]. There also exists studies on keyword search in78

temporal graphs [12], uncertain graphs [13], knowledge graphs [14], RDF graphs [15], etc. However,79

real-world graphs may usually be incomplete. As all the state-of-art keyword search methods retrieve80

the exact answer, the missing information (keywords or edges) imposes a significant effect on the81

query results. To address this issue, we propose a graph representation learning-based solution to82

solve the top-k keyword search problem on incomplete graphs.83

Graph Neural Networks. As a powerful branch of graph representation learning methods, the84

graph neural network has been widely used in recent years due to its excellent performance. The85

models in the early years are usually based on the so-called graph convolutional network (GCN) [16,86

17, 18], which is based on the Fourier transform theory of graphs developed by Shuman et al. [19].87

However, research in recent years has shown that the GCN-based methods can be represented by88

2

the message passing mechanism, which is more consistent with the experimental results [20]. The89

Graph Attention Network (GAT) [21] is one of the representatives of graph neural networks based on90

the message passing mechanism. GAT introduces the attention mechanism to calculate the attention91

coefficient between nodes and then uses it to assign different weights to neighbors’ information.92

Based on the auto-encoder and GCN, Graph auto-encoder (GAE) [22] is proposed to reconstruct93

the adjacency matrix. Moreover, there are some GNN-based works that aim to predict and impute94

missing data to a data matrix [23, 24, 6]. However, all the methods mentioned above cannot directly95

handle the graph keyword search problem. To our best knowledge, this is the first work that leverages96

GNN to process keyword search on incomplete graphs.97

3 Problem Statement98

A graph keyword search query q = (wq1 , wq2 , ..., wqm) contains a set of query keywords, and it99

searches relevant results from a graph1 G = (V, E ,W), where each node v ∈ V , each edge e ∈ E ,100

and each keyword w ∈ W . For each node v, it is associated with a set of keywords {wv
1 , w

v
2 , ..., w

v
n}.101

In this work, we study the keyword search problem over an incomplete graph. To alleviate the effect102

of the missing information to keyword search over incomplete graphs, we assume that in the original103

graph the query results are obtained by applying the BLINKS scheme [2] (a commonly used graph104

keyword search method). Given a query q, let s(v, q) denote the score of the node v. According105

to [2, 3, 25, 26, 27], s(v, q) =
∑m

i=1 distmin(v, wqi), where distmin(v, wqi) computes the shortest106

path distance from node v to a node containing wqi . BLINKS aims to find top-k nodes where each107

node can reach all query keywords in the graph, and the scores of the k nodes measured by s(v, q) are108

the smallest. E.g., in Figure 1(a), s(v4, q) = distmin(v4, c) + distmin(v4, e) + distmin(v4, f) = 1.109

Problem Definition. Given an incomplete graph G′ = (V, E ′,W ′, rw, re), where E ′ ⊆ E ,W ′ ⊆ W ,110

and the proportions of nodes with missing keywords and of missing edges in G are denoted by rw111

and re, respectively. Given a query q, the incomplete graph top-k keyword search problem aims112

to find a set S = (v1, v2, ..., vk) of k nodes from G′ such that for any vertex v′ /∈ S, s(v′, q) ≥113

max({s(vi, q)|vi ∈ S}).114

4 Proposed Methods115

𝒉2
0

𝒉3
1𝒉3

0

𝒉4
0

𝑓(𝒉2
0)

𝒉3
0

𝑓(𝒉4
0)

𝑓 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛

Figure 2: An illustration of the message passing
and aggregation of Conv-OH, where v3 is a target
node and it aggregates keyword information from
its neighbors.

We propose to solve the keyword search prob-116

lem with an unsupervised graph representation117

learning method, since the representative low-118

dimensional node embeddings can capture the119

latent information of the input incomplete graph120

and thus can help recovering the missing infor-121

mation. In addition, low dimensional node em-122

beddings can speed up the query processing by123

comparing the node embedding with the gen-124

erated query embedding at the cost of linear125

complexity. In this section, we first propose two126

naive methods that are based on GNN and di-127

mensionality reduction methods and then we128

introduce our proposed KS-GNN in details.129

4.1 Naive Methods130

Conv-OH. Graph convolutional layer has been widely used in GNNs, which enables GNN models131

to gather information from neighbor nodes. Our first naive method Conv-OH utilizes the graph132

convolutional layer and takes the one-hot encoding of keywords as the input feature for nodes.133

Specifically, with |V| = N and |W| = M , the one-hot encoding of node v is denoted by x = {0, 1}M134

with hv,j = 1 if wj is a keyword associated with v and 0 otherwise. Therefore, the input feature135

matrix is denoted by X ∈ {0, 1}N×M . Let Hl denote the output node embedding of the l-th layer,136

1For ease of presentation, we focus on the undirected graphs, and it is easy to extend the proposed method in
directed graphs by passing messages along the edges.

3

and we have:137

hl+1
v = Aggregate

(
{f(hl

u),∀u ∈ N (v)} ∪ {hl
v}
)
, (1)

where H0 = X, f(·) denotes a transform function and N (v) denotes the neighbors of node v. Using138

the combined distance as the scoring function (described in Section 3), Eq. (1) can be written as:139

hl+1
v = Ω

(
{sgn(hl

u) ◦ (hl
u + 1),∀u ∈ N (v)} ∪ {hl

v}
)
, (2)

where Ω(·) denotes the element-wise minimum function which ignores zeros, and sgn(h) denotes the140

sign function that returns a vector with the signs of the corresponding elements of h (the sign of an141

element is 1 if the element is positive and 0 otherwise). For instance, Ω({[0, 0, 1, 1], [2, 0, 0, 2]}) =142

[2, 0, 1, 1], and sgn([0, 2, 0, 3]) = [0, 1, 0, 1].143

With Eq. (2), the output of Conv-OH is an N ×M matrix, denoted by Z. Note that there is no dimen-144

sionality reduction in Conv-OH and thus this method consumes huge space. The node embedding hl
v145

of v also represents the shortest path distances between the keywords and v. Specifically, if hlv,i > 0,146

it means that the shortest path distance between v and wi is hlv,i − 1, and v cannot reach wi within147

l hops if hlv,i = 0. Hence, Conv-OH is able to return the same answer as does BLINKS [2], if the148

graph has no missing information.149

For the query processing, given q, we can obtain the one-hot encoding of q, denoted by xq . Therefore,150

given the output node embedding Z, the sum of graph shortest-path distances between nodes and the151

query keywords can be computed with xqZ
>, and the space complexity is O(NM). It is obvious152

that Conv-OH cannot deal with the missing information, but it provides some hints to propose more153

advanced methods.154

Conv-PCA. Principal component analysis (PCA) is a classic dimensionality reduction technique155

in multivariate statistical analysis [28]. In order to facilitate data storage and query processing, we156

propose another naive PCA-based method to solve the keyword search problem.157

Given the one-hot encoding matrix X as the input feature matrix, PCA is able to keep d principal158

components of X with Xp = XU>, where the rows of U ∈ Rd×M form an orthogonal basis for the159

d features that are decorrelated [29]. It is worth noting that we can obtain the reconstructed feature160

matrix X′ with X′ = XpU. The learning object is to minimize Lpca = ||X′ −X||22, where || · ||2161

denotes the L2 norm.162

Taking Xp as the initial node embedding (H0 = Xp), we propose Conv-PCA to leverage similar163

graph convolutional layers of Conv-OH as below:164

hl+1
v = max

(
{αhl

u,∀u ∈ N (v)} ∪ {hl
v}
)
, (3)

where α ∈ (0, 1) is a decay parameter used to estimate the shortest path distances in Eq. (3), since165

the dimension is reduced from M to d and thus it is difficult to discriminate M keywords within166

the d dimensions (d�M). Specifically, a larger cumulative decay corresponds to a larger shortest167

path distance. This mechanism performs better than directly using PCA in experiments as shown168

in Section 5.3. For the query processing, given q, we can obtain the query embedding hq = xqU
>.169

Therefore, given the output node embedding Z, the similarity scores between nodes and the query170

keywords can be computed by hqZ
> with linear space complexity O(dN), where the dimension d is171

a small constant.172

Compared with Conv-PCA, Conv-OH utilizes each element of hv to record the shortest path distance173

between keywords and v and cannot reduce the dimension of node embedding. Conv-PCA can more174

efficiently process the keyword search query and requires less space than Conv-OH, but both of them175

cannot well handle the missing information in incomplete graphs.176

4.2 KS-GNN177

Based on the prior discussions on Conv-OH and Conv-PCA, we present the desiderata that guide the178

development of our method for tackling keyword search as follows:179

Dimensionality Reduction. Taking the one-hot encoding matrix X as input, it is difficult to afford180

the cost of generating an output with size N ×M . Therefore, the model should be able to reduce the181

dimensions of the output node embedding M to a lower level.182

4

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴 𝑓𝑓

𝒉𝒉20

𝒉𝒉30

𝒉𝒉40

𝛼𝛼𝐴𝐴(𝒉𝒉20)

𝒉𝒉31𝐴𝐴(𝒉𝒉30)
𝛼𝛼𝐴𝐴(𝒉𝒉40)

𝛼𝛼

𝒉𝒉3′

𝛼𝛼

Figure 3: An illustration of the message passing and aggregation of our KS-GNN model.

Key Information Preservation. Some keywords and edges information may be lost in the process of183

dimensionality reduction, which affects the performance of keyword search. The model should retain184

as much key information as possible to guarantee results quality.185

Adaptive Encoding. When generating node embedding, the model should consider the structure186

information of the target node centered subgraph and the distribution of keywords on the subgraph,187

rather than only considering the keywords of the target node. Specifically, to recover the missing188

keywords information in the incomplete graph, the model should be able to capture latent relationships189

among different keywords. For instance, a pair of keywords "AI" and "ML" often co-occur on nodes190

near to each other (e.g., one-hop neighbors). Given a node containing "AI", it is natural to assume that191

the neighbor of this node is more likely to contain "ML" than the nodes whose one-hop neighbors do192

not contain "AI".193

Keyword Frequency Awareness. Based on the scoring function in Section 3, the returned top-k nodes194

tend to be decided by the query keywords with low frequency compared to the high-frequency ones.195

Thus, for a given keyword, the number of nodes containing it (we denote this by the keywords’196

node frequency) can reflect its importance to the query processing, similar to the inverse document197

frequency (IDF) used in information retrieval. The keyword set of the whole graph can be regarded198

as a corpus and the keyword set of each node can be regarded as a document. Therefore, the model199

should encode keywords taking in consideration of their frequencies, which are measured based on200

the keyword node frequency in the whole graph2.201

Based on these desiderata, we propose an auto-encoder based Keyword Search Graph Neural Network202

(KS-GNN) for tackling the problem in incomplete graphs. An illustration of the message passing and203

aggregation mechanism for generating the node embedding h3 with KS-GNN is provided in Fig. 3.204

Encoder and Decoder. KS-GNN employs an encoder f to generate low-dimensional node em-205

bedding for dimensionality reduction. Recall that in Conv-PCA, the dimension reduction caused206

information loss and it is hard to discriminate keywords in the low-dimensional space. To address207

this issue, for the sake of key information preservation, KS-GNN employs another decoder g which208

aims to reconstruct the input from embedding space. By training f simultaneously with g, the output209

embedding of f is able to preserve key information of the input graph. Given the one-hot encoding210

matrix X as the input, we define H = f(X) where H ∈ RN×d. For the decoder, it is defined as211

X′ = g(H) where X′ ∈ RN×M .212

In this work, we utilise the multi-layer perceptron (MLP) with a nonlinear activation layer [30] as213

both non-linear encoder and decoder. It is worth noting that MLP can be replaced by a more complex214

neural network. Our goal here is to use simple encoder and decoder to show the advantages of the215

proposed mechanism. In addition, as a conventional learning objective of the auto-encoder, f and g216

are trained to minimize:217

L1 =
1

N
||X′ −X||22. (4)

It is worth noting that the representation PCA learns is essentially the same as that learned by a218

basic linear auto-encoder, but the encoder f here is not required to generate embedding based on the219

primary components.220

2The multi-occurrence of a keyword on one node only contribute 1 to this keyword’s node frequency.

5

Message Passing and Aggregation. The message passing and aggregation mechanisms for both221

Conv-OH and Conv-PCA are based on the orthogonal basis and decorrelated features. However,222

in KS-GNN, its encoder f transforms the input without any basis, and thus we cannot simply223

apply the max(·) function to capture the information of the nearest keywords on a node. Thanks224

to the reconstruction ability of the decoder g, we can utilise g to reconstruct the M -dimension225

encoding during the message passing and then using max(·) at this step. Moreover, if the learned226

node embedding contains the latent information of the missing keyword of the incomplete graph, g227

can also help recover the missing keywords during the reconstruction. Formally, given the output228

node embedding Hl of l-th layer, we have:229

hl+1
v = f

(
max

(
{αg(hl

u),∀u ∈ N (v)} ∪ {g(hl
v)}
))

, (5)

where α ∈ (0, 1) is a decay parameter that is the same as the one in Eq. (3). As Eq. (5) shows, the M -230

dimension embedding will only be generated by g during the message passing and aggregation, while231

the hidden node embedding and the final output node embedding are both d dimensions. Therefore,232

it meets the requirement of dimensionality reduction. The message passing and aggregation can be233

processed in parallel, and the time-complexity is acceptable. It is worth noting that in incomplete234

graphs, due to the mechanism of message passing and aggregation, nodes without any keyword235

information can still be embedded accordingly.236

Subgraph keywords-based Node Similarity. To realize adaptive encoding, we propose to train237

KS-GNN by a triplet siamese network [31] with a triplet loss [32] according to the subgraph238

keywords-based node similarity, which enables KS-GNN to capture the latent missing keyword and239

edge information on incomplete graphs. For a node v, we consider the subgraph SGv containing all240

the neighbors of v within k hops for measuring node similarity. The one-hot encoding of this subgraph241

SGv is denoted by xSGv
. For instance in G′ shown in Fig. 1, given k = 1, the 1-hop subgraph of v5242

contains keywords {a, c, d, e, f} with the corresponding one-hot encoding xSG′
5

= (1, 0, 1, 1, 1, 1).243

Similarly, the one-hot encoding of the subgraphs around v4 and v6 are xSG′
4

= (1, 1, 1, 0, 0, 1) and244

xSG′
6

= (1, 1, 1, 1, 1, 1), respectively. Therefore, taking the dot product of embedding as the simi-245

larity scoring function, we can compare the similarity between (v5, v4) and (v5, v6) by comparing246

xSG′
5
x>SG′

4
= 3 and xSG′

5
x>SG′

6
= 5. Specifically, xSG′

5
x>SG′

4
< xSG′

5
x>SG′

6
indicates (v5, v6) are247

more similar than (v5, v4) in G′.248

Given G′, the KS-GNN model denoted by φ, and a sampled batch of triplets T = {t1, t2, ...tn} =249

{(vo1, vp1, vq1), (vo2, vp2, vq2), ..., (von, vpn, vqn)}, KS-GNN is trained to minimise:250

L2 =
1

|T |
∑
ti∈T

max

(
m− 1(ti)

(
φ(X)oiφ(X)>pi

− φ(X)oiφ(X)>qi

)
, 0

)
, (6)

where m is a margin hyper-parameter of the hinge loss, 1(·) denotes an indicator function that 1(ti)251

returns 1 if (voi, vpi) are more similar than (voi, vqi) and −1 otherwise. Thus, KS-GNN can learn252

the structure and keyword information from the subgraphs involved.253

For large-scale datasets, it might be time-consuming to compute 1(ti). In this case, it is acceptable to254

intuitively sample T based on the links. For example, for a sampled node voi , vpi
can be sampled255

from the 1-hop neighbors of voi , and vqi can be negatively sampled from unconnected nodes of voi ,256

thereby setting 1(ti) to 1. Eq. (6) still takes both the graph structural information and the keyword257

distribution into account by feeding the one-hot encoding of subgraph keywords to KS-GNN. In258

addition, minimizing Eq. (6) helps generate similar adaptive embedding for the keywords which259

co-occur commonly.260

Keyword Frequency-based Regularization. Intuitively, if a keyword appears on many nodes, it261

is regarded as less important than the keyword which appears on fewer nodes for query processing.262

Therefore, in this work, we consider the keyword node frequency, denoted by ci, that indicates the263

number of nodes containing keyword wi. For instance, in G′ shown in Fig. 1, c1 = 4 and c2 = 2 for264

keywords a and b, respectively. We propose to enhance the model’s keyword frequency awareness265

with a regularization that minimizes:266

L3 =
1

M

∑
wi∈W

ci||f(Ii)||2, (7)

6

where I denotes an M ×M identity matrix, and Ii denotes the i-th row of I. Feeding Ii in f can267

return the representation of keyword wi, and minimizing Eq. (7) aims to differentiate the lengths268

of keyword embeddings according to their keyword frequencies, thereby being aware of keyword269

frequency.270

To train KS-GNN, the final learning objective is to minimize:271

L = λ1L1 + λ2L2 + λ3L3, (8)
where λ1, λ2 and λ3 are hyper-parameters. By minimizing Eq. (8), we can optimize KS-GNN to272

generate informative node embedding which can capture the latent representation of missing keywords273

and edges. The superiority of the proposed KS-GNN is validated in Section 5.3.274

Query Processing. To process query q, given the one-hot encoding of q as xq , the trained encoder275

f and the learned node embedding Z, we can compute the similarity between the nodes and query276

with sq = f(xq)Z>, and the top-k answers can be found with the largest scores in sq. In addition,277

the space complexity of computing query processing is O(dN).278

5 Experiments279

In this section, we evaluate the performance of our proposed approach, KS-GNN, on four real-world280

datasets, including citation networks (CiteSeer), co-purchase networks (Video & Toy) and co-author281

networks (DBLP). The details of datasets, additional experimental results and analysis can be found282

in the supplementary materials.283

5.1 Baseline Methods284

We compare our model against five baseline methods, including a state-of-the-art deep learning285

based missing-data completion GNN model. More details on the baseline models are provided in the286

supplementary materials.287

• GraphSAGE [7] is a representative GNN-based graph embedding method. We add an MLP288

encoder for GraphSAGE to address the keyword search problem for GraphSAGE.289

• BLINK+SAT firstly predicts and completes the missing keywords and edges with a state-290

of-the-art missing-data completion GNN model SAT [6] and then utilises BLINK [2] to291

process keyword search on the new graph.292

• PCA is based on the classic dimensionality reduction technique [28].293

• Conv-PCA is a naive method proposed in Section 4.1.294

• Conv-rPCA is a variant of Conv-PCA that leverages U to reconstruct M -dimension em-295

bedding from hv .296

5.2 Experimental Setup297

In our experiments, we compare the proposed method with baseline methods for keyword search298

tasks in two kinds of graphs: (1) the graphs with only missing keywords; (2) the graphs with both299

missing keywords and edges. For each dataset, to simulate a real-world scenario and quantitatively300

control the ratios of missing information, we process the original datasets with two steps: (1) hide the301

keywords of randomly sampled nodes with a predefined proportion (denoted by rw) in the graph;302

(2) randomly hide a proportion (denoted by re) of the edges in the graph. Let nq = |q| denote the303

number of words in the query q, we randomly sample 100 queries as the test set for each value of nq304

ranging from 3 to 9 with a step of 2.305

In addition, in each incomplete graph, the validation set consists of 100 randomly generated queries306

with ground truth answers. We tune the hyper-parameters of compared methods with the grid search307

algorithm on the validation set, more details can be found in the Appendix. In terms of the evaluation308

metric, we use Hits@K, which is a common ranking metric that counts the ratio of positive edges that309

are ranked at the K-th place or above. The ground truth is the top-K answers retrieved by BLINK on310

the original graph for each dataset. Specifically, we report Hits@100, and more experimental results311

(Hits@10 and Hits@50) can be found in the appendix. Moreover, for each experiment, we conduct312

10 runs and report the average Hits scores.313

7

Table 1: Method performance by Hits@100 (%) in graphs with only missing keywords.

Datasets rw 0.3 0.5 0.7

nq 3 5 7 9 3 5 7 9 3 5 7 9

Citeseer

GraphSAGE 1.72 5.38 6.72 3.91 9.33 4.15 2.77 4.99 9.68 7.26 8.29 6.75

BLINK+SAT 9.8 10.88 12.87 14.49 9.86 8.36 6.12 9.67 3.57 1.37 1.51 2.07

PCA 13.12 8.41 7.04 6.05 9.86 7.34 6.80 5.66 8.40 6.83 6.07 5.46

Conv-PCA 8.10 7.20 7.52 7.87 10.93 8.15 9.38 5.23 8.67 6.45 6.93 4.83

Conv-rPCA 24.66 28.91 33.79 34.92 24.99 26.72 29.85 32.52 22.37 27.15 31.11 34.42

KS-GNN 31.21 42.13 39.89 41.53 33.19 41.73 41.79 41.24 32.56 42.74 43.71 42.45

Video

GraphSAGE 0.49 0.30 0.06 0.03 0.44 0.14 0.00 0.05 0.34 0.35 0.21 0.16

BLINK+SAT 10.21 9.86 10.99 14.87 8.55 6.92 8.63 5.82 1.18 1.15 4.38 3.35

PCA 1.54 0.91 0.55 0.61 1.71 0.72 0.71 0.57 1.66 0.95 0.66 0.55

Conv-PCA 1.81 2.46 1.58 2.38 2.43 1.49 1.66 2.54 2.42 2.37 2.80 3.37

Conv-rPCA 10.19 12.23 16.15 21.37 11.26 15.62 19.51 23.87 10.66 15.57 19.17 25.36

KS-GNN 21.43 26.63 22.92 39.51 22.54 22.57 30.41 38.63 21.01 16.48 22.01 39.19

Toy

GraphSAGE 0.09 2.15 2.09 10.07 0.03 1.35 0.50 13.13 0.06 0.30 0.00 3.22

BLINK+SAT 11.02 9.73 7.71 11.28 8.97 7.91 7.73 6.14 0.63 1.23 1.15 1.77

PCA 1.85 0.47 0.66 0.43 1.40 0.42 0.43 0.39 1.23 0.42 0.45 0.34

Conv-PCA 15.37 15.92 17.96 14.60 11.92 11.37 16.35 12.95 12.48 11.64 13.44 11.81

Conv-rPCA 23.78 24.14 22.95 22.09 24.57 23.82 26.38 22.30 15.02 20.03 21.24 21.67

KS-GNN 25.42 26.41 28.84 28.51 29.26 34.03 30.12 25.72 18.82 25.29 35.15 23.16

DBLP

GraphSAGE 0.05 0.27 0.06 0.23 0.00 0.06 1.06 1.14 1.05 0.28 0.18 1.40

BLINK+SAT 8.37 9.97 8.05 9.89 3.91 4.01 3.23 4.56 4.75 1.93 3.53 3.29

PCA 3.22 2.95 2.22 2.08 3.22 2.65 2.27 1.90 2.83 2.30 1.76 1.74

Conv-PCA 5.51 5.96 5.19 6.28 4.32 7.36 5.51 7.67 3.18 4.37 1.21 2.58

Conv-rPCA 14.40 24.30 25.82 24.96 12.59 18.51 22.93 22.62 9.95 19.97 20.87 23.39

KS-GNN 24.41 34.67 39.98 43.70 22.21 31.56 39.97 40.99 20.44 28.84 33.96 36.73

5.3 Performance of Keyword Search314

Table 1 shows the comparison results in graphs with rw adjusted from 0.3 to 0.7 and nq adjusted315

from 3 to 9. As shown in the table, KS-GNN significantly outperforms the baselines, and changing316

rw will not affect its performance. Moreover, the performance of KS-GNN is better when more317

query keywords are given. As for the baselines, BLINK+SAT cannot maintain good performance318

when many keywords are missing. Compared with Conv-PCA, Conv-rPCA can address the keyword319

search in incomplete graphs much more effectively due to the proposed novel message passing320

and aggregation mechanism. Although Conv-rPCA has the same message-related mechanism as321

KS-GNN, KS-GNN always performs better. This reveals that the proposed learning objective and322

auto-encoder-based model are able to enhance the ability of representation learning. Since PCA323

focuses on each single node, it performs well when the query keywords are located on the same324

node. However, when nq increases, the query keywords tend to be located on different nodes, and325

the performance of PCA therefore decreases because it cannot gather neighbor information. By326

contrast, although GraphSAGE can aggregate information from neighbors, it sometimes performs327

worse than PCA, because only utilizing the max-pooling operator during the message aggregation328

cannot well distinguish the information from each unique keyword. This can be proved by that329

Conv-PCA performs better than both PCA and GraphSAGE, which also indicates the superiority of330

our proposed encoder and decoder-based message passing and aggregation mechanism.331

Table 2 presents the results of the comparison in graphs with both missing keywords and edges,332

where re is set to 0.3 and rw is adjusted from 0.3 to 0.7. As the table shows, KS-GNN significantly333

outperforms all the compared baseline methods, since only KS-GNN can learn the adaptive embedding334

and structural information from the incomplete graph with missing keywords and edges. Compared335

with Table 1, Table 2 shows that edge missing has no significant effect on the performance of KS-336

GNN, while the performance of the baseline methods decreases significantly with the increase of the337

missing edges. This proves the robustness of our proposed KS-GNN.338

5.4 Analysis of Keyword Frequency Awareness339

8

Table 2: Method performance by Hits@100 (%) in graphs with both missing keywords and edges (re
= 0.3).

Datasets rw 0.3 0.5 0.7

nq 3 5 7 9 3 5 7 9 3 5 7 9

Citeseer

GraphSAGE 6.95 4.75 7.29 4.03 10.70 3.97 2.00 3.34 6.62 7.88 9.54 3.66

BLINK+SAT 6.67 7.33 8.27 8.47 4.24 5.23 5.85 4.92 1.04 2.64 2.91 2.21

PCA 11.24 8.41 7.04 6.05 9.86 7.34 6.80 5.66 8.40 6.83 6.07 5.46

Conv-PCA 10.27 8.17 7.40 8.31 11.83 8.47 10.15 5.33 9.12 7.39 8.32 4.58

Conv-rPCA 25.16 28.95 31.00 33.22 18.89 25.93 28.25 30.52 25.24 25.33 30.42 30.06

KS-GNN 29.97 38.12 40.32 41.63 30.17 38.56 36.61 41.94 30.61 40.29 40.65 40.10

Video

GraphSAGE 0.09 0.21 0.02 0.00 0.26 0.05 0.00 0.04 1.65 1.65 2.22 1.29

BLINK+SAT 1.67 1.85 2.48 1.44 0.08 0.99 4.96 2.97 2.19 1.77 0.78 1.21

PCA 1.54 0.91 0.55 0.61 1.71 0.72 0.71 0.57 1.66 0.95 0.66 0.55

Conv-PCA 1.05 1.59 0.83 2.01 1.43 0.81 0.74 1.23 1.25 1.25 1.31 1.38

Conv-rPCA 3.82 4.13 4.88 7.13 3.96 4.52 5.33 6.11 3.64 4.58 5.17 6.55

KS-GNN 12.81 8.34 12.88 21.86 10.01 7.68 7.18 20.30 10.34 10.31 13.90 19.03

Toy

GraphSAGE 0.00 0.14 0.74 1.24 0.01 0.24 0.46 4.77 0.00 0.21 0.23 0.71

BLINK+SAT 6.40 4.32 2.59 6.79 3.53 2.68 5.92 2.16 1.87 1.65 0.94 0.54

PCA 1.85 0.47 0.66 0.43 1.40 0.42 0.43 0.39 1.23 0.42 0.45 0.34

Conv-PCA 7.92 7.00 7.40 7.04 4.66 3.37 5.06 4.13 4.76 4.49 5.37 4.55

Conv-rPCA 10.12 9.19 11.36 12.03 7.51 11.04 8.54 11.35 7.83 7.95 5.49 8.14

KS-GNN 12.83 12.28 12.66 13.66 12.09 11.96 10.88 15.80 8.27 12.97 8.92 9.34

DBLP

GraphSAGE 0.21 0.27 0.19 0.47 1.98 3.14 1.11 3.57 1.42 0.92 1.04 1.47

BLINK+SAT 9.01 9.91 6.79 8.54 5.56 4.86 4.35 2.71 1.7 0.36 0.68 0.03

PCA 3.22 2.95 2.22 2.08 3.22 2.65 2.27 1.90 2.83 2.30 1.76 1.74

Conv-PCA 4.49 5.48 4.89 5.81 3.35 5.92 4.46 6.17 3.23 4.26 1.32 2.36

Conv-rPCA 5.11 12.55 13.95 14.39 11.30 16.76 16.06 4.66 4.06 10.10 6.41 16.68

KS-GNN 22.07 26.14 33.67 36.09 17.26 25.20 28.26 32.14 17.12 24.69 27.18 28.14

0 200 400
ci

0.5

1.0

1.5

||f
(I i

)||
2

(a) Without L3

0 200 400
ci

0.5

1.0

1.5
||f

(I i
)||

2

(b) With L3

Figure 4: Comparison of the ability of keyword
frequency awareness by whether using L3 or not.

As discussed above in Section 4.2, we propose340

a novel learning objective for training KS-GNN341

that aims to enhance its ability of keyword fre-342

quency awareness. Therefore, in the incomplete343

graph with rw = 0.3 and re = 0, we conduct ex-344

periments which show the relation between the345

keyword frequency ci and the length of keyword346

embedding ||f(Ii)||2. We compare the results by347

setting λ3 to 1 or 0, which indicates whether to348

minimize Eq. (7) or not.349

As the figure shows, by minimizing Eq.(7), KS-GNN can significantly learn the keyword frequency350

awareness, which is reflected by the length of keyword embedding. It is presented that the keywords351

with high frequencies turn to be less important than before utilizing Eq. (7). Because compared352

with the long keyword embedding, shorter keyword embedding tends to be ignored during the query353

process. It is also interesting to notice that the lengths of some low-frequency keywords decrease.354

This is exactly what we expect since there are many low-frequency keywords in the graph, therefore355

it is meaningful to distinguish them according to their importance.356

6 Conclusion357

Keyword search in graphs is an important problem with many applications such as network analysis358

and recommendation. The keywords and edges in graphs might be lost or incomplete due to some359

reasons in real-world applications, such as storage limitation or privacy issues. In this paper, we study360

the keyword search problem in incomplete graphs and propose a novel auto-encoder and GNN-based361

method, KS-GNN. Compared to existing methods, KS-GNN is able to address the problem when362

some nodes have missing keywords or some edges are missing in the input graphs. The results of363

extensive experiments on real-world datasets reveal that KS-GNN significantly outperforms the364

state-of-the-art baseline methods on the incomplete graph keyword search task.365

9

References366

[1] Haixun Wang and Charu C. Aggarwal. A survey of algorithms for keyword search on graph367

data. In Managing and Mining Graph Data, volume 40 of Advances in Database Systems, pages368

249–273. Springer, 2010.369

[2] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. Blinks: ranked keyword searches on graphs.370

In SIGMOD, pages 305–316, 2007.371

[3] Wangchao Le, Feifei Li, Anastasios Kementsietsidis, and Songyun Duan. Scalable keyword372

search on large rdf data. IEEE Transactions on knowledge and data engineering, 26(11):2774–373

2788, 2014.374

[4] Jieming Shi, Dingming Wu, and Nikos Mamoulis. Top-k relevant semantic place retrieval on375

spatial rdf data. In SIGMOD, pages 1977–1990, 2016.376

[5] Dejian Yang, Senzhang Wang, Chaozhuo Li, Xiaoming Zhang, and Zhoujun Li. From properties377

to links: Deep network embedding on incomplete graphs. In CIKM, pages 367–376, 2017.378

[6] Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W Tsang. Learning379

on attribute-missing graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,380

2020.381

[7] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large382

graphs. In Proc. of NeurIPS, 2017.383

[8] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:384

An efficient algorithm for training deep and large graph convolutional networks. In SIGKDD,385

pages 257–266, 2019.386

[9] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: a system for keyword-based search over387

relational databases. In ICDE, pages 5–16, 2002.388

[10] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and Shashank Sudar-389

shan. Keyword searching and browsing in databases using banks. In ICDE, pages 431–440.390

IEEE, 2002.391

[11] Mehdi Kargar and Aijun An. Keyword search in graphs: Finding r-cliques. Proceedings of the392

VLDB Endowment, 4(10):681–692, 2011.393

[12] Ziyang Liu, Chong Wang, and Yi Chen. Keyword search on temporal graphs. IEEE Trans.394

Knowl. Data Eng., 29(8):1667–1680, 2017.395

[13] Ye Yuan, Guoren Wang, Lei Chen, and Haixun Wang. Efficient keyword search on uncertain396

graph data. IEEE Trans. Knowl. Data Eng., 25(12):2767–2779, 2013.397

[14] Yueji Yang, Divyakant Agrawal, H. V. Jagadish, Anthony K. H. Tung, and Shuang Wu. An398

efficient parallel keyword search engine on knowledge graphs. In ICDE, pages 338–349. IEEE,399

2019.400

[15] Shady Elbassuoni and Roi Blanco. Keyword search over RDF graphs. In CIKM, pages 237–242.401

ACM, 2011.402

[16] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally403

connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.404

[17] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks405

on graphs with fast localized spectral filtering. Advances in neural information processing406

systems, 29:3844–3852, 2016.407

[18] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional408

networks. In Proc. of ICLR, 2017.409

[19] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.410

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to411

networks and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013.412

10

[20] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural413

networks? In ICLR, 2018.414

[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua415

Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.416

[22] Thomas N Kipf and Max Welling. Variational graph auto-encoders. NeurIPS Workshop, 2016.417

[23] Jiaxuan You, Xiaobai Ma, Daisy Yi Ding, Mykel Kochenderfer, and Jure Leskovec. Handling418

missing data with graph representation learning. arXiv preprint arXiv:2010.16418, 2020.419

[24] Indro Spinelli, Simone Scardapane, and Aurelio Uncini. Missing data imputation with420

adversarially-trained graph convolutional networks. Neural Networks, 129:249–260, 2020.421

[25] Bhavana Bharat Dalvi, Meghana Kshirsagar, and S Sudarshan. Keyword search on external422

memory data graphs. Proceedings of the VLDB Endowment, 1(1):1189–1204, 2008.423

[26] Gang Gou and Rada Chirkova. Efficient algorithms for exact ranked twig-pattern matching over424

graphs. In Proceedings of the 2008 ACM SIGMOD international conference on Management of425

data, pages 581–594, 2008.426

[27] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. Top-k exploration of427

query candidates for efficient keyword search on graph-shaped (rdf) data. In 2009 IEEE 25th428

International Conference on Data Engineering, pages 405–416. IEEE, 2009.429

[28] Jan J Gerbrands. On the relationships between svd, klt and pca. Pattern recognition, 14(1-430

6):375–381, 1981.431

[29] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and432

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–433

1828, 2013.434

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.435

[31] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In International436

workshop on similarity-based pattern recognition, pages 84–92. Springer, 2015.437

[32] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for438

face recognition and clustering. In Proc. of CVPR, pages 815–823, 2015.439

Checklist440

1. For all authors...441

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s442

contributions and scope? [Yes] This work focuses on handling keyword search problem443

with missing information.444

(b) Did you describe the limitations of your work? [Yes] See section 6. This research needs445

to be extended for larger-scale datasets.446

(c) Did you discuss any potential negative societal impacts of your work? [N/A]447

(d) Have you read the ethics review guidelines and ensured that your paper conforms to448

them? [Yes]449

2. If you are including theoretical results...450

(a) Did you state the full set of assumptions of all theoretical results? [N/A]451

(b) Did you include complete proofs of all theoretical results? [N/A]452

3. If you ran experiments...453

(a) Did you include the code, data, and instructions needed to reproduce the main experi-454

mental results (either in the supplemental material or as a URL)? [Yes]455

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they456

were chosen)? [Yes] See sections starting from section 5.2.457

11

(c) Did you report error bars (e.g., with respect to the random seed after running experi-458

ments multiple times)? [Yes] See section 5.2.459

(d) Did you include the total amount of compute and the type of resources used (e.g., type460

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C.1.461

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...462

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section ??.463

(b) Did you mention the license of the assets? [Yes]464

(c) Did you include any new assets either in the supplemental material or as a URL? [No]465

(d) Did you discuss whether and how consent was obtained from people whose data you’re466

using/curating? [N/A]467

(e) Did you discuss whether the data you are using/curating contains personally identifiable468

information or offensive content? [N/A]469

5. If you used crowdsourcing or conducted research with human subjects...470

(a) Did you include the full text of instructions given to participants and screenshots, if471

applicable? [N/A]472

(b) Did you describe any potential participant risks, with links to Institutional Review473

Board (IRB) approvals, if applicable? [N/A]474

(c) Did you include the estimated hourly wage paid to participants and the total amount475

spent on participant compensation? [N/A]476

12

	Introduction
	Related Work
	Problem Statement
	Proposed Methods
	Naive Methods
	KS-GNN

	Experiments
	Baseline Methods
	Experimental Setup
	Performance of Keyword Search
	Analysis of Keyword Frequency Awareness

	Conclusion

