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Abstract

Maximum-A-Posteriori (MAP) inference is a fun-
damental task in probabilistic inference and be-
lief propagation (BP) is a widely used algorithm
for MAP inference. Though BP has been applied
successfully to many different fields, it offers no
performance guarantee and often performs poorly
on loopy graphs. To improve the performance
on loopy graphs and to scale up to large graphs,
we propose a variational message passing neural
network (V-MPNN), where we leverage both the
power of neural networks in modeling complex
functions and the well-established algorithmic the-
ories on variational belief propagation. Instead of
relying on a hand-crafted variational assumption,
we propose a neural free energy where a general
variational distribution is parameterized through a
neural network. Message passing neural networks
are utilized for the minimization of neural free en-
ergy. Training of MPNNs is thus guided by neural
free energy, without requiring exact MAP configu-
rations as annotations. We empirically demonstrate
the effectiveness of the proposed V-MPNN by com-
paring against both state-of-the-art training-free
methods and training-based methods.

1 INTRODUCTION

Given a probability distribution of a set of random vari-
ables, a Maximum-A-Posteriori (MAP) inference problem
involves identifying the most probable configuration of a
subset of unobserved random variables with observed evi-
dence for the rest of the variables. MAP inference problem
has been studied in different communities, such as discrete
energy minimization [Kappes et al., 2013] where optimiza-
tion solvers are designed to directly solve for the optimal
solution (i.e., the most probable configuration). Solving the

MAP problem exactly is NP-hard, even with binary vari-
ables [Kolmogorov and Zabin, 2004, Cooper, 1990].

MAP inference on a probabilistic graphical model (PGM)
is a fundamental task in probabilistic inference, where the
joint probability distribution of a set of random variables is
captured by a PGM. Different probabilistic inference algo-
rithms have been proposed leveraging underlying structures
of graphs, with belief propagation (BP) via message pass-
ing [Murphy et al., 2013] being a popular and widely used
one. Besides, for efficient approximate inference, variational
methods have been widely considered whereby probabilis-
tic inference is reformulated as an optimization problem.
Variational assumptions are introduced over variational dis-
tributions such as mean field assumption [Barabási et al.,
1999] and Bethe assumption [Yedidia et al., 2001a]. Under
mean field assumption, a variational distribution can be fully
factorized which in general does not hold on an arbitrary
graph. Bethe assumption is relaxed and is true on loop-free
graphs. Variational BP is to perform variational inference
through message passing and is theoretically grounded on
the well-established connection between BP and Bethe free
energy [Tatikonda and Jordan, 2002, Yedidia et al., 2003,
2000, 2001a, Heskes, 2004]. Variational BP under Bethe
assumption is exact on loop-free graphs, but its performance
on an arbitrary loopy graph remains inaccurate without per-
formance guarantee [Cannings et al., 1976, Shenoy and
Shafer, 2008]. Different works based on variational BP have
been proposed to improve the performance on loopy graphs,
all of which rely on specific variational assumptions, result-
ing in specific families of variational distributions.

In this work, we propose a variational message passing
neural network (V-MPNN) for improved MAP inference
performance on loopy graphs. V-MPNN leverages both the
power of neural networks in modeling complex functions
and the well-established algorithmic theories on variational
BP. In particular, a neural free energy is proposed where vari-
ational distribution is parameterized via a neural network.
An optimal variational condition is explored during train-
ing. Minimization of neural free energy is achieved through
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message passing neural networks (MPNNs), which perform
probabilistic inference through message passing. The train-
ing of V-MPNN is guided by neural free energy, different
from existing neural-network-based inference methods that
require exact inference results as annotations. Without re-
quiring labeled training data, our proposed V-MPNN is data
efficient. More importantly, our model can scale up to large
graphs where exact inference results are unobtainable.

2 RELATED WORKS

MAP inference. MAP inference can be directly solved
as an integer optimization problem [Wu et al., 2020] or
can be relaxed to be a linear optimization problem (LP).
With the constraints on marginals enforcing global consis-
tency, i.e., marginal polytope, exact MAP inference can
be achieved under LP relaxation [Wainwright and Jordan,
2008]. Marginal polytope is in general intractable. Instead,
constraints enforcing local consistency (e.g., pairwise con-
sistency) are considered, that is, local polytope [Sherali and
Adams, 1990]. Local polytope yields pseudo-marginals that
are local consistent but is not guaranteed to be exact. Un-
fortunately, MAP inference under LP relaxation with local
polytope remains computational prohibitive, particularly on
large graphs [Yanover et al., 2006].

Variational BP for MAP inference. Variational BP is to
perform variational inference through message passing. Vari-
ational BP is based on the connection between BP and Bethe
free energy [Yedidia et al., 2001b]. Since Bethe free energy
can exactly capture only loop-free graphs, BP is guaranteed
to be exact on loop-free graphs and is only an approxi-
mate inference on loopy graphs. Different techniques have
been proposed to improve the performance of BP on loopy
graphs, including initialization strategies [Koehler, 2019,
Knoll et al., 2018], message update scheduling [Elidan et al.,
2012, Knoll et al., 2015, Aksenov et al., 2020] and damp-
ing [Murphy et al., 2013, Pretti, 2005]. In addition to these
practical techniques, more sophisticated hand-crafted varia-
tional distributions are proposed, leading to different vari-
ational BP algorithms [Hazan and Shashua, 2010, Riegler
et al., 2012]. For example, max-product tree-reweighted
message passing (TRW-MP) [Wainwright et al., 2005a] de-
composed the original joint distribution into a convex com-
bination of tree-structured distributions. A tree-reweighted
variational free energy is correspondingly derived. TRW-MP
is guaranteed to produce exact MAP configurations under a
certain condition but it suffers from convergence issues.

Existing studies show that the entropy term within a vari-
ational free energy heavily affects the algorithm perfor-
mance [Ravikumar et al., 2010, Meshi et al., 2012, Lee
et al., 2020, Savchynskyy et al., 2011, Hazan and Shashua,
2012]. More specifically, when the entropy is concave and
the variational free energy is thus convex, a class of message
passing algorithms is obtained with convergence guaran-

tee [Savchynskyy et al., 2011, 2012, Hazan and Shashua,
2012, Weiss et al., 2012, Meshi et al., 2015]. MAP inference
error bound with convex free energy can also be derived. In
this work, we propose to further reduce the MAP inference
error bound by leveraging neural networks.

Neural networks for probabilistic inference. Neural net-
works have been considered for probabilistic inference tasks.
Yoon et al. [2019] empirically demonstrated the usage of
MPNN [Gilmer et al., 2017] for probabilistic inference,
including MAP inference and marginal inference. The ar-
chitecture of MPNNs follows a message passing scheme.
Messages and beliefs are parameterized by neural networks
and are learned from observed probabilistic graphs anno-
tated with corresponding exact inference results. Though
inspired by belief propagation, MPNN is solely learned from
data. Different works have been proposed along this line,
the majority of which are for marginal inference. Sator-
ras and Welling [2020] proposed to refine messages from
belief propagation via messages learned in MPNN. Kuck
et al. [2020] proposed a belief propagation neural network
(BPNN) where beliefs are regularized by minimizing a
Bethe free energy. Zhang et al. [2019] proposed a factor
graph neural network (FGNN) that can perform MAP in-
ference. FGNN is proved to be equivalent to BP and thus
can perform well only when ordinary BP does well. Hence,
FGNN does not explicitly address the poor inference perfor-
mance issue of BP on loopy graphs. All the neural-network-
based methods mentioned above require either exact MAP
configurations or exact partition functions as annotations
for fully supervised training. As a result, these methods are
limited to small graphs where exact inference results are
obtainable.

3 PROPOSED METHOD

We propose a variational message passing neural network
(V-MPNN) for improving inference performance on loopy
graphs and scaling up to large graphs. V-MPNN leverages
both the power of neural networks in modeling complex
functions and the algorithmic theories on variational BP. We
begin with preliminaries that are necessary for later discus-
sions. We then introduce our proposed V-MPNN. Towards
the end of this section, we summarize the training objectives
of the proposed V-MPNN.

3.1 PRELIMINARIES

In this work, we focus on MAP inference on discrete pair-
wise markov random fields (MRFs). We first define MAP
inference on MRFs and then introduce the variational free
energy. We discuss different families of variational distribu-
tions and introduce the minimization of a variational free
energy through message passing. In the end, we show the
connection between the optimality of minimizing a varia-
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tional free energy and the exactness of MAP inference.

3.1.1 MAP Inference on Markov Random Field

Given a set of N random variables x = {x1, x2, ..., xN} in
discrete space χ = χ1 × χ2 × ...× χM , its joint probabil-
ity distribution is captured by an MRF G = (V, E) where
|χi| = k is the number of possible states of each variable
xi, |V| = N , |E| = M with M being the total number of
edges in the graph. The joint probability distribution of x is
defined as,

p(x) ∝ exp(
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj)) (1)

θ defines probability parameters of the graph G. θi(xi) is the
unary potential of variable xi and θij(xi, xj) is the pairwise
potential of two neighboring variables xi and xj connected
via edge (i, j). Given a graph G and its probability parame-
ters θ, the MAP inference task is formulated as

x∗ = argmax
x∈χ

p(x)

= argmax
x∈χ

∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj)
(2)

3.1.2 Variational Free Energy

Variational method converts a probabilistic inference prob-
lem to an optimziation problem, solving for a variational
distribution by minimizing a variational free energy [Blei
et al., 2017]. Given a target joint distribution p(x), Gibbs
free energy as a function of a variational distribution q(x)
is defined as

G(q) = U(q)− T ◦H(q) (3)

U(q) =
∑

x q(x)E(x) is the averaged energy. H(q) =
−
∑

x q(x) ln q(x) is the entropy. T ◦ is the temperature.
For MAP inference, temperature is specified to be a suf-
ficiently small value ϵ (T ◦ = ϵ). An optimal variational
distribution is obtained as

q∗ = arg min
q∈M(G)

G(q) (4)

Marginal polytope M(G) enforces global consistency as
M(G) = {q : q ≥ 0;

∑
x q(x) = 1}. This constrained opti-

mization is strictly convex and q∗ achieves zero KL diver-
gence w.r.t. the target distribution, that is, KL(q∗||p) = 0.
Exact inference can be performed with q∗. However, mini-
mizing the Gibbs free energy over marginal polytope is in
general computational prohibitive. Variational assumption
is introduced for tractable variational distribution.

On pairwise MRF with the joint distribution defined in Eq. 1,
we have E(x) = −

∑
i∈V θi(xi)−

∑
(i,j)∈E θij(xi, xj) and

the averaged energy is computed as

U(q) = U({qi}, {qij}) =

−
∑
i∈V

∑
xi

qi(xi)θi(xi)−
∑

(i,j)∈E

∑
xi,xj

qij(xi, xj)θij(xi, xj) (5)

The averaged energy becomes a function of local marginals
{qi}i∈V and {qij}(i,j)∈E with qi(xi) =

∑
x\xi

q(x) and
qij(xi, xj) =

∑
x\(xi∪xj)

q(x). We thus assume a varia-
tional distribution q(x) is a function of {qi(xi)}i∈V and
{qij(xi, xj)}(i,j)∈E , referred to as pairwise assumption.
Pairwise assumption is widely used on pairwise MRF and
there exist various families of variational distributions under
pairwise assumption as introduced below.

Families of variational distributions. Belief propagation
(BP) [Murphy et al., 2013] and TRW-MP [Wainwright et al.,
2005a] are the two most representative families of varia-
tional distributions under pairwise assumption. In BP, the
family of variational distribution is defined as:

qBP(x) =
∏
i∈V

qi(xi)
∏

(i,j)∈E

qij(xi, xj)

qi(xi)qj(xj)
(6)

Correspondingly, we obtain a variational free energy (i.e,
Bethe free energy):

GBP({qi}, {qij}) =

U({qi}, {qij})− ϵ(
∑
i∈V

(1− |N (i)|)H(qi) +
∑

(i,j)∈E

H(qi, qj)) (7)

N (i) denotes the set of neighboring nodes of i-th
node. H(qi) = −

∑
xi
qi(xi) ln qi(xi). H(qi, qj) =

−
∑

xi,xj
qij(xi, xj) ln qij(xi, xj). In TRW-MP, a convex

combination of tree-structured distributions via spanning
trees is employed for approximating probability distribution.
The family of variational distribution is defined as

qTRW-MP(x) =
∏
i∈V

qi(xi)
∏

(i,j)∈E

(
qij(xi, xj)

qi(xi)qj(xj)
)ρij

(8)

which is closely related to BP but differs in terms of an
edge appearance probability ρij ∈ (0, 1]. Edge appearance
probability ρij measures the probability of an edge (i, j) in
a graph G being present in a randomly chosen spanning tree.
A variational free energy is correspondingly obtained as

GTRW-MP({qi}, {qij}) =

U({qi}, {qij})− ϵ(
∑
i∈V

(1−
∑

j∈N (i)

ρij)H(qi) +
∑

(i,j)∈E

ρijH(qi, qj)) (9)

TRW-MP is guaranteed to perform exact MAP inference
under a certain post-checking condition [Wainwright et al.,
2005a,b]. In summary, under the pairwise assumption, a
variational free energy is of a general form:

Gpairwise({qi}, {qij}) =

U({qi}, {qij})− ϵ(
∑
i∈V

ciH(qi) +
∑

(i,j)∈E

cijH(qi, qj)) (10)
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Each of the variational BP algorithms (e.g., BP and TRW-
MP) is specific to a family of variational distributions, lead-
ing to an entropy approximation (i.e., a set of ci and cij in
Eq. 10). The performance of a variational BP algorithm is
hence limited by the corresponding variational assumption.
Differently, we propose to leverage the power of a neural
network to automatically explore the optimal variational
distribution family under the pairwise assumption.

Minimization of a variational free energy. Given a vari-
ational free energy in Eq. 10, the optimal solution set
{q∗i , q∗ij}i∈V,(i,j)∈E is obtained as:

{q∗i , q∗ij} = arg min
{qi,qij}∈L(G)

Gpairwise({qi}, {qij}) (11)

with the local polytope constraint set L(G) = {{qi, qij} :
qi ≥ 0; qij ≥ 0;

∑
xi
qi(xi) = 1, ∀i ∈ V; qi(xi) =∑

xj
qij(xi, xj), ∀(i, j) ∈ E}. This constrained optimiza-

tion is in general not convex. Its convexity depends on the
concavity of the entropy term, which varies with differ-
ent variational distribution families. Solving for optimal
solution can be implemented through message passing. Af-
ter convergence, fixed-point solutions are guaranteed to
be local optimal in minimizing Gpairwise. However, a vari-
ational gap usually exists between q∗ and the target dis-
tribution p (i.e., KL(q∗||p) > 0), where q∗ is computed
from {q∗i , q∗ij}i∈V,(i,j)∈E . MAP inference is performed as
x∗
i = argmaxxi

q∗i (xi). MAP inference is exact if there
does not exist a variational gap. Otherwise, the inference
remains approximate and is prone to errors.

3.2 VARIATIONAL MESSAGE PASSING NEURAL
NETWORK

We now introduce the proposed variational message pass-
ing neural network (V-MPNN). We first introduce the pro-
posed convex neural free energy whereby we parameterize
variational distribution families via a neural network. The
proposed neural free energy is provable convex. The min-
imal MAP inference error with the proposed neural free
energy is upper bounded by an optimal entropy approxima-
tion. We then introduce the minimization of the proposed
convex neural free energy through message passing neu-
ral networks (MPNNs). MPNNs perform inference through
message passing with beliefs and messages parameterized
via neural network parameters. In the end, we summarize
the training objectives together with training procedures.
The overview of V-MPNN is shown in Figure 1.

3.2.1 Convex Neural Free Energy

Under the pairwise assumption, we introduce the proposed
neural free energy Gneural, where we parameterize varia-
tional distribution families through neural network param-
eters Φ. Such parameterization is implicitly achieved via a

neural-network-parameterized entropy approximation:

Gneural(q
node, qedge; Φ)

= U(qnode, qedge)− ϵH(qnode, qedge; Φ)
(12)

with input tensors qnode = {qi}i∈V ∈ RN×k and qedge =

{qij}(i,j)∈E ∈ RM×k2

. The calculation of U(qnode, qedge)
directly follows the definition of the averaged energy and
requires no free parameters to be learned. Neural-network-
parameterized entropy approximation is realized through a
neural network with three sets of free parameters ϕnode ∈
R1×N , ϕedge ∈ R1×M , ϕ∆ ∈ RN×N . In particular, a
row-wise entropy calculation w.r.t. each input tensor is
firstly performed, producing intermediate values: hnode =
{H(qi)}i∈V ∈ RN×1 and hedge = {H(qi, qj)}(i,j)∈E ∈
RM×1. The approximate entropy is then computed as

H(qnode, qedge; Φ) = ϕnodehnode+

exp(ϕedge)hedge + sum(ReLU(ϕ∆)⊙∆h)
(13)

where ∆h ∈ RN×N with ∆h(i, j) = H(qi, qj) − H(qi)
if (i, j) ∈ E . Otherwise, ∆h(i, j) = 0. ⊙ denotes
element-wise product. Neural network parameters Φ =
{ϕnode,ϕedge,ϕ∆} are unknown and are to be learned. We
theoretically prove the convexity of the proposed neural free
energy and the minimal MAP inference error bound through
the following propositions.

Proposition 1. Neural free energy Gneural is provable con-
vex with a strictly concave neural-network-parameterized
entropy approximation H(qnode, qedge; Φ).

Proof: We prove this proposition by showing the neural-
network-parameterized entropy approximation is strictly
concave. We first introduce the definition of concave entropy
approximation [Heskes, 2004, Weiss et al., 2012]:

Definition (Concave Entropy Approximation). An ap-
proximate entropy of Eq. 10 is strictly concave over local
polytope L(G) if there exist ĉij > 0, α̂ij ≥ 0 and ĉi such
that ci = ĉi +

∑
j∈N (i) α̂ij and cij = ĉij −

∑
j∈N (i) α̂ij .

The approximate entropy becomes

H({qi}, {qij}) =
∑
i∈V

ĉiH(qi)+∑
(i,j)∈E

ĉijH(qi, qj) +
∑
i∈V

∑
j∈N (i)

α̂ij(H(qi, qj)−H(qi))
(14)

With any set of parameters ĉij > 0, α̂ij ≥ 0 and ĉi, the
approximate entropy of Eq. 14 is strictly concave. Tensor
operation defined in neural free energy (Eq. 13) is equiv-
alent to Eq. 14, with ϕnode, ϕedge and ϕ∆ correspond-
ing to {ĉi}i∈V , {ĉij}(i,j)∈E and {α̂ij}i∈V,j∈N (i), respec-
tively. exp(·) ensures the satisfaction of the constraint
ĉij > 0. ReLU(·) ensures the satisfaction of the constraint
α̂ij ≥ 0. By definition of concave entropy approximation,
the neural-network-parameterized entropy approximation
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Figure 1: Overview of the proposed variational message passing neural network (V-MPNN)

H(qnode, qedge; Φ) is strictly concave. The neural free en-
ergy Gneural is thus convex over local polytope L(G).

We now show the minimal MAP inference error with the
proposed neural free energy is upper bounded by an optimal
entropy approximation. We first define the MAP inference
error and then present the proposition with its proof. Let
q∗
Φ denote the optimal solution set {q∗Φ,i, q

∗
Φ,ij}i∈V,(i,j)∈E

minimizing the neural free energy Gneural parameterized
by Φ. Given a target probability distribution p, the MAP
inference error ∆map(q

∗
Φ, p) is defined as

∆map(q
∗
Φ, p) =

∑
i∈V

∑
xi

(pi(xi)− q∗Φ,i(xi))θi(xi)

+
∑

(i,j)∈E

∑
xi,xj

(pij(xi, xj)− q∗Φ,ij(xi, xj))θij(xi, xj)
(15)

with pi =
∑

x\xi
p(x) and pij =

∑
x\(xi∪xj)

p(x). By
definition, ∆map(q

∗
Φ, p) ≥ 0 [Hazan and Shashua, 2010].

Proposition 2. MAP inference error is upper bounded by
an entropy approximation scaled by ϵ, i.e.,

∆map(q
∗
Φ, p) ≤ ϵH(q∗

Φ; Φ) (16)

The minimal MAP inference error is hence upper bounded
by an optimal entropy approximation with Φ∗ =
argminΦ H(q∗

Φ; Φ).

Proof: Given the optimal solution set q∗
Φ minimizing the

neural free energy Gneural parameterized by Φ, we have

Gneural({q∗Φ,i}, {q∗Φ,ij}; Φ) ≤ Gneural({pi}, {pij}; Φ) (17)

By reorganizing the above equation, we have

∆map(q
∗
Φ, p) ≤ ϵ(H(q∗

Φ; Φ)−H({pi}, {pij}; Φ)) (18)

Given the fact that H({pi}, {pij}) ≥ 0, we can have

∆map(q
∗
Φ, p) ≤ ϵH(q∗

Φ; Φ) (19)

With an optimal set of neural network parameters Φ∗ =
argminΦ H(q∗

Φ; Φ), the error bound becomes

∆map(q
∗
Φ∗ , p) ≤ ϵH(q∗

Φ∗ ; Φ∗) (20)

We thus show that the minimal MAP inference error is upper
bounded by an optimal entropy approximation. In the end,
we provide a brief comparison between the proposed neural
free energy and existing variational BP algorithms:

Proposition 3. Neural free energy subsumes existing vari-
ational distribution families (e.g., BP and TRW-MP) as
a strict generalization. The optimal MAP inference per-
formance achieved with neural free energy is superior or
comparable to existing variational distribution families, i.e.,
∆map(q

∗
Φ∗ , p) ≤ ∆map(q

∗
Φfix , p)

Proof: By manipulating neural network parameters, different
existing variational distribution families can be realized
with neural free energy. For example, neural free energy
with Φ specified as ϕnode = 1 − |N (i)|, ϕedge = 1 and
ϕ∆ = 0 is equivalent to BP. Furthermore, given the fact that
q∗
Φ∗ = argminq Gneural(q; Φ

∗), we have

U(q∗
Φ∗)− ϵH(q∗

Φ∗ ; Φ∗) ≤ U(q∗
Φfix)− ϵH(q∗

Φfix ; Φ
∗) (21)

with q∗
Φfix denotes the optimal variational distribution mini-

mizing neural free energy specified with fixed parameters
Φfix. By subtracting U({pi}, {pij}) on both sides of Eq. 21
and a re-organization, we have

∆map(q
∗
Φ∗ , p) ≤∆map(q

∗
Φfix , p) + ϵ∆ (22)

with ∆ = H(q∗
Φ∗ ; Φ∗)−H(q∗

Φfix ; Φ
∗). If ∆ ≤ 0, it is clear

that ∆map(q
∗
Φ∗ , p) ≤ ∆map(q

∗
Φfix , p). If ∆ > 0, we can
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have ∆map(q
∗
Φ∗ , p) ≤ ∆map(q

∗
Φfix , p) with a sufficiently

small coefficient (ϵ → 0). Theoretically, we show that the
optimal MAP inference performance achieved with neural
free energy is superior or comparable to existing variational
distribution families.

3.2.2 Minimization of Neural Free Energy with
MPNNs

To minimize the neural free energy, we employ MPNNs. In
particular, qnode = {qi}i∈V and qedge = {qij}(i,j)∈E are
parameterized by two respective deep models: node-MPNN
and edge-MPNN, leading to qnode(Ψn) and qedge(Ψe), re-
spectively. Both node-MPNN and edge-MPNN are con-
structed from MPNNs. The difference lies in the mapping
from MRF to MPNN: each node in node-MPNN maps to a
variable in MRF, while each node in edge-MPNN maps to
an edge in MRF. We detail two modules in the following.

Node-MPNN. We map each node in node-MPNN to a vari-
able in MRF with hidden feature hi ∈ Rk. k is the number
of possible states of variable xi. In total, we have node fea-
tures h = {h1,h2, ...,hN} and N is the total number of
nodes. At every iteration t, each node receives a message
from each of its neighboring nodes vj as

mt+1
j→i = M(ht

i,h
t
j) (23)

M is a message function realized via a multi-layer per-
ceptron (MLP). The messages are then aggregated through
summation, i.e., mt+1

i =
∑

j∈N (i) m
t+1
j→i. Each node then

updates its hidden state with the aggregated message:

ht+1
i = U(ht

i,m
t+1
i ) (24)

U is a node update function realized through a gated re-
current unit (GRU). The update process is repeated until
convergence. Estimated marginal probability of variable xi

(i.e., qi) is obtained as

qi = σ(R(h
(T )
i )) (25)

where h(T )
i is the hidden feature from the last iteration. R is

a readout function realized through a MLP and σ(x) refers
to a softmax function. Free parameters Ψn of node-MPNN
include parameters within its message function M, node
update function U , and readout function R.

Edge-MPNN. In edge-MPNN, each node is mapped to an
edge in MRF with hidden feature h′

i ∈ Rk2

. In total, we
have node features h′ = {h′

1,h
′
2, ...,h

′
M} and M is the

total number of edges in MRF. The same iterative update
process is employed as used in node-MPNN. After the con-
vergence, estimated pairwise marginal qij is obtained given
hidden feature from the last iteration. Free parameters Ψe of
edge-MPNN include parameters within its message function
M, node update function U , and readout function R.

3.2.3 Training Objectives

In summary, we have two sets of parameters to be learned:
Φ and Ψ = {Ψn,Ψe}. The total training objective is based
on neural free energy, i.e.,

min
Ψ

max
Φ

Gneural(q
node(Ψn), q

edge(Ψe); Φ) (26)

under the local polytope constraint L(G). To effectively
perform the training with the neural free energy, we consider
a two-phase alternative update. For each iteration r, we first
update Ψ = {Ψn,Ψe} given the neural free energy specified
with current Φr, i.e.,

Ψr+1
n ,Ψr+1

e = arg min
Ψn,Ψe

Gneural(q
node(Ψn), q

edge(Ψe); Φ)

s.t.
∑
xj

qij(xi, xj ; Ψe) = qi(xi; Ψn) (i, j) ∈ E (27)

Since the rest of the constraints within local polytope L(G)
are naturally satisfied through a softmax function applied
to the output of MPNNs, only the pairwise consistency
constraint is required as suggested in the above equation.
We then update Φ. By definition of Gneural in Eq. 12, we have
maxΦ Gneural(Φ) = minΦ H(Φ). Following Proposition 2,
the Φ is updated toward the direction of minimizing its
corresponding MAP inference error bound, i.e.,

Φr+1 = argmin
Φ

H(qnode(Ψr+1
n ), qedge(Ψr+1

e ); Φ) (28)

We update two sets of parameters alternatively until con-
vergence. After training, only node-MPNN is required
for MAP inference. MAP configuration is obtained via
x∗
i = argmaxxi∈χi

qi(xi; Ψ
∗
n).

4 EXPERIMENTS

Datasets. We consider 13 classic graphs for evaluation –
these are the most representative graphs of real world mod-
els, and are employed widely in related works [Yoon et al.,
2019]. Their structures are illustrated in Figure 2. There
are three loop-free graphs, i.e., STAR, TREE and PATH. The
other 10 graphs are loopy graphs, with the COMPLETE graph
being the most complex one. To simulate graphical models
with different parameters, we randomly sample from uni-
form distributions [Wainwright et al., 2005a]. Particularly,
we assume θi(xi) = bixi and θij(xi, xj) = Jijxixj with
xi = {−1, 1}. Pairwise parameters Jij are sampled from
a uniform distribution, i.e., Jij = Jji ∼ U [−1, 1]. Unary
parameters bi are sampled from a uniform distribution as
bi ∼ U [−0.05, 0.05]. For each type of graph, we simulate
1000 graphs for training and 100 graphs for testing. GT
MAP configuration of each simulated graph is computed by
enumeration. Since enumeration is a computationally expen-
sive process, we limit the sizes of the graphs. Particularly,
we consider two graph sizes: N=9 and N=15.
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Figure 2: Structures of 13 classic graphs with 9 nodes. Graphs on the first row from left to right are: STAR, TREE, PATH,
CIRCLE, LADDER, 2D GRID, CIRCULAR LADDER; graphs on the second row from left to right are: BARBELL, LOLLIPOP,
WHEEL, BIPARTITE, TRIPARTITE, COMPLETE

Evaluation metrics. We employ the accuracy of estimated
MAP configuration as the evaluation metric [Yoon et al.,
2019]. Given a GT MAP configuration x∗ = {x∗

1, ..., x
∗
N},

and an estimated MAP configuration x̂ = {x̂1, ..., x̂N},
the accuracy of x̂ is calculated as #(x∗

i =x̂i)
N . We report the

averaged accuracy over testing graphs.

Experiment settings. ADAM optimizer is employed for
training with a learning rate 1e− 3. In Eq 12, ϵ = 0.0001.
In Eq. 27, pairwise consistency constraints are absorbed
into the training objective through Lagrangian multipli-
ers with values 0.1. Hidden features in MPNNs are of di-
mension 64. Messages propagate for T = 10 iterations.
Both node-MPNN and edge-MPNN are pre-trained with
exact marginals {pi}i∈V and {pij}(i,j)∈E that are obtained
through enumeration.

4.1 COMPARISON TO STATE-OF-THE-ART
METHODS

We compare the proposed V-MPNN to different state-of-the-
art methods for approximate MAP inference. Specifically,
we consider both training-free methods and training-based
methods for comparison. Training-free methods refer to op-
timization algorithms that do not contain neural network
components and thus require no training procedure, such
as the belief propagation algorithm. In this work, we limit
our comparisons to message-passing-based optimization ap-
proaches. Training-based methods refer to neural-network-
based methods for probabilistic inference tasks.

4.1.1 Comparison to Training-free Methods

We consider three training-free methods: BP [Murphy et al.,
2013], TRW-MP [Wainwright et al., 2005a] and max prod-
uct linear programming (MPLP) [Globerson and Jaakkola,
2007]. For all these three methods, we apply the same
stopping criterion: if the maximum number of iteration t
is larger than 200 or the averaged difference between be-
liefs from two consecutive iterations is sufficiently small,

i.e., 1
N

∑N
i=1 |b

t+1
i − bti|2 < 1e − 7, we break the algo-

rithm and obtain the estimated inference results1. Follow-
ing [Wainwright et al., 2005a], for both BP and TRW-MP,
we apply message damping in log-space with damping pa-
rameter set to be 0.5. The edge appearance probability in
TRW-MP is set as ρij =

|V|−1
|E| .

Results are presented in Table 1. As shown, we can see
that V-MPNN achieves the best average accuracy with both
sizes of graphs. On each type of graph, V-MPNN achieves
overall better performance than the other three baselines.
On loopy graphs, though the performance of all the algo-
rithms decreases as the complexity of the graph increases,
V-MPNN achieves better accuracy compared to the other
three baselines. On COMPLETE with 15 nodes, V-MPNN
achieves 78% accuracy, which is 24% higher than the ac-
curacy achieved by TRW-BP. On loop-free graphs, such as
STAR, TREE, and PATH, BP is guaranteed to produce the
exact MAP configuration, and thus always achieves 100%
accuracy. Though the proposed V-MPNN is theoretically
shown to be a strict generalization of BP, training of MPNNs
is not guaranteed to find the global optimal, leading to MAP
inference errors.

4.1.2 Comparison to Training-based Methods

We compare the proposed V-MPNN to a training-based
method: node-GNN [Yoon et al., 2019] for MAP inference.
Node-GNN2 is the state-of-the-art method that employs neu-
ral networks for probabilistic inference tasks. We employ
the suggested hyper-parameter settings stated in the paper
to perform the experiments. Results are presented in Ta-
ble 2. C-LADDER denotes CIRCULAR LADDER. As shown,
V-MPNN achieves significant better average accuracy with
both sizes of graphs without requiring exact MAP configura-
tions for training. On each type of graph, V-MPNN achieves
overall better performance than Node-GNN. On STAR with

1The maximum number of iterations is set to be 200 because
the number of converging runs stops changing after 200

2https://github.com/ks-korovina/pgm_graph_inference.
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Table 1: Comparison to training-free methods

Graph N=9 N=15
BP TRW-BP MPLP V-MPNN BP TRW-BP MPLP V-MPNN

STAR 1.0 .99 1.0 .83 1.0 1.0 1.0 .84
TREE 1.0 .99 1.0 .86 1.0 1.0 1.0 .76
PATH 1.0 1.0 1.0 .86 1.0 1.0 1.0 .73

CYCLE .91 .76 .90 .80 .84 .84 .89 .78
LADDER .68 .66 .72 .77 .63 .61 .67 .72
2D GRID .57 .48 .74 .79 .56 .50 .63 .78

CIRCULAR LADDER .62 .50 .76 .78 .61 .53 .63 .75
BARBELL .57 .55 .67 .74 .60 .57 .64 .72
LOLLIPOP .59 .60 .61 .81 .62 .55 .58 .72

WHEEL .56 .44 .62 .78 .58 .50 .62 .69
BIPARTITE .54 .52 .62 .79 .62 .56 .55 .75

TRIPARTITE .57 .62 .52 .77 .52 .55 .51 .75
COMPLETE .56 .60 .49 .78 .54 .54 .53 .78

MEAN .71 .67 .73 .80 .70 .67 .69 .75

Table 2: Comparison to training-based method

Graph N=9 N=15
Node-GNN V-MPNN Node-GNN V-MPNN

STAR .65 .83 .52 .84
TREE .77 .86 .75 .76
PATH .81 .86 .73 .73

CYCLE .79 .80 .75 .78
LADDER .72 .77 .69 .72
2D GRID .72 .79 .74 .78

C-LADDER .81 .78 .71 .75
BARBELL .72 .74 .71 .72
LOLLIPOP .72 .81 .69 .72

WHEEL .68 .78 .70 .69
BIPARTITE .75 .80 .74 .75

TRIPARTITE .73 .78 .72 .75
COMPLETE .82 .78 .70 .78

MEAN .75 .80 .70 .75

15 nodes, V-MPNN achieves 84% accuracy, which is 32%
higher than the accuracy achieved by Node-GNN. These
results show that, under the guidance of well-established al-
gorithmic knowledge, the proposed V-MPNN can be trained
to achieve outstanding performance, without requiring exact
MAP configurations as annotations.

4.2 ABLATION STUDY

In our experiments, both node-MPNN and edge-MPNN are
pre-trained with exact marginals {pi}i∈V and {pij}(i,j)∈E .
The pre-training is mainly employed for the acceleration of
training. To better analyze the influence of pre-training on
MAP inference performance of V-MPNN, we perform an
ablation study. Particularly, we compare the performance
of V-MPNN with and without pre-training on 13 classic
graphs with 9 nodes. As shown in Table 3, V-MPNN with-
out pre-training achieves comparable average performance
compared to V-MPNN with pre-training. On BARBELL,
LOLLOPOP, WHEEL and TRIPARTITE, V-MPNN without

pre-trianing achieves the same accuracy compared to V-
MPNN with pre-trianing. From the results, we can see that
pre-training introduces little effect on the inference perfor-
mance of V-MPNN.

Table 3: Effectiveness of pre-training (N=9)

Graph w/o pre-training w pre-training
STAR .82 .83
TREE .85 .86
PATH .83 .86

CYCLE .81 .80
LADDER .78 .77
2D GRID .78 .79

CIRCULAR LADDER .77 .78
BARBELL .74 .74
LOLLIPOP .81 .81

WHEEL .78 .78
BIPARTITE .77 .80

TRIPARTITE .78 .78
COMPLETE .77 .78

MEAN .79 .80

5 CONCLUSION

In this work, we proposed a variational message passing
neural network for MAP inference. Instead of relying on
a specific family of variational distributions, we proposed
a neural free energy where variational assumptions are pa-
rameterized via a neural network. An optimal family of
variational distributions is learned through training. MPNNs
are employed for efficient inference through message pass-
ing. Training of MPNN is performed under the guidance
of neural free energy, without requiring exact MAP config-
urations as annotations. In our experiments, the proposed
V-MPNN outperforms both state-of-the-art training-free and
training-based methods for MAP inference, demonstrating
the effectiveness of the proposed method.
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