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Abstract

Modern approaches typically formulate semantic segmentation as a per-pixel classi-1

fication task, while instance-level segmentation is handled with an alternative mask2

classification. Our key insight: mask classification is sufficiently general to solve3

both semantic- and instance-level segmentation tasks in a unified manner using4

the exact same model, loss, and training procedure. Following this observation,5

we propose MaskFormer, a simple mask classification model which predicts a6

set of binary masks, each associated with a single global class label prediction.7

Overall, the proposed mask classification-based method simplifies the landscape8

of effective approaches to semantic and panoptic segmentation tasks and shows9

excellent empirical results. In particular, we observe that MaskFormer outper-10

forms per-pixel classification baselines when the number of classes is large. Our11

mask classification-based method outperforms the current state-of-the-art semantic12

segmentation model by 2.1 mIoU on ADE20K, achieving 55.6 mIoU.13

1 Introduction14

The goal of semantic segmentation is to partition an image into regions with different semantic15

categories. Starting from Fully Convolutional Networks (FCNs) work of Long et al. [30], most deep16

learning-based semantic segmentation approaches formulate semantic segmentation as per-pixel17

classification (Figure 1 left), applying a classification loss to each output pixel [8, 47]. Per-pixel18

predictions in this formulation naturally partition an image into regions of different classes.19

Mask classification is an alternative paradigm that disentangles the image partitioning and classifica-20

tion aspects of segmentation. Instead of classifying each pixel, mask classification-based methods21

predict a set of binary masks, each associated with a single class prediction (Figure 1 right). The22

more flexible mask classification dominates the field of instance-level segmentation, since per-pixel23

classification assumes a static number of outputs and cannot return a variable number of predicted24

regions/segments, which is required for instance-level tasks. For example, Mask R-CNN [20] and25

DETR [3] yield a single class prediction per segment for instance and panoptic segmentation.26

Our key observation: mask classification is sufficiently general to solve both semantic- and instance-27

level segmentation tasks. In fact, before FCN [30], the best performing semantic segmentation28

methods like O2P [4] and SDS [19] used mask classification. Given this perspective, a natural question29

emerges: can a single mask classification model simplify the landscape of effective approaches to30

semantic- and instance-level segmentation tasks? And can such a model be competitive with per-pixel31

classification methods for semantic segmentation?32

To address both questions we propose a simple MaskFormer module that seamlessly converts any33

existing per-pixel classification model into a mask classification method. Using the set prediction34

mechanism proposed in DETR [3], MaskFormer employs a Transformer decoder [38] to compute a35
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Figure 1: Per-pixel classification (left) vs. mask classification. (left) Semantic segmentation with
per-pixel classification applies the same classification loss to each location. (right) Mask classification
predicts a set of binary masks and assigns a single class to each mask. Each prediction is supervised
with a per-pixel binary mask loss and a classification loss. Matching between the set of predictions
and ground truth segments can be done either via bipartite matching similarly to DETR [3] or by
fixed matching via direct indexing if the number of predictions and classes match, i.e., if N = K.

set of pairs, each consisting of a class prediction and a mask embedding vector. The mask embedding36

vector is used to get the binary mask prediction via a dot product with the per-pixel embedding37

obtained from an underlying fully-convolutional network. The new model solves both semantic- and38

instance-level segmentation tasks in a unified manner: no changes to the model, losses and training39

procedure are required. Specifically, for semantic and panoptic segmentation tasks alike, MaskFormer40

is supervised with the same per-pixel binary mask loss and a single classification loss per mask. We41

also design a simple probabilistic inference to blend the outputs of MaskFormer into a final prediction,42

which is more efficient than existing heuristics for mask classification [23, 3].43

We evaluate MaskFormer on four semantic segmentation datasets with various numbers of categories:44

Cityscapes [14] (19 classes), ADE20K [50] (150 classes), COCO-Stuff-10K [2] (171 classes),45

ADE20K-Full [50] (847 classes). While MaskFormer performs on par with per-pixel classification46

models for Cityscapes, which has a few diverse classes, the new model demonstrates superior47

performance for datasets with larger vocabulary. We hypothesize that mask classification uses global48

context which is required for more efficient fine-grained recognition. We observe that MaskFormer49

achieves the new state-of-the-art on ADE20K (55.6 mIoU) with Swin-Transformer [29] backbone,50

outperforming the best per-pixel classification model with the same backbone by 2.1 mIoU, while51

being more efficient (10% reduction in parameters and 40% reduction in FLOPs).52

Finally, we study MaskFormer’s ability to solve instance-level tasks using two panoptic segmentation53

datasets: COCO [28, 23] and ADE20K [50]. The new model performs on par with the more complex54

DETR model [3], highlighting its ability to unify instance- and semantic-level segmentation.55

2 Related Works56

Both per-pixel classification and mask classification have been extensively studied for semantic57

segmentation. In early work, Konishi and Yuille [24] apply per-pixel Bayesian classifiers based58

on local image statistic. Then, inspired by early works on non-semantic groupings [12, 34], mask59

classification-based methods became popular demonstrating the best performance in PASCAL VOC60

challenges [17]. For example, methods like O2P [4] and CFM [15] have achieved state-of-the-art61

results by classifying mask proposals [5, 37, 1]. In 2015, FCN [30] extended the idea of per-pixel62

classification to deep nets, significantly outperforming all prior methods on mIoU (a per-pixel63

evaluation metric which particularly suits the per-pixel classification formulation of segmentation).64

Per-pixel classification became the dominant way for deep-net-based semantic segmentation since65

the seminal work of Fully Convolutional Networks (FCNs) [30]. Modern semantic segmentation66

models focus on aggregating long-range context in the final feature map: ASPP [6, 7] uses atrous67

convolutions with different atrous rates; PPM [47] uses pooling operators with different kernel68

sizes; DANet [18], OCNet [46] and CCNet [22] use different variants of non-local blocks [40].69

Recently, SETR [48] and Segmenter [35] replace traditional convolutional backbones with Vision70

Transformers (ViT) [16] that capture long-range context starting from the very first input layer.71

However, these concurrent Transformer-based [38] semantic segmentation approaches still use per-72

pixel classification. Note, that our MaskFormer module can convert any per-pixel classification model73

to the mask classification setting, allowing seamless adoption of advances in per-pixel classification.74
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Mask classification is commonly used for instance-level segmentation [19, 23] these days. These75

tasks require a dynamic number of predictions, making application of per-pixel classification chal-76

lenging as it assumes a static number of outputs. Omnipresent Mask R-CNN [20] uses a global77

classifier to classify mask proposals for instance segmentation. DETR [3] further incorporates a78

Transformer [38] design to handle thing and stuff segmentation simultaneously for panoptic segmen-79

tation [23]. However, these mask classification methods require predictions of bounding boxes, which80

may limit their usage in semantic segmentation. Max-DeepLab [39] removes the dependence on box81

predictions for panoptic segmentation with conditional convolutions [36, 41]. However, in addition82

to the main mask classification losses it requires three auxiliary losses (i.e., instance discrimination83

loss, mask-ID cross entropy loss and per-pixel classification loss).84

3 From Per-Pixel to Mask Classification85

In this section, we first describe how semantic segmentation can be formulated as either a per-pixel86

classification or a mask classification problem. Then, we introduce our instantiation of the mask87

classification model with the help of a Transformer decoder [38]. Finally, we propose a probabilistic88

inference strategy to take full advantage of the mask classification formulation.89

3.1 Per-pixel classification formulation90

For per-pixel classification, a segmentation model aims to predict the probability distribution over all91

possibleK categories for every pixel of anH×W image: y = {pi|pi ∈ ∆K}H·Wi=1 . Here ∆K is theK-92

dimensional probability simplex. Training a per-pixel classification model is straight-forward: given93

ground truth category labels ygt = {ygt
i |y

gt
i ∈ {1, . . . ,K}}H·Wi=1 for every pixel, a per-pixel cross-94

entropy (negative log-likelihood) loss is usually applied, i.e., Lpixel-cls(y, y
gt) =

∑H·W
i=1 − log pi(y

gt
i ).95

3.2 Mask classification formulation96

Mask classification splits the segmentation task into 1) partitioning/grouping the image into N97

regions, represented with binary masks {mi|mi ∈ [0, 1]H×W }Ni=1; and 2) associating each region as98

a whole with some distribution over K categories. To jointly group and classify a segment, i.e., to99

perform mask classification, we define the desired output z as a set of N probability-mask pairs, i.e.,100

z = {(pi,mi)}Ni=1. In contrast to per-pixel class probability prediction, for mask classification the101

probability distribution pi ∈ ∆K+1 contains an auxiliary “no object” label (∅) in addition to the K102

category labels. The ∅ label is predicted for masks that do not correspond to any of the K categories.103

Note, mask classification allows multiple mask predictions with the same associated class, making it104

applicable to both semantic- and instance-level segmentation.105

To train a mask classification model, a matching σ between the set of predictions z and the set of N gt106

ground truth segments zgt = {(cgt
i ,m

gt
i )|cgt

i ∈ {1, . . . ,K},m
gt
i ∈ {0, 1}H×W }N

gt

i=1 is required.1Here107

cgt
i is the ground truth class of the ith ground truth segment. Since the size of prediction set |z| = N108

and ground truth set |zgt| = N gt generally differ, we assume N ≥ N gt and pad the set of ground truth109

labels with “no object” tokens ∅ to allow one-to-one matching.110

For semantic segmentation, a trivial fixed matching is possible if the number of predictionsN matches111

the number of category labels K. In this case, the ith prediction is matched to a ground truth region112

with class label i and to ∅ if class label i is not present in the ground truth. In our experiments, we113

found that a bipartite matching-based assignment demonstrates better results than the fixed matching.114

Unlike DETR [3] that uses bounding boxes to compute the assignment costs between prediction zi115

and ground truth zgt
j for the Hungarian algorithm [25], we directly use class and mask predictions,116

i.e., −pi(cgt
j ) + Lmask(mi,m

gt
j ), where Lmask is a binary mask loss.117

Given a matching, the main mask classification loss Lmask-cls is composed of a cross-entropy classifi-118

cation loss and a binary mask loss Lmask for each predicted segment:119

Lmask-cls(z, z
gt) =

∑N

j=1

[
− log pσ(j)(c

gt
j ) + 1cgt

j 6=∅Lmask(mσ(j),m
gt
j )
]
. (1)

1Different mask classification methods utilize various matching rules. For instance, Mask R-CNN [20] uses
a heuristic procedure based on anchor boxes and DETR [3] optimizes a bipartite matching between z and zgt.
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Figure 2: MaskFormer overview. We use a backbone to extract image features F . A pixel decoder
gradually upsamples image features to extract per-pixel embeddings Epixel. A transformer decoder
attends to image features and producesN per-segment embeddingsQ. The embeddings independently
generateN class predictions withN corresponding mask embeddings Emask. Then, the model predicts
N possibly overlapping binary mask predictions via a dot product between pixel embeddings Epixel
and mask embeddings Emask followed by a sigmoid activation. Finally, we get semantic segmentations
by combining N binary masks with their class predictions using a simple matrix multiplication (see
Section 3.4). Note, the dimensions used to perform multiplication

⊗
are shown in gray.

Note, that most existing mask classification models use auxiliary losses (e.g., a bounding box120

loss [20, 3] or an instance discrimination loss [39]) in addition to Lmask-cls. In the next section we121

present a simple mask classification module that allows end-to-end training with Lmask-cls alone.122

3.3 MaskFormer123

We now introduce MaskFormer, the new mask classification model, which computes N probability-124

mask pairs z = {(pi,mi)}Ni=1. The model contains three modules (see Fig. 2): 1) a pixel-level125

module that extracts per-pixel embeddings used to generate binary mask predictions; 2) a transformer126

module, where a stack of Transformer decoder layers [38] computes N per-segment embeddings;127

and 3) a segmentation module, which generates predictions {(pi,mi)}Ni=1 from these embeddings.128

During inference, discussed in Sec. 3.4, pi and mi are assembled into the final prediction.129

Pixel-level module takes an image of size H ×W as input. A backbone generates a (typically)130

low-resolution image feature map F ∈ RCF×H
S ×

W
S , where CF is the number of channels and S131

is the stride of the feature map (CF depends on the specific backbone and we use S = 32 in this132

work). Then, a pixel decoder gradually upsamples the features to generate per-pixel embeddings133

Epixel ∈ RCE×H×W , where CE is the embedding dimension. Note, that any per-pixel classification-134

based segmentation model fits the pixel-level module design including recent Transformer-based135

models [35, 48, 29]. MaskFormer seamlessly converts such a model to mask classification.136

Transformer module uses the standard Transformer decoder [38] to compute from image features137

F and N learnable positional embeddings (i.e., queries) its output, i.e., N per-segment embeddings138

Q ∈ RCQ×N of dimension CQ that encode global information about each segment MaskFormer139

predicts. Similarly to [3], the decoder yields all predictions in parallel.140

Segmentation module applies a linear classifier, followed by a softmax activation, on top of the141

per-segment embeddings Q to yield class probability predictions {pi ∈ ∆K+1}Ni=1 for each segment.142

Note, that the classifier predicts an additional “no object” category (∅) in case the embedding does143

not correspond to any region. For mask prediction, a Multi-Layer Perceptron (MLP) with 2 hidden144

layers converts the per-segment embeddingsQ to N mask embeddings Emask ∈ RCE×N of dimension145

CE . Finally, we obtain each binary mask prediction mi ∈ [0, 1]H×W via a dot product between the146

ith mask embedding and per-pixel embeddings Epixel computed by the pixel-level module. The dot147

product is followed by a sigmoid activation, i.e., mi[h,w] = sigmoid(Emask[:, i]T · Epixel[:, h, w]).148

Note, we empirically find it is beneficial to not enforce mask predictions to be mutually exclusive to149

each other by using a softmax activation. During training, the Lmask-cls loss combines a cross entropy150

classification loss and a binary mask loss Lmask for each predicted segment. For simplicity we use the151

same Lmask as DETR [3], i.e., a linear combination of a focal loss [27] and a dice loss [32] multiplied152

by hyper-parameters λfocal and λdice respectively.153
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3.4 Mask-classification inference154

First, we present a simple general inference procedure that converts mask classification outputs155

{(pi,mi)}Ni=1 to either panoptic or semantic segmentation output formats. Then, we describe a156

probabilistic inference procedure specifically designed for semantic segmentation.157

General inference partitions an image into segments by assigning each pixel [h,w] to one of the N158

predicted probability-mask pairs via arg maxi:ci 6=∅ pi(ci) ·mi[h,w]. Here ci is the most likely class159

label ci = arg maxc∈{1,...,K,∅} pi(c) for each probability-mask pair i. Intuitively, this procedure160

assigns a pixel at location [h,w] to probability-mask pair i only if both the most likely class probability161

pi(ci) and the mask prediction probability mi[h,w] are high. Pixels assigned to the same probability-162

mask pair i form a segment where each pixel is labelled with ci. For semantic segmentation, segments163

sharing the same category label are merged; whereas for instance-level segmentation tasks, the index164

i of the probability-mask pair helps to distinguish different instances of the same class.165

Probabilistic inference is designed specifically for semantic segmentation and is done via a simple166

matrix multiplication. We empirically find that marginalization over probability-mask pairs, i.e.,167

arg maxc∈{1,...,K}
∑N
i=1 pi(c) ·mi[h,w], yields better results than the hard assignment of each pixel168

to a probability-mask pair i used in general inference strategy. The argmax does not include the “no169

object” category (∅) as standard semantic segmentation requires each output pixel to take a label.170

Note, that probabilistic inference returns a per-pixel class probability
∑N
i=1 pi(c) ·mi[h,w] similarly171

to per-pixel classification. However, we empirically observe directly maximizing per-pixel class172

likelihood for MaskFormer leads to poor performance. We hypothesize, that in this case gradients are173

evenly distributed to every query, which complicates training.174

4 Experiments175

First, we compare mask classification-based MaskFormer with state-of-the-art methods on multiple176

semantic segmentation datasets. Then, we show that the same model achieves competitive perfor-177

mance on panoptic segmentation. Finally, we ablate the MaskFormer design confirming that observed178

improvements indeed stem from the shift from per-pixel classification to mask classification.179

Datasets. We study MaskFormer using three widely used semantic segmentation datasets:180

ADE20K [50] (150 classes) from the SceneParse150 challenge [49], COCO-stuff-10K [2] (171181

classes), and Cityscapes [14] (19 classes). In addition, we use the ADE20K-Full [50] dataset182

annotated in an open vocabulary setting (874 classes are present in both train and validation sets).183

For panotic segmenation evaluation we use COCO [28, 2, 23] (80 “things” and 53 “stuff” categories)184

and ADE20K-Panoptic [50, 23] (100 “things” and 50 “stuff” categories). Please see the supplementary185

material for detailed descriptions of all used semantic and panoptic segmentation datasets.186

Evaluation metrics. For semantic segmentation the standard metric is mIoU (mean Intersection-over-187

Union) [17], a per-pixel metric that directly corresponds to the per-pixel classification formulation.188

To better illustrate the difference between segmentation approaches, in our ablations we supplement189

mIoU with PQSt (PQ stuff) [23], a per-region metric that treats all classes as “stuff” and evaluates190

each segment equally, irrespective of its size. We report the median of 3 runs for all datasets, except191

for Cityscapes where we report the median of 5 runs. For panoptic segmentation, we use the standard192

PQ (panoptic quality) metric [23] and report single run results due to prohibitive training costs.193
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Baseline models. On the right we194

sketch the used per-pixel classifi-195

cation baselines. The PerPixel-196

Baseline uses the pixel-level mod-197

ule of MaskFormer and directly out-198

puts per-pixel class scores. For a199

fair comparison, we design PerPix-200

elBaseline+ which adds the trans-201

former module and mask embed-202

ding MLP to the PerPixelBaseline. Thus, PerPixelBaseline+ and MaskFormer differ only in the203

formulation: per-pixel vs. mask classification. Note that, these baselines are for ablation and we204

compare MaskFormer with state-of-the-art per-pixel classification models as well.205
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4.1 Implementation details206

Backbone. MaskFormer is compatible with any backbone architecture. In our work we use the stan-207

dard convolution-based ResNet [21] backbones (R50 and R101 with 50 and 101 layers respectively)208

and recently proposed Transformer-based Swin-Transformer [29] backbones. In addition, we use the209

R101c model [6] which replaces the first 7× 7 convolution layer of R101 with 3 consecutive 3× 3210

convolutions and which is popular in the semantic segmentation community.211

Pixel decoder. The pixel decoder in Figure 2 can be implemented using any semantic segmentation212

decoder (e.g., [8–10]). Many per-pixel classification methods use modules like ASPP [6] or PSP [47]213

to collect and distribute context across locations. In our experiments, we observe that such modules214

do not improve MaskFormer. The Transformer module attends to all image features, collecting215

global information to generate class predictions. This setup reduces the need of the per-pixel module216

for heavy context aggregation that distributes global information to each pixel. Therefore, for217

MaskFormer, we design a light-weight pixel decoder based on the popular FPN [26] architecture.218

Following FPN, we 2× upsample the low-resolution feature map in the decoder and sum it with the219

projected feature map of corresponding resolution from the backbone; Projection is done to match220

channel dimensions of the feature maps with a 1 × 1 convolution layer followed by GroupNorm221

(GN) [42]. Next, we fuse the summed features with an additional 3× 3 convolution layer followed222

by GN and ReLU activation. We repeat this process starting with the stride 32 feature map until we223

obtain a final feature map of stride 4. Finally, we apply a single 1× 1 convolution layer to get the224

per-pixel embeddings. All feature maps in the pixel decoder have a dimension of 256 channels.225

Transformer decoder. We use the same Transformer decoder design as DETR [3]. The N query226

embeddings are initialized as zero vectors, and we associate each query with a learnable positional227

encoding. We use 6 Transformer decoder layers with 100 queries by default, and, following DETR,228

we apply the same loss after each decoder. In our experiments we observe that MaskFormer is229

competitive for semantic segmentation with a single decoder layer too, whereas for instance-level230

segmentation multiple layers are necessary to remove duplicates from the final predictions.231

Segmentation module. The multi-layer perceptron (MLP) in Figure 2 has 2 hidden layers of 256232

channels to predict the mask embeddings Emask, analogously to the box head in DETR. Both per-pixel233

Epixel and mask Emask embeddings have 256 channels.234

Loss weights. We use focal loss [27] and dice loss [32] for our mask loss: Lmask(m,mgt) =235

λfocalLfocal(m,m
gt) + λdiceLdice(m,m

gt), and set the hyper-parameters to λfocal = 20.0 and λdice =236

1.0. Following DETR [3], the weight for the “no object” (∅) in the classification loss is set to 0.1.237

4.2 Training settings238

Semantic segmentation. We use Detectron2 [43] and follow the commonly used training settings239

for each dataset. We use AdamW [31] and the poly [6] learning rate schedule with an initial learning240

rate of 10−4 and a weight decay of 10−4 for ResNet [21] backbones, and an initial learning rate of241

6 ·10−5 and a weight decay of 10−2 for Swin-Transformer [29] backbones. Backbones are pre-trained242

on ImageNet-1K [33] if not stated otherwise. A learning rate multiplier of 0.1 is applied to CNN243

backbones and 1.0 is applied to Transformer backbones. The standard random scale jittering between244

0.5 and 2.0, random horizontal flipping, random cropping as well as random color jittering are used as245

data augmentation. For the ADE20K dataset, if not stated otherwise, we use a crop size of 512× 512,246

a batch size of 16 and train all models for 160k iterations. For the ADE20K-Full dataset, we use the247

same setting as ADE20K except that we train all models for 200k iterations. For the COCO-stuff-10k248

dataset, we use a crop size of 640× 640, a batch size of 32 and train all models for 60k iterations. All249

models are trained with 8 V100 GPUs. We report both performance of single scale (s.s.) inference250

and multi-scale (m.s.) inference with horizontal flip and scales of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75. By251

default, we use the probabilistic inference strategy discussed in Section 3.4.252

Panoptic segmentation. We follow exactly the same architecture, loss and training procedure as253

we use for semantic segmentation. The only difference is supervision: i.e., category region masks254

in semantic segmentation vs. object instance masks in panoptic segmentation. We strictly follow255

the DETR [3] setting to train our model on the COCO panoptic segmentation dataset [23] for a fair256

comparison. On the ADE20K panoptic segmentation dataset, we follow the semantic segmentation257

setting but train for longer (720k iterations) and use a larger crop size (640× 640). COCO models258
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Table 1: Semantic segmentation on ADE20K val with 150 categories. Mask classification-based
MaskFormer outperforms the best per-pixel classification approaches while using fewer parameters
and less computation. We report both single-scale (s.s.) and multi-scale (m.s.) inference results with
±std. FLOPs are computed for the given crop size. Frame-per-second (fps) is measured on a V100
GPU with a batch size of 1.2 Backbones pre-trained on ImageNet-22K are marked with †.

method backbone crop size mIoU (s.s.) mIoU (m.s.) #params. FLOPs fps

C
N

N
ba

ck
bo

ne
s

OCRNet [45] R101c 520× 520 - 45.3 - - -

DeepLabV3+ [8]
R50c 512× 512 44.0 44.9 44M 177G 21.0

R101c 512× 512 45.5 46.4 63M 255G 14.2
PerPixelBaseline R50 512× 512 39.2±0.2 40.9±0.1 31M 48G 45.5
PerPixelBaseline+ R50 512× 512 41.9±0.2 42.9±0.3 41M 50G 30.3

MaskFormer (ours)
R50 512× 512 44.4±0.5 46.6±0.6 41M 53G 24.5

R101 512× 512 45.1±0.5 47.1±0.2 60M 73G 19.5
R101c 512× 512 45.9±0.1 48.0±0.2 60M 80G 19.0

Tr
an

sf
or

m
er

ba
ck

bo
ne

s

SETR [48] ViT-L† 512× 512 - 50.3 308M - -

Swin-UperNet [29, 44]

Swin-T 512× 512 - 46.1 60M 236G 18.5
Swin-S 512× 512 - 49.3 81M 259G 15.2
Swin-B† 640× 640 - 51.6 121M 471G 8.7
Swin-L† 640× 640 - 53.5 234M 647G 6.2

MaskFormer (ours)

Swin-T 512× 512 46.7±0.7 48.8±0.6 42M 55G 22.1
Swin-S 512× 512 49.8±0.4 51.0±0.4 63M 79G 19.6
Swin-B† 640× 640 52.7±0.4 54.0±0.2 102M 195G 12.6
Swin-L† 640× 640 54.1±0.2 55.6±0.1 212M 375G 7.9

are trained using 64 V100 GPUs and ADE20K experiments are trained with 8 V100 GPUs. During259

inference, we use the general inference strategy discussed in Section 3.4 with the following parameters:260

1) we filter masks with class confidence below 0.7; 2) we set masks whose contribution to the final261

panoptic segmentation is less than 80% of its mask area to VOID. We only report performance of262

single scale inference for panoptic segmentation.263

4.3 Main results264

Semantic segmentation. In Table 1, we compare MaskFormer with our baselines and state-of-the-265

art per-pixel classification models for semantic segmentation on the ADE20K dataset. With the266

same standard CNN backbones (e.g., ResNet [21]), MaskFormer outperforms DeepLabV3+ [8].267

MaskFormer is also compatible with recent Vision Transformer [16] backbones (e.g., the Swin268

Transformer [29]), achieving a new state-of-the-art of 55.6 mIoU, which is 2.1 mIoU better than the269

prior state-of-the-art. Observe that MaskFormer outperforms the best per-pixel classification-based270

models while having fewer parameters and faster inference time. This result suggests that the mask271

classification formulation has significant potential for semantic segmentation.272

Beyond ADE20K, we compare MaskFormer with existing per-pixel classification models and our273

baselines on COCO-stuff-10K and ADE20K-Full. The new mask classification model achieves274

competitive results on both datasets. Using ADE20K-Full which has 847 categories we observe that275

MaskFormer is more memory efficient than per-pixel classification baselines that make 847 class276

predictions for each pixel. In contrast, mask classification-based MaskFormer makes such class277

predictions for each mask only (100 by default in our experiments). We refer to the supplementary278

material for a detailed description of our experiments on these two datasets.279

In Table 2a, we report MaskFormer performance on Cityscapes, the standard testbed for modern280

semantic segmentation methods. The dataset has only 19 categories and therefore, the recognition281

aspect of the dataset is less challenging than in other considered datasets. We observe that MaskFormer282

performs on par with the best per-pixel classification methods. To better analyze MaskFormer, in283

Table 2b, we further report PQSt by treating every category as “stuff”. Unlike mIoU, this metric treats284

all segments equally, irrespective of their size, and allows to evaluate recognition quality. MaskFormer285

performs better in terms of recognition quality (RQSt) while lagging in per-pixel segmentation quality286

(SQSt). This observation suggests that on datasets, where recognition is relatively easy to solve, the287

main challenge for mask classification-based approaches is pixel-level accuracy.288

2It isn’t recommended to compare fps from different papers: speed is measured in different environments.
DeepLabV3+ fps are from MMSegmentation [13], and Swin-UperNet fps are from the original paper [29].
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Table 2: Semantic segmentation on Cityscapes val with 19 categories. 2a: MaskFormer is on-par
with state-of-the-art methods on Cityscapes which has fewer categories than other considered datasets.
We report multi-scale (m.s.) inference results with ±std for a fair comparison across methods. 2b:
We analyze MaskFormer with a complimentary PQSt metric, by treating all categories as “stuff.” The
breakdown of PQSt suggests mask classification-based MaskFormer is better at recognizing regions
(RQSt) while slightly lagging in generation of high-quality masks (SQSt).

(a) Cityscapes standard mIoU metric.

method backbone mIoU (m.s.)

Panoptic-DeepLab [10] X71 [11] 81.5
OCRNet [45] R101c 82.0

MaskFormer (ours)
R101 80.5±0.1
R101c 81.4±0.2

(b) Cityscapes analysis with PQSt metric suit.

PQSt (m.s.) SQSt (m.s.) RQSt (m.s.)

66.6 82.9 79.4
66.1 82.6 79.1
65.9 81.5 79.7
66.9 82.0 80.5

Table 3: Panoptic segmentation on COCO panoptic val with 133 categories. MaskFormer seam-
lessly unifies semantic- and instance-level segmentation without modifying the model architecture
or loss. Our model, which achieves better results, can be regarded as a box-free simplification of
DETR [3]. The major improvement comes from “stuff” classes (PQSt) which are ambiguous to
represent with bounding boxes. However, our model performs slightly worse than DETR for “thing”
classes (PQTh). We hypothesize that matching instances with boxes is more reliable than masks,
which suggests there is room for improvement. Note, for a fair comparison with DETR, we add 6
additional Transformer encoders (6 Enc) after the ResNet [21] backbones.

method backbone PQ PQTh PQSt SQ RQ

DETR [3]
R50 + 6 Enc

43.4 48.2 36.3 79.3 53.8
MaskFormer (ours) 44.3 48.0 (-0.2) 38.7 (+2.4) 80.3 54.1
DETR [3]

R101 + 6 Enc
45.1 50.5 37.0 79.9 55.5

MaskFormer (ours) 45.7 49.7 (-0.8) 39.8 (+2.8) 80.6 55.6

Panoptic segmentation. In Table 3, we compare the same exact MaskFormer model with DETR [3]289

on the COCO panoptic dataset. For a fair comparison, we add 6 additional Transformer encoder290

layers after the CNN backbone. Unlike DETR, our model does not predict bounding boxes but instead291

predicts masks directly. The overall performance of our model is similar to DETR. Interestingly,292

we observe a large improvement in PQSt compared to DETR. This suggests that detecting “stuff”293

with bounding boxes is suboptimal, and therefore, box-based segmentation models (e.g., Mask294

R-CNN [20]) do no suit semantic segmentation. In contrast, we find that MaskFormer slightly lags295

behind DETR in terms of PQTh. This observation indicates that instance-level segmentation benefits296

from either predicting boxes or using them during matching, suggesting a room for improvement in297

the matching process or the mask loss used in MaskFormer.298

We further evaluate our model on the panoptic segmentation version of ADE20K dataset. Our model299

is competitive to state-of-the-art methods and we refer to the supplementary for detailed results.300

4.4 Ablation studies301

We perform a series of ablation studies of MaskFormer for semantic segmentation using a single302

ResNet-50 backbone [21]. As the standard mIoU metric is computed per-pixel at a dataset level, it303

neither rewards a model for correctly recognizing small segments nor penalizes it for small false304

positive predictions. Thus, in addition to mIoU, we compute a complementary PQSt metric by treating305

every category as “stuff.” This metric is computed per-segment and treats all segments equally,306

irrespective of their size, allowing to evaluate recognition quality of semantic segmentation methods.307

Per-pixel vs. mask classification. In Table 4, we verify that the gains demonstrated by MaskFromer308

come from shifting the paradigm to mask classification. We start by comparing PerPixelBaseline+309

and MaskFormer. The models are very similar and there are only 3 differences: 1) per-pixel vs.310

mask classification used by the models, 2) MaskFormer uses bipartite matching, and 3) the new311

model uses a combination of focal and dice losses as a mask loss, whereas PerPixelBaseline+312

utilizes per-pixel cross entropy loss. First, we rule out the influence of loss differences by training313

PerPixelBaseline+ with exactly the same losses and observing no improvement. Next, in Table 4a, we314

compare PerPixelBaseline+ with MaskFormer trained using a fixed matching (MaskFormer-fixed),315

i.e., matching mask prediction to ground truth segments by category index identically to per-pixel316

8



Table 4: Per-pixel vs. mask classification for semantic segmentation. All models use 150 queries
for a fair comparison. We evaluate the models on ADE20K val with 150 categories. 4a: PerPixel-
Baseline+ and MaskFormer-fixed use similar fixed matching (i.e., matching by category index), this
result confirms that the shift from per-pixel to masks classification is the key. 4a: bipartite matching
is not only more flexible (can make less prediction than total class count) but also gives better results.

(a) Per-pixel vs. mask classification.
mIoU PQSt

PerPixelBaseline+ 41.9 28.3
MaskFormer-fixed 43.7 (+1.8) 30.3 (+2.0)

(b) Fixed vs. bipartite matching assignment.
mIoU PQSt

MaskFormer-fixed 43.7 30.3
MaskFormer-bipartite (ours) 44.2 (+0.5) 33.4 (+3.1)

Table 5: Inference strategies for semantic segmentation. general: general inference (Section 3.4)
which first filters low-confidence masks (using a threshold of 0.3) and assigns labels to remaining
ones. probabilistic: the proposed probabilistic inference (Section 3.4). + iterative: our iterative
probabilistic inference removes masks whose contribution to the final segmentation is less than 30%
of its mask area. Probabilistic inference has a clear advantage over general inference in terms of mIoU.
However, general inference has higher PQ due to better recognition quality (RQ). Iterative inference
reduces the number of false positives by removing overlapping masks from the final prediction.

ADE20K (150 classes) COCO-Stuff (171 classes) ADE20K-Full (847 classes)
inference mIoU PQSt SQSt RQSt mIoU PQSt SQSt RQSt mIoU PQSt SQSt RQSt

PerPixelBaseline+ 41.9 28.3 71.9 36.2 34.2 24.6 62.6 31.2 13.9 9.0 24.5 12.0
general 42.4 34.2 74.4 43.5 35.5 29.7 66.3 37.0 15.1 11.6 28.3 15.3
probabilistic 44.4 33.4 75.4 42.4 37.1 28.9 66.3 35.9 16.0 11.9 28.6 15.7
+ iterative 44.7 36.6 75.3 46.5 37.3 31.3 66.5 38.9 15.8 13.0 28.7 17.0

cross entropy loss. We observe that MaskFormer-fixed is 1.8 mIoU better than the baseline, suggesting317

that shifting from per-pixel classification to mask classification is indeed the main reason for the318

gains of MaskFormer. In Table 4b, we further compare MaskFormer-fixed with MaskFormer trained319

with bipartite matching (MaskFormer-bipartite) and find bipartite matching is not only more flexible320

(allowing to predict less masks than the total number of categories) but also gives better results.321

Number of queries. In the supplementary material we report the impact of the number of predictions322

for mask classification. We observe the model that predicts N = 100 masks consistently performs the323

best across datasets with different numbers of classes, suggesting that N is a stable hyper-parameter.324

Inference strategies for semantic segmentation. In Table 5, we ablate inference strategies for mask325

classification-based models performing semantic segmentation (discussed in Section 3.4). We start326

with the general inference strategy which first filters out low-confidence masks (a threshold of 0.3327

is used) and assigns the class labels to remaining masks. We observe 1) general inference is only328

slightly better than the PerPixelBaseline+ in terms of the mIoU metric, and 2) on multiple datasets the329

general inference strategy performs worse in terms of the mIoU metric than our proposed probabilistic330

inference. However, the general inference has higher PQSt, due to better recognition quality (RQSt).331

We hypothesize that the filtering step removes false positives which increases the RQSt. Motivated332

by this observation, we further propose an iterative probabilistic inference which combines both333

advantages of general and probabilistic inference. Instead of removing masks by confidence scores,334

our iterative inference strategy removes a mask if its contribution to the final semantic segmentation335

output is less than 30% of its mask area. The iterative probabilistic inference improves both mIoU336

and PQSt. However, it slows down inference due to its iterative nature. Thus, by default in this paper,337

we use probabilistic inference that can be done via a simple matrix multiplication.338

5 Conclusion339

The paradigm discrepancy between semantic and instance-level segmentation results in entirely340

different models for each task, hindering development of image segmentation as a whole. We show341

that a simple mask classification model can outperform state-of-the-art per-pixel classification models,342

especially in the presence of large number of categories. Our model also remains competitive for343

panoptic segmentation, without a need to change model architecture, losses or training procedure.344

We hope this unification spurs a joint effort across semantic- and instance-level segmentation.345
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