
Under review as a conference paper at ICLR 2018

WORD MOVER’S EMBEDDING:
FROM WORD2VEC TO DOCUMENT EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning effective text representations is a key foundation for numerous machine
learning and NLP applications. While the celebrated Word2Vec technique yields
semantically rich word representations, it is less clear whether sentence or docu-
ment representations should be built upon word representations or from scratch.
Recent work has demonstrated that a distance measure between documents called
Word Mover’s Distance (WMD) that aligns semantically similar words, yields
unprecedented KNN classification accuracy. However, WMD is very expensive to
compute, and is harder to apply beyond simple KNN than feature embeddings. In
this paper, we propose the Word Mover’s Embedding (WME), a novel approach
to building an unsupervised document (sentence) embedding from pre-trained
word embeddings. Our technique extends the theory of Random Features to show
convergence of the inner product between WMEs to a positive-definite kernel that
can be interpreted as a soft version of (inverse) WMD. The proposed embedding is
more efficient and flexible than WMD in many situations. As an example, WME
with a simple linear classifier reduces the computational cost of WMD-based KNN
from cubic to linear in document length and from quadratic to linear in number of
samples, while simultaneously improving accuracy. In experiments on 9 benchmark
text classification datasets and 22 textual similarity tasks the proposed technique
consistently matches or outperforms state-of-the-art techniques, with significantly
higher accuracy on problems of short length.

1 INTRODUCTION

Text representation plays an important role in many NLP tasks such as document classification and
clustering (Chen, 2017), document retrieval (Le & Mikolov, 2014), machine translation (Mikolov
et al., 2013b), and multi-lingual document matching (Pham et al., 2015). Since there are no explicit
features in text, much work has aimed to develop effective text representations. Among them, the
simplest bag of words (BOW) approach (Salton & Buckley, 1988) and its term frequency variants (e.g.
TF-IDF) (Robertson & Walker, 1994) are most widely used due to simplicity, efficiency and often
surprisingly high accuracy (Wang & Manning, 2012). However, simply treating words and phrases
as discrete symbols fails to take into account word order and semantics of the words, and suffers
from frequent near-orthogonality due to its high dimensional sparse representation. To overcome
these limitations, Latent Semantic Indexing (Deerwester et al., 1990) and Latent Dirichlet Allocation
(Blei et al., 2003) were developed to extract more meaningful representations through singular value
decomposition (Wu & Stathopoulos, 2015) and learning a probabilistic BOW clustering. Other work
learns a suitable representation using Denoising Autoencoders (Chen et al., 2012) for text documents.

Another family of research is use of neural-network language models for learning distributed rep-
resentations of words, phrases, and documents (Bengio et al., 2003; Mikolov et al., 2010; 2013a;c;
Le & Mikolov, 2014; Dai & Le, 2015; Wieting et al., 2015a; Kim et al., 2016; Chen, 2017; Arora
et al., 2017). The celebrated Word2Vec technique (Mikolov et al., 2013a;c) presented two shallow
yet effective models to learn vector representations of words (and phrases) by mapping those of
similar meaning nearby in the embedding vector space. Due to the model’s simplicity and scalability,
high-quality word embeddings can be generated to capture a large number of precise syntactic and
semantic word relationships by training over hundreds of billions of words and millions of named
entities (Mikolov et al., 2013a).

1

Under review as a conference paper at ICLR 2018

Inspired by these successful techniques, a number of researchers recently proposed various methods
for learning a sentence or document representation beyond the lexical level. A simple but often
effective approach is to use a weighted average over some or all of the words in the document. The
advantage of the document representation building on top of word-level embeddings is that one
can make full use of high-quality pre-trained word embeddings obtained from an extremely large
corpus, such as 100-billion words of Google News (Mikolov et al., 2013a). A more sophisticated
approach (Le & Mikolov, 2014; Chen, 2017) is to jointly learn embeddings for both words and
paragraphs simultaneously using models similar to Word2Vec, incorporating each document as an
input. However, word order may not be fully captured by a small context window, and the quality of
word embeddings learned in such a model may be limited by the size of the training corpus. These
effects may weaken the quality of the document embeddings.

Recently, Kusner et al. (Kusner et al., 2015) presented a novel document distance metric, Word
Mover’s Distance (WMD), that measures the dissimilarity between two text documents. WMD
computes the minimum amount of distance covered in transforming each word from one document
into the other, where this ground distance is computed as the Euclidean distance of a pair of words in
the Word2Vec embedding space. Despite its state-of-the-art KNN-based classification accuracy over
other methods, combining KNN and WMD incurs very high computational costs. More importantly,
WMD is simply a distance that can be combined with KNN or K-means, whereas many machine
learning algorithms require fixed-length feature representation as input.

In this paper, we present Word Mover’s Embedding (WME), an unsupervised generic framework that
learns continuous vector representations for text of variable lengths such as a sentence, paragraph, or
document. We develop a new approach to constructing a positive-definite (p.d.) kernel called the Word
Mover’s Kernel, and its corresponding feature embedding for documents. The Word Mover’s Kernel
defines an explicit feature map given by a distribution of random documents, which exploits WMD to
find alignments between a set of words represented in a Word2Vec embedding space between text
documents and random documents. In addition, to scale up the proposed kernel we further design the
random features in such a way that the exact kernel value can be approximated by the inner products
of the transformed feature representation. WME is fully parallelizable, and is highly extensible where
its two building blocks, Word2Vec and WMD, can be replaced by other techniques such as GloVe
(Pennington et al., 2014) or S-WMD (Huang et al., 2016).

We summarize our main contributions as follows: (i) We propose a novel alignment-aware text
kernel for unstructured text data where word alignment is important in learning an effective feature
representation. The heart of Word Mover’s Kernel is a new methodology to transform a distance metric
to a p.d. kernel. (ii) We present WME, a random features method for Word Mover’s Kernel to learn
an unsupervised semantic-preserving document embedding based on high-quality word embeddings.
Compared to KNN-based WMD, WME admits an efficient computation which substantially reduces
the total complexity from O(N2L3 log(L)) to O(NRL log(L)) in the number N and length L of
documents. (iii) We give an analysis showing a number R = Ω(1/ε2) of WME suffices for the
convergence to within ε of the precision of the exact kernel. The proposed analysis extends the Monte
Carlo analysis in (Rahimi & Recht, 2007) from a shift-invariant kernel of fixed-dimensional vectors
to a text kernel of documents including a set of word vectors of variable length without shift-invariant.
(iv) We evaluate WME on 9 real-world text classification tasks and 22 textual similarity tasks, and
demonstrate that it consistently matches or outperforms other state-of-the-art techniques. In particular,
WME often achieves orders of magnitude speed-up compared to KNN-WMD when obtaining the
same testing accuracy.

2 WORD2VEC AND WORD MOVER’S DISTANCE

We briefly introduce Word2Vec and WMD, two important building blocks to our proposed method.
Here are some notations we will use throughout the paper. Given a total number of documents N
with a vocabularyW of size |W| = n, the Word2vec embedding gives us a d-dimensional vector
space V ⊆ Rd such that any word in the vocabulary set w ∈ W is associated with a semantically rich
vector representation vw ∈ Rd. Then in this work, we consider each document as a collection of
word vectors x := (vj)

L
j=1 and denote X :=

⋃Lmax

L=1 VL as the space of documents.

Word2Vec. The current most popular word embedding technique known as Word2Vec was presented
by Mikolov et al. in their seminal papers (Mikolov et al., 2013a;c). There are two well-known model

2

Under review as a conference paper at ICLR 2018

architectures: Continuous Bag-of-Words (CBOW) and Skip-gram models. Both models consist of an
input layer, a projection layer, and an output layer. CBOW model defines the probability of predicting
the current word w in a document x from a window of surrounding context words, and thus the order
of words in the context window does not influence the prediction. In contrast, Skip-gram model
defines the probability of using the current word to predict the words within a window of before
and after the current word. Typically, distant words are less relevant to the current word and thus
get lower weights. To train both models, the word vectors vw are then learned to maximize the
log-likelihood of the conditional probability of predicting the target word at each position. Various
techniques such as hierarchical soft-max, negative sampling, sub-sampling of frequent words were
presented to effectively train an embedding over hundreds of billions of words, which empowers
Word2Vec to capture surprisingly accurate word relationship (Mikolov et al., 2013c).

A number of methods have since been proposed to generate document representations from word
embeddings (Socher et al., 2012; Tai et al., 2015; Kiros et al., 2015; Le & Mikolov, 2014; Kusner
et al., 2015; Huang et al., 2016; Chen, 2017; Arora et al., 2017), among which the weighted average
of word vectors is the simplest approach. Rationale behind this simple scheme is that syntactic and
semantic regularities of phrases and sentences are reasonably well preserved by adding or subtracting
word embedding vectors. However, despite its simplicity, some important information could be lost
in the resulting document representation without considering the word order. Our proposed WME
overcomes this difficulty by considering the alignments between each pair of words. Throughout
this paper we use Word2Vec as our first building block but other (supervised or unsupervised) word
embeddings (Pennington et al., 2014; Wieting et al., 2015b) could also be utilized.

Word Mover’s Distance. Word Mover’s Distance is introduced by Kusner et al. (2015) as a special
case of Earth Mover’s Distance (Rubner et al., 2000), which can be computed as a solution of the well-
known transportation problem (Hitchcock, 1941). WMD is a distance between two text documents x,
y ∈ X that takes into account the alignments between words. Let |x|, |y| be the number of distinct
words w1, . . . , wL (L = max(|x|, |y|)) in x and y, and one choice of fx ∈ R|x|, fy ∈ R|y| could be
the normalized frequency vectors of each word in x and y respectively (so fT

x1 = fT
y1 = 1). Then

the WMD is defined as
WMD(x, y) := min

F∈R|x|×|y|+

〈C,F 〉, s.t., F1 = fx, FT1 = fy. (1)

where F is the transportation flow matrix with Fij denoting the amount of flow traveling from
word i in x to word j in y, and C is the transportation cost with Cij := dist(vi,vj) being the
distance between two words measured in the Word2Vec embedding space. A popular choice is the
Euclidean distance dist(vi,vj) = ‖vi − vj‖2. When dist(vi,vj) is a metric and total weights of
two documents are equal (which are always 1), the WMD (1) also qualifies as a metric and satisfies
triangular inequality (Rubner et al., 2000). Building on top of Word2Vec, WMD is particularly useful
and accurate for measuring distance between documents with semantically close but syntactically
different words, as illustrated in Figure 1a.

The WMD distance has been observed to perform much better on KNN-based classification tasks
(Kusner et al., 2015). However, WMD is expensive to compute with computational complexity
of O(L3 log(L)), especially for long documents (L is large). Additionally, since WMD is just
a document distance rather than a document representation, it incurs even higher computational
costs O(N2L3 log(L)) when using KNN. To overcome these drawbacks, we present WME, an
unsupervised document embedding technique for efficiently learning a semantic-preserving vector
representation of texts of variable lengths.

3 DOCUMENT EMBEDDING VIA WORD MOVER’S KERNEL

3.1 WORD MOVER’S KERNEL

In this section, we introduce a methodology to derive a p.d. kernel from an alignment-aware distance
metric, which then gives us an effective vector representation of document as a by-product through the
generalized theory of Random Feature Approximation (Rahimi & Recht, 2007). The Word Mover’s
Kernel is defined as

k(x, y) :=

∫
p(ω)φω(x)φω(y)dω, where φω(x) := exp(−γWMD(x, ω)). (2)

3

Under review as a conference paper at ICLR 2018

(a) WMD (b) WME

Figure 1: An illustration of the WMD (1a) and WME (1b). All non-stop words are marked as bold
face. WMD measures the distance between two documents. WME approximates WMD with a set of
random documents through triangular inequality in a low dimensional embedding space.

Here ω can be interpreted as a random document {vj}Dj=1 that contains a collection of random
word vectors in V , and p(ω) is a distribution over the space of all possible random documents
Ω :=

⋃Dmax

D=1 VD. φω(x) is an infinite-dimensional feature map derived from the WMD between x
and all possible documents ω ∈ Ω. An insightful interpretation of the kernel (2) expresses it as

k(x, y) := exp
(
−γsoftminp(ω){WMD(x, ω) + WMD(ω, y)}

)
(3)

where softminp(ω) f(ω) := − 1

γ
log

∫
p(ω)e−γf(ω)dω (4)

is a version of soft minimum function parameterized by p(ω) and γ. Compared with the usual
definition of soft minimum softminifi := −softmax i(−fi) = − log

∑
i e
−fi , (4) is re-weighted by

a probability density p(ω) and has one more parameter γ to control the degree of smoothness. When
γ is large and f(ω) is Lipschitz-continuous, the value of (4) is mostly determined by the minimum of
f(ω). Note that since WMD is a metric, by the triangular inequality we have

WMD(x, y) ≤ min
ω∈Ω

(WMD(x, ω) + WMD(ω, y)) (5)

and the equality holds if we allow the length of random document Dmax to be not smaller than L.
Therefore, the kernel (3) serves as a good approximation to the WMD between any pair of documents
x, y as illustrated in Figure 1b, while it is positive-definite by the definition.

3.2 WORD MOVER’S EMBEDDING

It is not straightforward to derive a simple analytic form of the kernel (2), but we can utilize a MC
method to simply yield a random approximation of the form,

k(x, y) ≈ 〈Z(x), Z(y)〉 =
1

R

R∑
i=1

φωi
(x)φωi

(y) (6)

where {ωi}Ri=1 are i.i.d. random documents drawn from p(ω) and Z(x) := (1√
R
φωi(x))Ri=1 gives a

vector representation of document x. We call this random approximation Word Mover’s Embedding,
which we will show in the next section this random approximation (6) converges to the exact kernel
(2) uniformly over all pairs of documents (x, y) .

Algorithm 1 summarizes the procedure to generate feature vectors for text of any length such as
sentences, paragraphs, and documents. We highlight several important features here. First of all, the
distribution p(ω) needs to capture the characteristics of the Word2Vec embedding space in order to
generate a meaningful random word. Several studies have found that the word vectors v roughly
dispersed uniformly in the word embedding space (Arora et al., 2016; 2017), which is consistent with
our experimental finding that the uniform distribution centered by the mean of all word vectors in the
documents is generally applicable for various text corpus. Second, the length of random documents

4

Under review as a conference paper at ICLR 2018

Algorithm 1 Word Mover’s Embedding: An Unsupervised Feature Representation for Documents

Input: Text documents {xi}Ni=1, 1 < |xi| < L, Dmax, R, uniform distribution p(ω) = rand().
Output: Feature matrix ZN×R for texts of any length

1: Compute vmax and vmin in word vectors v of {xi}Ni=1 from any pre-trained word embeddings
2: for j = 1, . . . , R do
3: Draw Dj uniformly from [1, Dmax].
4: Generate a random document ωj consisting of Dj number of random words drawn from

(vmin + (vmax − vmin)× (rand(d,Dj))).
5: Compute fxi

and fωj
using a popular weighting scheme (e.g. NBOW or TF-IDF).

6: Compute a feature vector Zj = φωj (xNi=1)) using WMD in Equation (2).
7: end for
8: Return matrix Z({xi}Ni=1) = 1√

R
[Z
′

1 Z
′

2 . . . Z
′

R]

D is typically a quite small number. It suggests that there are some hidden global topics that allow
short random documents to align with text documents to obtain discriminatory features. Since there
is no prior information for hidden global topics, we choose to uniformly sample the length of random
documents from a range [1, Dmax] to give an unbiased estimate of D. Finally, WME allows any
types of word embeddings and weighting schemes, making it a flexible and powerful feature learning
framework to take full advantage of state-of-the-art techniques.

To efficiently approximate the Word Mover’s kernel, we enjoy the double benefits of improved
accuracy and reduced computation due to WME. Compared to high computational costs of KNN-
WMD, it requires O(N2) times evaluation of WMD which takes O(L3log(L)) complexity assuming
that all documents have similar lengths L. In contrast, our WME approximation only requires
super-linear complexity of O(NRLlog(L)) computation if D is treated as a constant. This is because
one evaluation of WMD only requires O(D2Llog(L)) (Bourgeois & Lassalle, 1971) thanks to the
short random documents. This dramatic reduction in computation significantly accelerates training
and testing when combining with empirical risk minimization classifiers such as SVM. In practice,
the computation of ground distance between each pair of word vectors in documents results in
O(L2d) complexity, which could be close to one WMD evaluation if document length L is short and
word vector dimension d is large. A simple yet useful trick is to pre-compute the word distances
to avoid redundant computations since a pair of words may appear multiple times in different pairs
of documents. This simple scheme leads to additional improvement of the runtime performance of
WME which we will show in the experiments.

3.3 CONVERGENCE OF WORD MOVER’S EMBEDDING

In this section, we study the convergence of our embedding (6) to the exact kernel (2) under the
framework of Random Feature (RF) approximation (Rahimi & Recht, 2007). Note that the standard
RF convergence theory applies only to the shift-invariant kernel operated directly on two vectors,
while our kernel (2) operates on two documents x, y ∈ X that are sets of word vectors without
requiring shift-invariant property. The following lemma fills this gap by constructing a ε-covering
for the space of set of vectors from a ε-covering of vector space. Without loss of generality, we will
assume that the word vectors {v} are normalized s.t. ‖v‖ ≤ 1.

Lemma 1. There is an ε-covering E of X under the metric defined by WMD with Euclidean ground
distance and

∀x ∈ X ,∃xi ∈ E , WMD(x, xi) ≤ ε.
with |E| ≤ (2

ε)dLmax , where Lmax is a bound on the length of document x ∈ X .

Equipped with Lemma 1, we give the following convergence theorem, which follows the spirit of
(Rahimi & Recht, 2007) but generalizes it to the case without shift-invariance.

Theorem 1. Let ∆R(x, y) be the difference between the exact kernel (2) and the random approxima-
tion (6) with R samples, we have uniform convergence

P

{
max
x,y∈X

|∆R(x, y)| > 2t

}
≤ 2

(
12γ

t

)2dLmax

e−Rt
2/2.

5

Under review as a conference paper at ICLR 2018

where d is the dimension of word embedding and Lmax is a bound on the document length. In other
words, to guarantee |∆R(x, y)| ≤ ε with probability at least 1− δ, it suffices to have

R = Ω

(
dLmax

ε2
log(

γ

ε
) +

1

ε2
log(

1

δ
)

)
.

4 EXPERIMENTS

We conduct extensive sets of experiments to demonstrate the effectiveness and efficiency of the
proposed method. We first compare its performance against 7 baselines over a wide range of
text classification tasks, including sentiment analysis, news categorization, amazon review, recipe
identification, and so on. We choose 9 different document corpora where 8 of them are overlapped
with datasets in (Kusner et al., 2015; Huang et al., 2016). A complete data statistics is in Table 1.
We further compare our method against 10 baselines on the 22 datasets from SemEval semantic
textual similarity (STS) tasks. Our code is implemented in Matlab and we use the C Mex function for
the computationally expensive components of Word Mover’s Distance 1 (Rubner et al., 2000) and
the freely available Word2Vec word embedding 2 which has pre-trained embeddings for 3 million
words/phrases (from Google News) (Mikolov et al., 2013a) for text classification tasks.

Dataset C:Classes N :Train M :Test BOW Dim L:Length Application
BBCSPORT 5 517 220 13243 117 BBC sports article labeled by sport
TWITTER 3 2176 932 6344 9.9 tweets categorized by sentiment
RECIPE 15 3059 1311 5708 48.5 recipe procedures labeled by origin

OHSUMED 10 3999 5153 31789 59.2 medical abstracts (class subsampled)
CLASSIC 4 4965 2128 24277 38.6 academic papers labeled by publisher
REUTERS 8 5485 2189 22425 37.1 news dataset (train/test split)
AMAZON 4 5600 2400 42063 45.0 amazon reviews labeled by product
20NEWS 20 11293 7528 29671 72 canonical user-written posts dataset

RECIPE_L 20 27841 11933 3590 18.5 recipe procedures labeled by origin

Table 1: Properties of the datasets

4.1 EFFECTS OF R AND D ON RANDOM FEATURES

10
0

10
1

10
2

10
3

10
4

Varying R

65

70

75

80

85

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train D=21 gamma=1.12

Test D=21 gamma=1.12

(a) TWITTER

10
0

10
1

10
2

10
3

10
4

Varying R

30

40

50

60

70

80

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train D=6 gamma=0.19

Test D=6 gamma=0.19

(b) OHSUMED

10
0

10
1

10
2

10
3

10
4

Varying R

50

60

70

80

90

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train D=3 gamma=1.12

Test D=3 gamma=1.12

(c) CLASSIC

10
0

10
1

10
2

10
3

10
4

Varying R

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train D=3 gamma=0.19

Test D=3 gamma=0.19

(d) AMAZON

Figure 2: Train (Blue) and test (Red) accuracy when varying R with fixed D.

0 5 10 15 20 25

Varying DMax

72

74

76

78

80

82

84

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(a) TWITTER

0 5 10 15 20 25

Varying DMax

62

64

66

68

70

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(b) OHSUMED

0 5 10 15 20 25

Varying DMax

94

95

96

97

98

99

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(c) CLASSIC

0 5 10 15 20 25

Varying DMax

93.5

94

94.5

95

95.5

96

96.5

97

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(d) AMAZON

Figure 3: Train (Blue) and test (Red) accuracy when varying D with fixed R.

1We adopt Rubner’s C code from http://ai.stanford.edu/~rubner/emd/default.htm.
2We use word2vec code from https://code.google.com/archive/p/word2vec/.

6

http://ai.stanford.edu/~rubner/emd/default.htm
https://code.google.com/archive/p/word2vec/

Under review as a conference paper at ICLR 2018

Table 2: Testing accuracy, and total training and testing time (in Seconds) of WME against
KNN-WMD. Speedups are computed between the best numbers of KNN-WMD+P and these of
WME(SR)+P when achieving similar testing accuracy.

Classifier KNN-WMD KNN-WMD+P WME(SR) WME(SR)+P WME(LR) WME(LR)+P
Dataset Accu Time Time Accu Time Time Accu Time Time Speedup

BBCSPORT 95.4± 1.2 147 122 95.5± 0.7 3 1 98.2± 0.6 92 34 122
TWITTER 71.3± 0.6 25 4 72.5± 0.5 10 2 74.5± 0.5 162 34 2
RECIPE 57.4± 0.3 448 326 57.4± 0.5 18 4 61.8± 0.8 277 61 82

OHSUMED 55.5 3530 2807 55.8 24 7 64.5 757 240 401
CLASSIC 97.2± 0.1 777 520 96.6± 0.2 49 10 97.1± 0.4 388 70 52
REUTERS 96.5 814 557 96.0 50 24 97.2 823 396 23
AMAZON 92.6± 0.3 2190 1319 92.7± 0.3 31 8 94.3± 0.4 495 123 165
20NEWS 73.2 37988 32610 72.9 205 69 78.3 1620 547 472

RECIPE_L 71.4± 0.5 5942 2060 72.5± 0.4 113 20 79.2± 0.3 1838 330 103

Setup. We first perform experiments to investigate the behavior of the WME method by varying the
rank R and the length D of random documents. The hyper-parameter γ is obtained through cross
validation within typical range [0.01, 10]. Due to limited space, we only show selected subsets of
our results and more results are listed in Appendix 7.2.

Effects of R. We investigate how the performance changes when varying the rank R from 4 to 4096
with fixed D. Fig. 2 shows that the training and testing accuracy generally converge very fast when
increasingR from a small number (R = 4) to relatively large number (R = 1024), and then gradually
reach to the optimal performance. This confirms our analysis in Theory 1 that the proposed WME
approximation can guarantee the fast convergence to the exact kernel.

Effects of D. We further evaluate the training and testing accuracy when varying the length of
random document D with fixed R. As shown in Fig. 3, we can see that the near-peak performance
can usually be achieved when D is small (typically D ≤ 6). This behavior illustrates two important
aspects: (i) using very few random words (like D = 1) is not enough to generate useful random
features when R becomes large; 2) using too many random words (like D ≥ 10) tends to generate
similar and redundant random features when increasing R. Conceptually, the number of random
words in a random document can be thought of as the number of the global topics in documents,
which is generally small. This is an important desired feature that contributes both performance boost
and computational efficiency to the WME method.

4.2 COMPARISONS AGAINST KNN-WMD IN BOTH ACCURACY AND RUNTIME

Baselines. We now compare two WMD-based methods in terms of testing accuracy and total training
and testing runtime. The most computationally expensive component is WMD for which both
methods use same implementation from Rubner (Rubner et al., 2000). We consider two variants of
WME with different sizes of R. WME(LR) stands for WME with large rank that achieves the best
accuracy (using R up to 4096) with more computational time, while WME(SR) stands for WME
with small rank that obtains comparable accuracy in less time. We also consider two variants of both
methods where +P denotes that we precompute the ground distance between each pair of words to
avoid redundant computations. We run the experiments on all 5 train/test splits but we only report
average runtime since the variation of runtime is quite small.

Setup. Following (Kusner et al., 2015; Huang et al., 2016), for datasets that do not have a predefined
train/test split, we report average and standard deviation of the testing accuracy of the methods over
five 70/30 train/test splits. For all aforementioned methods, we adopted results from Kusner’s original
paper (Kusner et al., 2015) though we also rerun the experiments of all methods with KNN and
found them consistent. For all methods, we perform 10-fold cross validation to search for the best
parameters on training documents. We employ a linear SVM implemented using LIBLINEAR (Fan
et al., 2008) on WME since it can isolate the effectiveness of the feature representation from the
power of the nonlinear learning solvers. Bold face highlights the best number for each dataset. More
results on comparisons against KNN-based methods refer to Appendix 7.3.

Results. Table 2 corroborates the significant advantages of WME compared to KNN-WMD in terms
of both accuracy and runtime. First, WME(SR) can consistently achieve better or similar testing
accuracy compared to KNN-WMD while requiring order-of-magnitude less computational time on

7

Under review as a conference paper at ICLR 2018

all datasets. Second, both methods can benefit from precomputation of the ground distance between a
pair of words but WME gains much more from prefetch (typically 3 - 5x speedup). This is because the
typical length D of random documents is very short where computing ground distance between word
vectors may be even more expensive than the corresponding WMD distance. Finally, WME(LR) can
achieve much higher accuracy compared to KNN-WMD while still often requiring less computational
time, especially on large datasets like 20NEWS and relatively long documents like OHSUMED.
The substantially improved accuracy of WME suggests that a truly p.d. kernel implicitly admits
expressive feature representation of documents learned from the Word2Vec embedding space in
which the alignments between words are considered by using WMD.

4.3 COMPARISONS AGAINST WORD2VEC AND DOC2VEC-BASED REPRESENTATIONS

Baselines. We compare against 6 document representations methods: 1) Smooth Inverse Frequency
(SIF) (Arora et al., 2017): a newly proposed simple but tough to beat baseline for sentence embeddings,
combining a new weighted scheme of word embeddings with dominant component removal; 2)
Word2Vec+nbow: a weighted average of word vectors using normalized BOW weights for generating
document representation; 3) Word2Vec+tf-idf : a weighted average of word vectors using TF-IDF
weights for generating document representations; 4) PV-DBOW (Le & Mikolov, 2014): distributed
bag of words model of Paragraph Vector; 5) PV-DM (Le & Mikolov, 2014): distributed memory
model of Paragraph Vector; 6) Doc2VecC (Chen, 2017): recently proposed document vector learning
framework through corruption, representing each document as a simple average of sampled word
embeddings that achieves state-of-the-art performance in document classification.

Setup. We remove RECIPE and keep RECIPE_L due to its large number of classes and documents
for favoring neural network language models. Word2Vec+nbow and Word2Vec+tf-idf use pre-trained
Word2Vec embeddings while SIF uses its default pretrained GloVe embeddings. Following (Chen,
2017), to enhance the performance of PV-DBOW, PV-DM, and Doc2VecC these methods are trained
transductively on both train and test, which indeed is beneficial (see Appendix 7.4) for generating
a better document representation. For each method, we perform a grid search for some important
parameters while using recommended parameters for others. For a fair comparison, we run a linear
SVM using LIBLINEAR (Fan et al., 2008) on all methods due to the aforementioned reason.

Table 3: Testing accuracy of WME against Word2Vec and Doc2Vec-based methods.

Dataset SIF(GloVe) Word2Vec+nbow Word2Vec+tf-idf PV-DBOW PV-DM Doc2VecC WME
BBCSPORT 97.3± 1.2 97.3± 0.9 96.9± 1.1 97.2± 0.7 97.9± 1.3 90.5± 1.7 98.2± 0.6
TWITTER 57.8± 2.5 72.0± 1.5 71.9± 0.7 67.8± 0.4 67.3± 0.3 71.0± 0.4 74.5± 0.5

OHSUMED 67.1 63.0 60.6 55.9 59.8 63.4 64.5
CLASSIC 92.7± 0.9 95.2± 0.4 93.9± 0.4 97.0± 0.3 96.5± 0.7 96.6± 0.4 97.1± 0.4
REUTERS 87.6 96.9 95.9 96.3 94.9 96.5 97.2
AMAZON 94.1± 0.2 94.0± 0.5 92.2± 0.4 89.2± 0.3 88.6± 0.4 91.2± 0.5 94.3± 0.4
20NEWS 72.3 71.7 70.2 71.0 74.0 78.2 78.3

RECIPE_L 71.1± 0.5 74.9± 0.5 73.1± 0.6 73.1± 0.5 71.1± 0.4 76.1± 0.4 79.2± 0.3

Results. Table 3 shows that WME consistently outperforms or matches currently state-of-the-art doc-
ument representation methods in terms of testing accuracy on all datasets except one (OHSUMED).
The first highlight in this table is that simple average of word embeddings Word2Vec+nbow and
Word2Vec+tf-idf often achieve better performance than SIF(Glove) which might indicate that re-
moving first principle component (roughly corresponding to the syntactic information or common
words) could hurt the expressive power of the resulting representation for some of classification tasks.
Surprisingly, these two methods often achieves similar or better performance than PV-DBOW and
PV-DM, which may be because of the high-quality word embeddings pre-trained from hundreds
of billions of words (Mikolov et al., 2013a;c). On the other hand, Doc2VecC achieves much better
testing accuracy than these previous methods on two datasets (20NEWS, and RECIPE_L). This is
mainly because that it benefits significantly from transductive training where it can directly access to
the features of the test set (See Appendix 7.4). Finally, the better performance of WME over three
strong baselines Word2Vec+nbow, Word2Vec+tf-idf, and SIF(Glove) stems from fact that WME takes
into account pair-wise word alignments that leads to a more informative representation. Compared to
other Doc2Vec-based methods, WME is empowered by two important building blocks WMD and
Word2Vec to ensure a semantically meaningful representation of the documents by considering both

8

Under review as a conference paper at ICLR 2018

the word alignments and the semantics of words. We refer the interested readers to more experimental
results on Imdb dataset in Appendix 7.4.

4.4 COMPARISONS FOR PERFORMING TEXTUAL SIMILARITY TASKS

Baselines. We compare WME against 10 supervised and unsupervised methods for performing
textual similarity tasks. Six supervised methods are initialized with Paragram-SL999(PSL) word
vectors (Wieting et al., 2015b) and then trained on the PPDB dataset, including: 1) PARAGRAM-
PHRASE (PP) (Wieting et al., 2015a): simple average of refined PSL word vectors; 2) Deep Averaging
Network (DAN) (Iyyer et al., 2015); 3) RNN: classical recurrent neural network; 4) iRNN: a variant
of RNN with the activation being the identify; 5) LSTM(no) (Gers et al., 2002): LSTM with no output
gates; 6) LSTM(o.g.) (Gers et al., 2002): LSTM with output gates. Four unsupervised methods are:
1) Skip-Thought Vectors (ST) (Kiros et al., 2015): an encoder-decoder RNN model for generalizing
Skip-gram to the sentence level; 2) GV+ave: simple averaging of pretrained GloVe word vectors; 3)
GV+tf-idf : a weighted average of GloVe word vecors using TF-IDF weights; 4) SIF (Arora et al.,
2017): a state-of-the-art simple method for textual similarity tasks using GloVe.

Setup. There are total 22 textual similarity datasets from STS tasks (2012-2015) (Agirre et al., 2012;
2013; 2014; 2015), SemEval 2014 Semantic Relatedness task (Xu et al., 2015), and the SemEval
2015 Twitter task (Marelli et al., 2014). Each year STS typically has 4 to 6 different tasks and we
only report the averaged Pearson’s scores for clarity. Detailed results on each dataset are listed
in Appendix 7.5. Our method can be built on any high-quality word embeddings and combined
with a good weighting scheme for WMD computation. To promote a fair comparison with other
unsupervised methods, we also apply the same GloVe word embeddings with the tf-idf weighting
scheme. Conceptually, the weighting scheme of SIF can also be easily adopted in our method.

Table 4: Pearson’s scores of WME against other unsupervised and supervised methods on 22 textual
similarity tasks. Results are collected from (Arora et al., 2017) except our approach and only average
scores each year are reported. All unsupervised approaches are built on GloVe except ST.

Approaches Supervised Unsupervised
Tasks PP Dan RNN iRNN LSTM(no) LSTM(o.g.) ST GV+ave GV+tf-idf SIF WME

STS’12 58.7 56.0 48.1 58.4 51.0 46.4 30.8 52.5 58.7 56.2 60.6
STS’13 55.8 54.2 44.7 56.7 45.2 41.5 24.8 42.3 52.1 56.6 54.5
STS’14 70.9 69.5 57.7 70.9 59.8 51.5 31.4 54.2 63.8 68.5 65.5
STS’15 75.8 72.7 57.2 75.6 63.9 56.0 31.0 52.7 60.6 71.7 61.8

SICK’14 71.6 70.7 61.2 71.2 63.9 59.0 49.8 65.9 69.4 72.2 68.0
Twitter’15 52.9 53.7 45.1 52.9 47.6 36.1 24.7 30.3 33.8 48.0 41.6

Results. Table 4 shows that WME achieves quite decent performance compared to other unsupervised
and supervised methods although WME itself is also an unsupervised method. Indeed, compared
with ST and GV+ave, WME improves Pearson’s scores substantially by 10% to 33% as a result of the
consideration of word alignments and the use of TF-IDF weighting scheme. GV+tf-idf also improves
over these two methods but slightly worse than our method, indicating the importance of taking into
account the alignments between the words. SIF method is a strong baseline for textual similarity
tasks but WME still can beat it on STS’12 and achieve close performance in other cases. Clearly,
removing dominant component from learned sentence representation is very helpful for this type of
tasks. Interestingly, WME can outperform or match the scores of three supervised methods RNN,
LSTM(no), and LSTM(o.g.) in most of cases. There are no surprises that the supervised methods like
PP and iRNN via fine tuning word embeddings (from PSL) with aid of the large external corpora
PPDB would yield better performance, but still not always beat unsupervised methods (like WME
and SIF). The final remarks stem from the fact that WME may also gain significantly benefit from the
supervised word embeddings that Arora et al. (2017) have shown with SIF on PSL.

5 CONCLUSION

In this paper, we have proposed for the first time an alignment-aware text kernel using WMD for
unstructured text data, which takes into account both word alignments and pre-trained high quality
word embeddings in learning an effective semantic-preserving feature representation. The proposed
WME is simple, efficient, flexible, and unsupervised. For instance, it can substantially improve the

9

Under review as a conference paper at ICLR 2018

classification accuracy while reducing the computational cost of WMD-based KNN from cubic to
linear in document length and from quadratic to linear in number of samples. Extensive experiments
show that WME consistently matches or outperforms state-of-the-art Word2Vec and Doc2Vec based
models on 9 real-word text classification tasks, and supervised and unsupervised RNN and LSTM
models on 22 textual similarity tasks, respectively. The WME embeddings can be easily used for a
wide range of downstream supervised and unsupervised tasks.

REFERENCES

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor Gonzalez-Agirre. Semeval-2012 task 6: A pilot
on semantic textual similarity. In Proceedings of the First Joint Conference on Lexical and
Computational Semantics-Volume 1: Proceedings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 385–393.
Association for Computational Linguistics, 2012.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. sem 2013 shared
task: Semantic textual similarity, including a pilot on typed-similarity. In In* SEM 2013: The
Second Joint Conference on Lexical and Computational Semantics. Association for Computational
Linguistics. Citeseer, 2013.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M Cer, Mona T Diab, Aitor Gonzalez-Agirre,
Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe. Semeval-2014 task 10: Multilin-
gual semantic textual similarity. In SemEval@ COLING, pp. 81–91, 2014.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M Cer, Mona T Diab, Aitor Gonzalez-Agirre,
Weiwei Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mihalcea, et al. Semeval-2015
task 2: Semantic textual similarity, english, spanish and pilot on interpretability. In SemEval@
NAACL-HLT, pp. 252–263, 2015.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to pmi-based word embeddings. Transactions of the Association for Computational
Linguistics, 4:385–399, 2016.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. In ICLR, 2017.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

François Bourgeois and Jean-Claude Lassalle. An extension of the munkres algorithm for the
assignment problem to rectangular matrices. Communications of the ACM, 14(12):802–804, 1971.

Chris Buckley, Gerard Salton, James Allan, and Amit Singhal. Automatic query expansion using
smart: Trec 3. NIST special publication sp, pp. 69–69, 1995.

Minmin Chen. Efficient vector representation for documents through corruption. In ICLR, 2017.

Minmin Chen, Zhixiang Xu, Kilian Weinberger, and Fei Sha. Marginalized denoising autoencoders
for domain adaptation. Proceedings of the 29th international conference on Machine learning,
2012.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Advances in Neural
Information Processing Systems, pp. 3079–3087, 2015.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman.
Indexing by latent semantic analysis. Journal of the American society for information science, 41
(6):391, 1990.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. Journal of machine learning research, 9(Aug):1871–1874,
2008.

10

Under review as a conference paper at ICLR 2018

Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning precise timing with lstm
recurrent networks. Journal of machine learning research, 3(Aug):115–143, 2002.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 513–520, 2011.

Tom Griffiths and Mark Steyvers. Probabilistic topic models. Latent Semantic Analysis: A Road to
Meaning, 2007.

Frank L Hitchcock. The distribution of a product from several sources to numerous localities. Studies
in Applied Mathematics, 20(1-4):224–230, 1941.

Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, and Kilian Q Weinberger. Supervised word
mover’s distance. In Advances in Neural Information Processing Systems, pp. 4862–4870, 2016.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep unordered composi-
tion rivals syntactic methods for text classification. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), volume 1, pp. 1681–1691, 2015.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. In Advances in neural information processing systems, pp.
3294–3302, 2015.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document
distances. In International Conference on Machine Learning, pp. 957–966, 2015.

Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents. In ICML,
volume 14, pp. 1188–1196, 2014.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and Roberto
Zamparelli. Semeval-2014 task 1: Evaluation of compositional distributional semantic models on
full sentences through semantic relatedness and textual entailment. In SemEval@ COLING, pp.
1–8, 2014.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech, volume 2, pp. 3, 2010.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168, 2013b.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pp. 3111–3119, 2013c.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, volume 14, pp. 1532–1543, 2014.

Hieu Pham, Minh-Thang Luong, and Christopher D Manning. Learning distributed representations
for multilingual text sequences. In Proceedings of NAACL-HLT, pp. 88–94, 2015.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems, pp. 5, 2007.

Stephen E Robertson and Steve Walker. Some simple effective approximations to the 2-poisson model
for probabilistic weighted retrieval. In ACM SIGIR conference on Research and development in
information retrieval, 1994.

11

Under review as a conference paper at ICLR 2018

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,
et al. Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40(2):99–121, 2000.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513–523, 1988.

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning, pp.
1201–1211. Association for Computational Linguistics, 2012.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Short Papers-Volume 2, pp. 90–94. Association for Computational Linguistics, 2012.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards universal paraphrastic
sentence embeddings. arXiv preprint arXiv:1511.08198, 2015a.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen Livescu, and Dan Roth. From paraphrase database
to compositional paraphrase model and back. Transactions of the ACL (TACL), 2015b.

Lingfei Wu and Andreas Stathopoulos. A preconditioned hybrid svd method for accurately computing
singular triplets of large matrices. SIAM Journal on Scientific Computing, 37(5):S365–S388, 2015.

Lingfei Wu, Eloy Romero, and Andreas Stathopoulos. Primme_svds: A high-performance pre-
conditioned svd solver for accurate large-scale computations. arXiv preprint arXiv:1607.01404,
2016.

Wei Xu, Chris Callison-Burch, and Bill Dolan. Semeval-2015 task 1: Paraphrase and semantic
similarity in twitter (pit). In SemEval@ NAACL-HLT, pp. 1–11, 2015.

12

Under review as a conference paper at ICLR 2018

6 APPENDIX A: PROOF OF LEMMA 1 AND THEOREM 1

6.1 PROOF OF LEMMA 1

Proof. Firstly, we find an ε-covering EW of size (2
ε)d for the word vector space V . Then define E

as all possible sets of v ∈ EW of size no larger than Lmax. We have |E| ≤ (2
ε)dLmax , and for any

document x = (vj)
L
j=1 ∈ X , we can find xi ∈ E with also L words (uj)

L
j=1 such that ‖uj−vj‖ ≤ ε.

Then by the definition of WMD (1), a solution that assigns each word vj in x to the word uj in xi
would have overall cost less than ε, and therefore, WMD(x, xi) ≤ ε.

6.2 PROOF OF THEOREM 1

Proof. Let sR(x, y) be the random approximation (6). Our goal is to bound the magnitude of
∆R(x, y) = sR(x, y) − k(x, y). Since E[∆R(x, y)] = 0 and |∆R(x, y)| ≤ 1, from Hoefding
inequality, we have

P {|∆R(x, y)| ≥ t} ≤ 2 exp(−Rt2/2)

for a given pair of documents (x, y). To get a uniform bound that holds for ∀(x, y) ∈ X × X , we
find an ε-covering of X of finite size, given by Lemma 1. Applying union bound over the ε-covering
E for x and y, we have

P

{
max

xi∈E,yj∈E
|∆R(xi, yj)| > t

}
≤ 2|E|2 exp(−Rt2/2). (7)

Then by the definition of E we have |WMD(x, ω) −WMD(xi, ω)| ≤ WMD(x, xi) ≤ ε. Together
with the fact that exp(−γt) is Lipschitz-continuous with parameter γ for t ≥ 0, we have

|φω(x)− φω(xi)| ≤ γε

and thus
|sR(x, y)− sR(xi, yi)| ≤ 3γε, |k(x, y)− k(xi, yi)| ≤ 3γε

for γε chosen to be ≤ 1. This gives us

|∆R(x, y)−∆R(xi, yi)| ≤ 6γε (8)

Combining (7) and (8), we have

P

{
max

xi∈E,yj∈E
|∆R(x, y)| > t+ 6γε

}
≤ 2

(
2

ε

)2dLmax

exp(−Rt2/2). (9)

Choosing ε = t/6γ yields the result.

7 APPENDIX B: ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

7.1 EXPERIMENTAL SETTINGS AND PARAMETERS FOR WME

Setup. We choose 9 different document corpora where 8 of them are overlapped with datasets in
(Kusner et al., 2015; Huang et al., 2016). A complete data summary is in Table 1. These datasets come
from various applications, including news categorization, sentiment analysis, product identification,
and have various number of classes, varying number of documents, and a wide range of document
lengths. Our code is implemented in Matlab and we use C Mex function for computationally
expensive component of Word Mover’s Distance 3 (Rubner et al., 2000) and the freely available
Word2Vec word embedding 4 which has pre-trained embeddings for 3 millon words/phrases (from
Google News) (Mikolov et al., 2013a). All computations were carried out on a DELL dual socket
system with Intel Xeon processors 272 at 2.93GHz for a total of 16 cores and 250 GB of memory,
running the SUSE Linux operating system. To accelerate the computation of WMD-based methods,
we use multithreading with total 12 threads for WME and KNN-WMD in all experiments. For
all experiments, we generate random document from uniform distribution with mean centered in

3We adopt Rubner’s C code from http://ai.stanford.edu/ rubner/emd/default.htm.
4We use word2vec code from https://code.google.com/archive/p/word2vec/.

13

Under review as a conference paper at ICLR 2018

Word2Vec embedding space since we observe the best performance with this setting. We perform
10-fold cross-validation to search for best parameters for γ and Dmax as well as parameter C for
LIBLINEAR on training set for each dataset. We simply fix the Dmin = 1, and vary Dmax in the
range of 3 to 21, γ in the range of [1e-2 3e-2 0.10 0.14 0.19 0.28 0.39 0.56 0.79 1.0 1.12 1.58 2.23
3.16 4.46 6.30 8.91 10 31.62 1e2], and C in the range of [1e-5 1e-4 1e-3 1e-2 1e-1 1 1e1 1e2 3e2 5e2
8e2 1e3 3e3 5e3 8e3 1e4 3e4 5e4 8e4 1e5 3e5 5e5 8e5 1e6 1e7 1e8] respectively in all experiments.

We collect all document corpora from these public websites:

1. BBCSPORT: http://mlg.ucd.ie/datasets/bbc.html

2. TWITTER: http://www.sananalytics.com/lab/twitter-sentiment/

3. RECIPE: https://www.kaggle.com/kaggle/recipe-ingredients-dataset

4. OHSUMED:https://www.mat.unical.it/OlexSuite/Datasets/
SampleDataSets-download.htm

5. CLASSIC:http://www.dataminingresearch.com/index.php/2010/09/
classic3-classic4-datasets/

6. REUTERS and 20NEWS: http://www.cs.umb.edu/~smimarog/textmining/
datasets/

7. AMAZON: https://www.cs.jhu.edu/~mdredze/datasets/sentiment/

7.2 MORE RESULTS ABOUT EFFECTS OF R AND D ON RANDOM DOCUMENTS

Setup and results. To fully study the characteristic of the WME method, we study the effect of the R
number of random documents and the D length of random documents on the performance of various
datasets in terms of training and testing accuracy. Clearly, the training and testing accuracy can
converge rapidly to the exact kernels when varying R from 4 to 4096, which confirms our analysis in
Theory 1. When varying D from 1 to 21, we can see that in most of cases Dmax = [3, 12] generally
yields a near-peak performance except BBCSPORT.

10
0

10
1

10
2

10
3

10
4

Varying R

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train D=3 gamma=0.79

Test D=3 gamma=0.79

(a) BBCSPORT

10
0

10
1

10
2

10
3

10
4

Varying R

65

70

75

80

85

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train D=21 gamma=1.12

Test D=21 gamma=1.12

(b) TWITTER

10
0

10
1

10
2

10
3

10
4

Varying R

30

40

50

60

70

80

90

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train D=3 gamma=0.39

Test D=3 gamma=0.39

(c) RECIPE

10
0

10
1

10
2

10
3

10
4

Varying R

30

40

50

60

70

80

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train D=6 gamma=0.19

Test D=6 gamma=0.19

(d) OHSUMED

10
0

10
1

10
2

10
3

10
4

Varying R

50

60

70

80

90

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train D=3 gamma=1.12

Test D=3 gamma=1.12

(e) CLASSIC

10
0

10
1

10
2

10
3

10
4

Varying R

50

60

70

80

90

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train D=9 gamma=0.28

Test D=9 gamma=0.28

(f) REUTERS

10
0

10
1

10
2

10
3

10
4

Varying R

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train D=3 gamma=0.19

Test D=3 gamma=0.19

(g) AMAZON

10
0

10
1

10
2

10
3

10
4

Varying R

0

20

40

60

80

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train D=12 gamma=0.79

Test D=12 gamma=0.79

(h) 20NEWS

Figure 4: Train (Blue) and test (Red) accuracy when varying R with fixed D.

7.3 MORE RESULTS ON COMPARISONS AGAINST DISTANCE-BASED METHODS

Setup. We preprocess all datasets by removing all words in the SMART stop word list (Buckley et al.,
1995). For 20NEWS, we remove the words appearing less than 5 times. For LDA, we use the Matlab
Topic Modeling Toolbox (Griffiths & Steyvers, 2007) and use sample code that first run 100 burn-in
iterations and then run the chain for additional 1000 iterations. For mSDA, we use high-dimensional
function mSDAhd where the parameter dd is set as 0.2 times BOW Dimension. For all datasets, a

14

http://mlg.ucd.ie/datasets/bbc.html
http://www.sananalytics.com/lab/twitter-sentiment/
https://www.kaggle.com/kaggle/recipe-ingredients-dataset
https://www.mat.unical.it/OlexSuite/Datasets/SampleDataSets-download.htm
https://www.mat.unical.it/OlexSuite/Datasets/SampleDataSets-download.htm
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
http://www.cs.umb.edu/~smimarog/textmining/datasets/
http://www.cs.umb.edu/~smimarog/textmining/datasets/
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/

Under review as a conference paper at ICLR 2018

0 5 10 15 20 25

Varying DMax

96.5

97

97.5

98

98.5

99

99.5

100

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(a) BBCSPORT

0 5 10 15 20 25

Varying DMax

72

74

76

78

80

82

84

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(b) TWITTER

0 5 10 15 20 25

Varying DMax

55

60

65

70

75

80

85

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(c) RECIPE

0 5 10 15 20 25

Varying DMax

62

64

66

68

70

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(d) OHSUMED

0 5 10 15 20 25

Varying DMax

94

95

96

97

98

99

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(e) CLASSIC

0 5 10 15 20 25

Varying DMax

96.5

97

97.5

98

98.5

99

99.5

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(f) REUTERS

0 5 10 15 20 25

Varying DMax

93.5

94

94.5

95

95.5

96

96.5

97

A
c
c
u
ra

c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(g) AMAZON

0 5 10 15 20 25

Varying DMax

70

75

80

85

90

95

A
c
c
u

ra
c
y
 %

Train and Test Accuracy

Train R=1024

Test R=1024

(h) 20NEWS

Figure 5: Train (Blue) and test (Red) accuracy when varying D with fixed R.

Table 5: Testing accuracy comparing WME against KNN-based methods

Dataset BOW TF-IDF BM25 LSI LDA mSDA KNN-WMD WME
BBCSPORT 79.4± 1.2 78.5± 2.8 83.1± 1.5 95.7± 0.6 93.6± 0.7 91.6± 0.8 95.4± 0.7 98.2± 0.6
TWITTER 56.4± 0.4 66.8± 0.9 57.3± 7.8 68.3± 0.7 66.2± 0.7 67.7± 0.7 71.3± 0.6 74.5± 0.5
RECIPE 40.7± 1.0 46.4± 1.0 46.4± 1.9 54.6± 0.5 48.7± 0.6 52± 1.4 57.4± 0.3 61.8± 0.8

OHSUMED 38.9 37.3 33.8 55.8 49.0 50.7 55.5 64.5
CLASSIC 64.0± 0.5 65.0± 1.8 59.4± 2.7 93.3± 0.4 95.0± 0.3 93.1± 0.4 97.2± 0.1 97.1± 0.4
REUTERS 86.1 70.9 67.2 93.7 93.1 91.9 96.5 97.2
AMAZON 71.5± 0.5 58.5± 1.2 41.2± 2.6 90.7± 0.4 88.2± 0.6 82.9± 0.4 92.6± 0.3 94.3± 0.4
20NEWS 42.2 45.6 44.1 71.1 68.5 60.5 73.2 78.3

5-fold cross validation on training set is performed to get the optimal K for KNN classifier, where K
is searched in the range of [1, 21].

Baselines. We compare against 7 document representation or distance methods: 1) bag-of-words
(BOW) (Salton & Buckley, 1988); 2) term frequency-inverse document frequency (TF-IDF) (Robert-
son & Walker, 1994); 3) Okapi BM25 (Robertson et al., 1995): first TF-IDF variant ranking function
used in search engines; 4) Latent Semantic Indexing (LSI) (Deerwester et al., 1990): factorize BOW
into their leading singular components subspace using SVD (Wu & Stathopoulos, 2015; Wu et al.,
2016); 5) Latent Dirichlet Allocation (LDA) (Blei et al., 2003): a generative probability method to
model mixtures of word "topics" in documents. LDA is trained transductively on both train and test;
6) Marginalized Stacked Denoising Autoencoders (mSDA) (Chen et al., 2012): a fast method for
training denoising autoencoder that achieved state-of-the-art performance on sentiment analysis tasks
(Glorot et al., 2011); 7) WMD: a state-of-the-art document distance discussed in Section 2.

Results. Table 5 clearly demonstrates the superior performance of our method WME compared to
other KNN-based methods in terms of testing accuracy. Indeed, BOW and TF-IDF performs poorly
compared to other methods which may be the result of frequent near-orthogonality of their high-
dimensional sparse feature representation in KNN classifier. KNN-WMD achieves noticeably better
testing accuracy than LSI, LDA and mSDA since WMD takes into account the word alignments and
leverages the power of Word2Vec. Remarkably, our proposed method WME achieves much higher
accuracy compared to other methods including KNN-WMD on all datasets except one (CLASSIC).

7.4 MORE RESULTS ON COMPARISONS AGAINST WORD2VEC AND DOC2VEC-BASED
DOCUMENT REPRESENTATIONS

Setup and results. For PV-DBOW, PV-DM, and Doc2VecC, we set the word and document vector
dimension d = 300 to match the pre-trained word embeddings we used for WME and other Word2Vec-
based methods in order to make a fair comparison. For other parameters, we use recommended

15

Under review as a conference paper at ICLR 2018

parameters in the papers but we search for the best parameter C in LIBLINEAR for these methods.
Additionally, we also train Doc2VecC with different corruption rate in the range of [0.1 0.3 0.5
0.7 0.9]. Following (Chen, 2017), these methods are trained transductively on both training and
testing set. For Doc2VecC(Train), we train the model only on training set in order to show the
effect of the transductive training on the testing accuracy. As shown in Table 6, Doc2VecC clearly
outperforms Doc2VecC(Train), sometimes having a sigfinicantntly performance boost in some
datasets (OHSUMED and 20NEWS).

Table 6: Testing accuracy of WME against Word2Vec-based and Doc2Vec-based methods.

Dataset Word2Vec+nbow Word2Vec+tf-idf PV-DBOW PV-DM Doc2VecC(Train) Doc2VecC WME
BBCSPORT 97.3± 0.9 96.9± 1.1 97.2± 0.7 97.9± 1.3 89.2± 1.4 90.5± 1.7 98.2± 0.6
TWITTER 72.0± 1.5 71.9± 0.7 67.8± 0.4 67.3± 0.3 69.8± 0.9 71.0± 0.4 74.5± 0.5

OHSUMED 63.0 60.6 55.9 59.8 59.6 63.4 64.5
CLASSIC 95.2± 0.4 93.9± 0.4 97.0± 0.3 96.5± 0.7 96.2± 0.5 96.6± 0.4 97.1± 0.4
REUTERS 96.9 95.9 96.3 94.9 96.0 96.5 97.2
AMAZON 94.0± 0.5 92.2± 0.4 89.2± 0.3 88.6± 0.4 89.5± 0.4 91.2± 0.5 94.3± 0.4
20NEWS 71.7 70.2 71.0 74.0 72.9 78.2 78.3

RECIPE_L 74.9± 0.5 73.1± 0.6 73.1± 0.5 71.1± 0.4 75.6± 0.4 76.1± 0.4 79.2± 0.3

We further conduct experiments on Imdb dataset using our method. We use only training data to
select hyper-parameters. For a more fair comparison, we only report the results of other methods that
use all data excluding test. Table 7 shows that WME can achieve slightly better accuracy than other
state-of-the-art document representation methods. This collaborates the importance to make full use
of both word alignments and high-quality pretrained word embeddings.

Table 7: Testing accuracy of WME against other document representations on Imdb dataset (50K).
Results are collected from (Chen, 2017) and (Arora et al., 2017).

Dataset RNN_LM SIF(GloVe) Word2Vec+AVG Word2Vec+IDF PV-DBOW ST Doc2VecC WME
Imdb 86.4 85.0 87.3 88.1 87.9 82.6 88.3 88.5

7.5 MORE RESULTS ON COMPARISONS FOR TEXTUAL SIMILARITY TASKS

Setup and results. To obtain the hyper-parameters in our method, we use the corresponding training
data or the similar tasks from previous years. Note that the tasks with same names but in different
years are different ones. As we can see in Table 7.5, WME can achieve better performance on tasks
of STS’12 and perform fairly well on other tasks. Among the unsupervised methods and some
supervised methods except PP, Dan, and iRNN, WME is almost always to be one of the best methods.

16

Under review as a conference paper at ICLR 2018

Table 8: Pearson’s scores of WME against other unsupervised and supervised methods on 22 textual
similarity tasks. Results are collected from (Arora et al., 2017) except our approach. All unsupervised
approaches are built on GloVe except ST.

Approaches Supervised Unsupervised
Tasks PP Dan RNN iRNN LSTM(no) LSTM(o.g.) ST Ave Tf-idf SIF WME

MSRpar 42.6 40.3 18.6 43.4 16.1 9.3 16.8 47.7 50.3 35.6 45.3
MSRvid 74.5 70.0 66.5 73.4 71.3 71.3 41.7 63.9 77.9 83.8 75.9
SMT-eur 47.3 43.8 40.9 47.1 41.8 44.3 35.2 46.0 54.7 49.9 57.7
OnWN 70.6 65.9 63.1 70.1 65.2 56.4 29.7 55.1 64.7 66.2 67.8

SMT-news 58.4 60.0 51.3 58.1 60.8 51.0 30.8 49.6 45.7 45.6 56.1
STS’12 58.7 56.0 48.1 58.4 51.0 46.4 30.8 52.5 58.7 56.2 60.6
headline 72.4 71.2 59.5 72.8 57.4 48.5 34.6 63.8 69.2 69.2 70.5
OnWN 67.7 64.1 54.6 69.4 68.5 50.4 10.0 49.0 72.9 82.8 80.1
FNWN 43.9 43.1 30.9 45.3 24.7 38.4 30.4 34.2 36.6 39.4 33.7
SMT 39.2 38.3 33.8 39.4 30.1 28.8 24.3 22.3 29.6 37.9 33.7

STS’13 55.8 54.2 44.7 56.7 45.2 41.5 24.8 42.3 52.1 56.6 54.5
deft forum 48.7 49.0 41.5 49.0 44.2 46.1 12.9 27.1 37.5 41.2 41.2
deft news 73.1 71.7 53.7 72.4 52.8 39.1 23.5 68.0 68.7 69.4 66.7
headline 69.7 69.2 57.5 70.2 57.5 50.9 37.8 59.5 63.7 64.7 65.6
images 78.5 76.9 67.6 78.2 68.5 62.9 51.2 61.0 72.5 82.6 69.2
OnWN 78.8 75.7 67.7 78.8 76.9 61.7 23.3 58.4 75.2 82.8 81.1

tweet news 76.4 74.2 58.0 76.9 58.7 48.2 39.9 51.2 65.1 70.1 68.9
STS’14 70.9 69.5 57.7 70.9 59.8 51.5 31.4 54.2 63.8 68.5 65.5

answers-forum 68.3 62.6 32.8 67.4 51.9 50.7 36.1 30.5 45.6 63.9 56.4
answers-student 78.2 78.1 64.7 78.2 71.5 55.7 33.0 63.0 63.9 70.4 63.1

belief 76.2 72.0 51.9 75.9 61.7 52.6 24.6 40.5 49.5 71.8 50.6
headline 74.8 73.5 65.3 75.1 64.0 56.6 43.6 61.8 70.9 70.7 70.8
images 81.4 77.5 71.4 81.1 70.4 64.2 17.7 67.5 72.9 81.5 67.9
STS’15 75.8 72.7 57.2 75.6 63.9 56.0 31.0 52.7 60.6 71.7 61.8

SICK’14 71.6 70.7 61.2 71.2 63.9 59.0 49.8 65.9 69.4 72.2 68.0
Twitter’15 52.9 53.7 45.1 52.9 47.6 36.1 24.7 30.3 33.8 48.0 41.6

17

	Introduction
	Word2Vec and Word Mover's Distance
	Document Embedding via Word Mover's Kernel
	Word Mover's Kernel
	Word Mover's Embedding
	Convergence of Word Mover's Embedding

	Experiments
	Effects of R and D on random features
	Comparisons against KNN-WMD in both accuracy and runtime
	Comparisons against Word2Vec and Doc2Vec-based representations
	Comparisons for performing textual similarity tasks

	Conclusion
	Appendix A: Proof of Lemma 1 and Theorem 1
	Proof of Lemma 1
	Proof of Theorem 1

	Appendix B: Additional Experimental Results and Details
	Experimental settings and parameters for WME
	More results about effects of R and D on random documents
	More results on Comparisons against distance-based methods
	More results on comparisons against Word2Vec and Doc2Vec-based document representations
	More results on comparisons for textual similarity tasks

