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Abstract

Neural machine translation (NMT) systems have reached state of the art perfor-
mance in translating text and are in wide deployment. Yet little is understood
about how these systems function or break. Here we show that NMT systems
are susceptible to producing highly pathological translations that are completely
untethered from the source material, which we term hallucinations. Such patho-
logical translations are problematic because they are are deeply disturbing of user
trust and easy to find with a simple search. We describe a method to generate
hallucinations and show that many common variations of the NMT architecture
are susceptible to them. We study a variety of approaches to reduce the frequency
of hallucinations, including data augmentation, dynamical systems and regular-
ization techniques, showing that data augmentation significantly reduces hallu-
cination frequency. Finally, we analyze networks that produce hallucinations and
show that there are signatures in the attention matrix as well as in the hidden states
of the decoder.

1 Introduction
Neural machine translation (NMT) systems are language translation systems based on deep learning
architectures [11, 2, 32]. In the past few years, NMT has vastly improved and has been deployed
in production systems, for example at Google [34], Facebook [16], Microsoft [18], and many oth-
ers. As NMT systems are built on deep learning methodology, they exhibit both the strengths and
weaknesses of the approach. For example, NMT systems are competitive with state of the art perfor-
mance [7] and scale well to very large datasets [24] but like most large deep learning systems, NMT
systems are poorly understood. For example, in many commercial translation systems, entering re-
peated words many times occasionally results in strange translations, a phenomenon which has been
highly publicized [13]. More broadly, recent work shows that NMT systems are highly sensitive to
noise in the input tokens [4] and also susceptible to adversarial inputs [10]. When there is an error
in translation, it can be challenging to either understand why the mistake occurred or engineer a fix.

Here we continue the study of noise in the input sequence and describe a type of phenomenon that
is particularly pernicious, whereby inserting a single additional input token into the source sequence
can completely divorce the translation from the input sentence. For example, here is a German input
sentence translated to English (reference) by a small NMT system:

Source: Caldiero sprach mit E! Nachrichten nach dem hart erkämpften Sieg,
noch immer unter dem Schock über den Gewinn des Großen Preises
von 1 Million $.

Reference: Caldiero spoke with E! News after the hard-fought victory, still
in shock about winning the $1 million grand prize.

NMT Translation: Caldiero spoke with E, after the hard won victory,
still under the shock of the winning of the Grand Prix of 1 million $.
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Simply by adding a single input token (mit:with, werden:to become and dass:that) to the beginning
of the input sentence and translating them with the same NMT model yield the following:

Mistranslations:
mit: It was said to have a lot of fun in the world.
werden: Don’t hesitate to contact us, if you want to be able to pay for you.
dass: I’m looking forward to having a lot of money.

These mistranslations are completely semantically incorrect and also grammatically viable. They
are untethered from the input so we name them ‘hallucinations’. Clearly, even if hallucinations
occur only occasionally, the NMT model may lose user trust and/or lead the user to a false sense of
confidence in a very incorrect translation. In this work, we show that hallucinations are widespread
in the popular NMT system we study. For example, 73% of sentences in our test set can be perturbed
to hallucination in our simplified canonical model (with a average, greedily-decoded BLEU score of
21.29). If we decode with beam search (average BLEU 25.66) that number drops, but remains high
at 48%.

We systematically explore hallucinations in a variety of NMT variants. We also develop method-
ologies to help ameliorate this problem, using ideas from data augmentation, dynamical systems
theory, and regularization. Finally, we analyze an NMT model that demonstrates hallucinations and
show that there are signatures of hallucinations that can be seen in the attention matrix. We focus
on NMT systems built using RNNs [34], on which many commercial translation systems are based.
As RNNs recursively generate translations, we examine their dynamical nature. Finally, we study
decoder stability when hallucinations are produced and when they are not.

2 Related work
Since its invention, researchers have been working to better understand NMT. For example, moving
from the original Seq2Seq model [32, 12] to models that utilize attention mechanisms [2], resulted
in improved translation quality [23] and better interpretability [15]. Studies identified the most
critical components of the LSTM [17] and the role of the LSTM in language modeling [20] more
broadly. Followed by explorations in interpretability, recent work has focused on robust NMT,
studying the effects of input noise, aiming to reduce variation from typos [4] and synonym choice
[10] in the discrete input set used by NMT systems. Both [4] and [10] have discovered that NMT
systems are highly sensitive to input noise and both used adversarial training to help stabilize NMT
systems (either with black-box adversarial training or augmenting an adversarial loss). There has
been work in understanding how to handle some of the pathologies in RNNs for language modeling
and translation, for example, using scheduled sampling to handle mismatches between training and
test sets [6].

In parallel, there has also been work in understanding RNNs through the framework of dynamical
systems [31, 29, 22, 26, 3] and understanding their capacity in language tasks [14]. For example, it is
known that continuous time vanilla RNNs exhibit high-dimensional chaos [28], which can be driven
out by strong input [25]. RNNs exhibiting chaos can be beneficial, for example, RNNs capable of
chaos in the absence of input can serve as strong initialization for training RNNs when they are input
driven [30], but caution must be used as unbridled chaos can be viewed as a source of dynamical
noise. This has led to efforts to rid RNNs of chaos altogether [22]. Efforts related to improving
optimization may also have dynamically regularizing effects, e.g. [1]. Given the complexities and
slow compute times of recurrent systems, there have also been attempts to rid NMT of recurrence
[19, 16, 33].

We further expand on these studies by highlighting the specific pathology of hallucinations, system-
atically studying those hallucinations, and analyzing them from a dynamical systems perspective.

3 NMT Methods
Models: In this paper, we use a standard RNN-based encoder-decoder NMT model with attention.
Specifically, we study the NMT model described in [34], known as GNMT. We use the GNMT model
and its public implementation2. Formally, given an input sequence, x1:S of length S, the NMT model

2https://github.com/tensorflow/nmt with gnmt-v2 architecture.
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first encodes the input sequence x1:S into a set of vectors z1:S = fenc(x1:S) using its encoder fenc.
The task of the decoder fdec, is to generate the translation, y1:T , one symbol at a time yi, given
the encoding, z1:S , and previously generated symbols y<i. The decoder, fdec is implemented as
a conditional sequence model [2], where the distribution over y1:T is conditioned on x1:S . The
decoder internally makes use of an attention mechanism fatt to query the encoder, summarizing z1:S
for each output symbol yi, putting it all together yi = fdec(y<i, fatt(z1:S)) (also see Figure 7 for a
detailed model schematic). Finally, the conditional probability of the target sequence is modelled as
p(y1:T |x1:S) =

∏T
i=1 p(yi|y<i,x1:S) and the log of this conditional likelihood is maximized given

a set of source-target pairs (x,y) during training.

We study models that are significantly smaller and less complex than those typically used in state-of-
the-art or production systems for the sake of research tractability. We use a single layer bidirectional
LSTM in the encoder fenc and a two layered unidirectional LSTM in the decoder fdec with an
additive attention mechanism as fatt [9]. The word embedding dimensions and each LSTM hidden
cell (both in the encoder and decoder) are set to 256. We refer to this model as the canonical model.
Unless otherwise stated, we used Adam [21] optimizer with a learning rate of 0.001, a constant
learning rate schedule, and clipped gradients to a maximum norm of 5.0 during training.

Given these hyper-parameter and architectural choices, we trained 10 canonical models with differ-
ent random seeds to observe how parameter initialization variability played a role in our results. All
additional model variants we describe later were also trained 10 times with the same 10 different
random seeds. Each model was trained for 1M steps (updates) with a mini-batch of size 128 and the
training checkpoint with the best BLEU score on the development set was selected.

The central goal of our study was to understand how various modelling choices affected the fre-
quency of hallucinations. In order to isolate the effects of modeling changes, all model variants we
study in this paper were identical to the canonical model except for a single change. This means,
for example, that our model with 512 hidden units also is 2 layers deep, etc. We performed a simple
hyper-parameter search for the canonical model, and did not perform additional hyper-parameter
searches for any additional models. All models we present are well trained with a BLEU score of
at least 20.0 on the test set using greedy decoding, a reasonable score for 2-layer models with 256
hidden units. With beam search decoding, our canonical models achieve an average BLEU score of
25.66.

Inference: Generating a translation of the input sequence, or formally finding an output se-
quence that maximizes the conditional log-probability, ŷ = argmaxylog p(y|x), is a major chal-
lenge in NMT since the exact inference (or decoding) is intractable. NMT uses approximate
decoding techniques which we also have used in this paper. The simplest approximate decod-
ing technique, greedy decoding, chooses the most-likely symbol under the conditional probability
ŷt = argmaxi log p(yt = i|ŷ<i,x1:S), outputting a single best local prediction by keeping track of
a single hypothesis k, at each time step. Another approximate decoding technique, beam search,
improves upon greedy decoding by keeping track of multiple hypotheses (beams), where k >1 at
each time step of the decoding, compared to k=1 in greedy-decoding. To maintain simplicity in our
canonical model we used greedy decoding. Note that production systems will often perform beam
search to find a more probable translation than one generated by greedy search. We also ran an
additional set of experiments with beam search.

Data: We trained all models with the German to English WMT De→En 2016 dataset (4,500,966
examples) [8], validated with the WMT De→En 2015 development set (2,169 examples). We then
used the WMT De→En 2016 test set (2,999 examples) to compute the hallucination percentage for
each model.

For the input and output of all NMT models in consideration, we used sub-word tokens extracted by
Byte-Pair Encoding (BPE) [27]. To construct a vocabulary of unique tokens, we first combined the
tokenized source and target corpora3, and then learned a joint BPE code with an 8k merge operations
budget, resulting in 12,564 unique tokens. Further, in order to study the effect of larger vocabulary
sizes, for some experiments we repeated the same process with 16,000 and 32,000 BPE codes and
ended up with vocabularies having 19,708 and 36,548 unique tokens respectively. Note that we used
the same vocabulary for both source and target side languages.

3We used Moses tokenizer: https://github.com/moses-smt/mosesdecoder/blob/master/
scripts/tokenizer/tokenizer.perl
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Algorithm 1: Computing the percentage of hallucinations in a NMT model
Select a model; Fix a random seed;
Select a group of subword tokens with the following attributes:;
- Common tokens: 100 most common subword tokens;
- Mid-frequency tokens: random sample of 100 subword tokens between common and rare

tokens;
- Rare tokens: 100 least common subword tokens;
- Punctuation: all punctuation tokens;
for every sentence in test corpus (e.g. WMT De→En 2016 test set) do

if adjusted BLEU between reference sentence and translated sentence > 0.09 then
for every selected token do

for every location in (beginning, end, second-to-end, randomly in the middle) do
put the selected token at the selected location in the byte-pair encoded input

sequence;
translate the perturbed input sequence;
if adjusted BLEU between the translated, perturbed sentence and the

translated, unperturbed sentence< 0.01 then
this sentence can be perturbed to produce a hallucination;

4 Hallucinations
Informally, a hallucination is a translation of a perturbed input sentence that has almost no words
in common with the translation of the unperturbed sentence. Here, we use the term perturb to
mean adding a single token to the input source sequence. This is based on an initial observation
that adding a rare token to an input sequence reliably caused a model to generate a hallucination,
e.g. adding a Chinese character token to a German to English translation. We expanded and sys-
tematized this discovery into a brute force search procedure (Algorithm 1) by splitting our tokens
into several types: common (100 most common German tokens), rare (100 least common German
tokens), mid-frequency tokens (randomly sampled 100 tokens from the remaining German tokens),
and punctuation tokens. Additionally, we attempted to perturb each sentence by inserting a token at
one of several positions: beginning, end, second to the end, and randomly in the middle. We did this
for every sentence in our test set and collected statistics for each model variant.

To define a quantitative threshold for a hallucination we modified the BLEU score, which is used
to compare a reference sequence with a translated sequence. Briefly, the BLEU score is a common
metric for translation, which measures weighted n-gram overlaps while penalizing short translations.
We modified the BLEU score by re-weighting the n-grams in the BLEU score computation to favor
having any words in common between the two sentences (1.0 for one-grams and 0.8 for bi-grams
and disregarded other n-grams). Then, we call only sentences that have an adjusted BLEU score of
less than 0.01 hallucinations. For examples of sentence pairs with different adjusted BLEU scores,
see Section 8.2 in the Appendix.

Not all translations are good even before adding a perturbation token to the input sequence. To
strengthen our results on hallucinations, we first excluded these poor translations by computing
the adjusted BLEU score between the reference translation and the translation produced by the
unperturbed input sequence. We kept sentences that had an adjusted BLEU of ≥ 0.09. We chose a
value of 0.09 because it seemed to maintain enough context that you could tell the translation and
the reference were related.

5 Hallucination Frequency and Reduction

5.1 Examples

We describe four common hallucination patterns: (1) grammatically correct output that bears no
relation to the input text, (2) ungrammatical output with oscillatory structure, (3) output that remains
largely in the source language, and finally (4) terse jumps to the end of the sequence. We also
observe translations that are ungrammatical nonsense. While still highly undesirable, we note that a
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user should at least be able spot and reject these additional hallucination patterns. See the Appendix
section 8.3 for more examples.

Source: Freundschaft schließen durch Backen.
Reference: Make friends through baking.
Perturbation: Added ich:I randomly in sentence.
Grammatically correct hallucination:Should you want to join us?

Source: Monatelang war hinter verschlossenen Türen verhandelt, gegrübelt,
debattiert und gezeichnet worden.

Reference: Plans have been negotiated, mulled over, debated, and plotted
behind closed doors for months.

Perturbation: Added uns:we at the beginning of the sentence.
Oscillatory hallucination: In the month of the month of the month of the

month of the month of the month, it was a matter of course.

Source: Neue Verhandlungen mit den Piloten
Reference: New negotiations with pilots
Perturbation: Added mit:with randomly in sentence.
Source language hallucination: Neuist e mehr Jahren mit der Piloten d

Source: Für die Fed-Repräsentanten beeinflussen die Marktturbulenzen die
komplexe Kalkulation , wann man die Zinsen erhöhen solle.

Reference: For Fed policymakers, the market turmoil adds to the complex
calculus of when to raise the interest rate.

Perturbation: Add uns:we randomly in sentence.
End of sequence hallucination: For FF.C.

5.2 Frequency of Hallucinations

We show that hallucinations can be easily evoked by inserting tokens in the source sequence. We
used Algorithm 1 to quantify how susceptible a given model is to hallucination. In particular, we
studied what types of perturbations (location, and token type) are more effective at inducing hallu-
cinations. With this method, we found that, on average, 73% of all sentences in the WMT De→En
test set can be perturbed to hallucination in the canonical model.

We studied how beam search, number of hidden units, vocabulary size, and decoding scheme af-
fected hallucination percentages (Figure 1, left). We found that changing the number of hidden units
to both 512 and 1024 from 256 and changing the vocabulary size–from 8K to 16K BPE codes did
not significantly decrease the hallucination percentage. However, beam search and a vocabulary size
increase corresponding to 32K BPE codes did significantly lower the mean percentage of hallucina-
tions. We also studied how different types of perturbations impacted the hallucination percentage of
the canonical model (Figure 1, right). By far, adding a perturbing token to the beginning of the input
sequence induces the most hallucinations in the canonical model.

We were curious if BLEU scores were predictive of hallucination percentage. We plot the BLEU vs.
hallucination percentage of all models we study (Figure 2). Surprisingly, we found that hallucination
percentage does not decrease as BLEU score increases. However, since we did not study all possible
models, we urge caution in interpreting these results.

5.3 Reducing hallucination frequency

What changes can we make to the model to make it more robust to hallucinations? We investigated
the effect of three different methodologies, (1) simple regularizations, (2) data augmentation and (3)
regularizations on the dynamics in state space. We tested if a model variation significantly reduces
hallucinations by performing a one-sided Mann–Whitney U between the canonical distribution of
models and the distribution of models that use the model variant. We use a p-value of 0.05.

Simple Regularizations: We choose dropout, L2 regularization on embeddings (L2E), L2 regu-
larization on recurrent weights (L2R) and L2 regularization on all weights (L2) as straight-forward
regularization techniques to be applied. For dropout, we created a model with dropout in all feed-
forward layers, with a keep probability of 0.9. Next, we implemented L2 regularization on the
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Figure 1: Hallucination percentages. (A.) Percentage of all test set sentences that can be perturbed to halluci-
nation (using any type of hallucination token at any location) as a function of model variant: canonical, beam
search decoding, number of hidden dimensions (512 and 1024), and vocabulary size (16K and 32K BPE codes).
Red stars indicate model variant hallucination % is statistically lower than the hallucination % in the canonical
model. (B.) Hallucination percentages as a function of perturbation token type and position inserted in the input
sentence over all canonical model random seeds. Any particular statistic, e.g. common% is computed over all
perturbation locations, likewise begin% averages over all perturbing token types.

Figure 2: Relationship between BLEU score and hallucination percentage for all models. We do not find
hallucination percentage decreases as BLEU score increases. We found a correlation coefficient of .33 between
BLEU and hallucination percentage with a significant p-value (p < 0.001). While the correlation is significant,
we cautiously interpret these results because we do not fully explore the space of all possible models. The
Transformer models are the only models we analyzed with < 20 BLEU which we explain in section 5.3. For
the expansion of acronyms, please also see section 5.3.

token-embeddings and throughout the entire model with weighting hyperparameters of 1× 10−4

and 1× 10−5, respectively.

Data augmentation (DA): We augmented the training data by perturbing all training sentences with
a random token (either common, rare, mid-frequency, or punctuation) at either the beginning, end,
second-to-end, or randomly in the middle while keeping the reference translation the same. This
doubled our training set. We then trained a canonical model with the augmented training set, and
found that data augmentation helps decrease hallucination percentages. We call this model DA.

Dynamical Regularizations: We wondered if hallucinations could be reduced by providing a more
exact initial state for the decoder, so we trained additional models where the initial state of the
decoder was tied to last step of the encoder (TDIS). Note that the canonical model sets the decoder
initial state as a vector of zeros. As a second regularization method that operates on the state space,
we used Chaos-free network (CFN) [22] which by premise cannot produce chaos. We replaced the
LSTM cell with the CFN in a set of experiments, again using 256 hidden units.

Dropout, L2E, and DA all resulted in statistically significant decreases in hallucination percentage,
with DA being by far the most effective at decreasing hallucinations. On the contrary, switching out

Figure 3: Hallucination percentages
for model variants: dropout, L2E,
L2R, L2, CFN, DA, TR, and tied de-
coder initial state (TDIS). The red
stars denote a statistically significant
difference (p < 0.05) between the
hallucination % of the model variant
and the canonical model.
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LSTM cells for CFN cells resulted in a significant increase in the hallucination percentage. Finally,
linking the initial state of the decoder with the final state of the encoder had no statistical effect on
the hallucination percentage.

Although data augmentation dramatically reduced hallucinations in the canonical model, it requires
knowing the kind of perturbations that one would use to induce a hallucination. To study how fine
grained one’s knowledge must be, we trained the canonical model on a different training set where
we withheld two types of data augmentation: perturbing at the beginning or with common tokens
(We call this model DA w/o beginning or common). We then compared this model with the canonical
model trained with the full DA training set (Figure 4). We found that DA w/o beginning or common
yields much higher hallucination percentages when tested by perturbing at the beginning or with
common tokens in comparison to the DA model. However, we also saw a reduction in hallucination
percentage for common and beginning tokens when compared to the canonical model. This indicates
that DA can still provide some protection against hallucinations, even if exact perturbations are not
known.

Figure 4: Effects of data augmented (DA) training when including all perturbation types vs excluding com-
mon and beginning perturbation types. We trained two models, one including all perturbations types for DA
training, and the other excluding common and beginning perturbation types. We then examined the halluci-
nation percentage of each perturbation type for both of these models and studied whether a DA model would
be less prone to hallucinate when perturbed with types of tokens or positions it had not been trained against.
Red star shows that DA w/o beginning or common had statistically significantly reduced mean compared to the
canonical model trained without DA.

Additionally, we wondered if hallucinations were present in NMT architectures that were not recur-
rent. Thus, we studied the Transformer model (TR) [33]. To make our results easily accessible to
NMT practitioners, we chose a hyperparameter set from those given in the popular Tensor2Tensor
library4 that was closest to our cutoff BLEU score when using greedy decoding. These models are
trained with the parameters from transformer tiny (2 hidden layers, 128 hidden size, 512 filter size,
and 4 heads) and have a greedy BLEU score of 17.5, which is a little lower than our GNMT mod-
els. We find the transformer model hallucinates significantly less than the canonical model, but can
still be perturbed to hallucinate on average 15% of the time (Figure 3). We present these results
with many caveats. Unlike the canonical model, this model is trained with many types of regular-
ization (dropout, attention dropout, label smoothing, relu dropout, and a larger batch size) and a
longer input sequence length (256 versus 50 in the canonical model). Unfortunately, training with
no regularization or a sequence length of 50 dramatically reduced the BLEU score for parameter
combinations we tried, and thus we decided to present these results with caveats instead of a model
without regularization and a comparable sequence length.

6 Analysis of hallucinations
6.1 Attention matrices

We observed a large difference between attention matrices of normal translations and of hallucina-
tions. Attention networks in normal translations tend to study the entire input sequence throughout

4https://github.com/tensorflow/tensor2tensor

7



decoding. In French to English and other language pairs that are grammatically aligned (German
to English is somewhat aligned), this often results in a strong diagonal in the attention matrix. The
attention matrix, when translating hallucinations, however, shows the model attending to a few to-
kens. We give an example comparison in Figure 5, top panels. For additional attention matrices, see
Section 9.

We wanted to quantify this difference in a way that does not require strong alignment between lan-
guages, i.e. one expects English to French to result in a largely diagonal matrix but not English to
Turkish, so we used information entropy to compute a statistic that described the difference between
attention matrices during a decode that resulted in a hallucination and those that resulted in a normal
translation. Specifically, at each output of the decoder, the attention network gives a distribution
over input tokens. We averaged these distributions across all decoded output tokens, resulting in a
distribution of average attention weight over the input tokens. We treated this as a discrete distribu-
tion and computed the entropy, −

∑
t p(xt) log p(xt), where xt is the input token at time t, for each

example, resulting in a distribution of entropy values over all decoded sequences.

We then compared the entropy of average attention distributions between hallucinations and correct
translations (Figure 5, bottom panels). This figure shows a significant difference between the entropy
values for hallucination sequences. As a control, we show there is no significant difference between
original input sequences and perturbed input sequences for sentences that cannot be perturbed to
hallucination. Note that, in real world scenarios where a ground truth translation is not available, the
measure of entropy of the average attention distribution may be useful to detect hallucinations.

The breakdown of the attention module seems to signal that the encoder and the decoder have been
decoupled, and the decoder ignores context from the encoder and samples from its language model.
Two possibilities are that broken attention modules are the root cause of decoupling, or they are a
symptom of further breakdown in the dynamics of the decoder.

6.2 Statistics and stability of decoder when perturbed

Examining the causes and types of hallucinations: instability of translation, translations decoupled
from the input, and oscillations in translations, led us to believe that hallucinations result from a
dynamical process gone wrong in the decoder (which might be caused by the encoder or attention
module). Further, many model variants that decrease hallucinations (like L2 regularization) can be
viewed as regularizing the dynamics of the model. Thus, we explore differences in the decoder
between translating a hallucinating or non-hallucinating sentence by comparing the hidden states of
the decoder and analyzing the stability of the system (Figure 6).

In this section, we are interested in how perturbations change the decoding pipeline and thus study
an unchanged, input sentence (which we call ”original” and denote by xo) and its perturbations
(xp). We perturbed all source sentences in the test set with all types of tokens (common, rare,
mid-frequency, and punctuation) at all locations (beginning, end, second-to-end, and randomly) and
sorted all perturbations into two groups: those that result in hallucinations and those that do not.

We hypothesize that differences in translation occur early in decoding and focus on the first timestep
the decoder receives context from the encoder, t = 1. We studied both the distance between (left
panel) and ratio of the norms (middle panel) of the perturbed decoder hidden states h1(xp) and the
original decode, h1(xo), at decode t = 1. Both resulted in obviously different distributions as a
function of whether the perturbation resulted in a hallucination. Given these differences (Figure
6), it seemed natural to attempt to causally reduce the number of perturbations by re-normalizing
h1(x

p) to the norm of h1(xo). We tried this for all perturbations of all original sentences in our test
set and did not see a reduction in hallucination percentage.

We wondered if a hallucination results from exciting an unstable mode of the decoder early in the
decode. To study this, we defined an unstable subspace of the original decode U(xo) as the subspace

spanned by the eigenvectors of
[(

∂h1

∂h0
(xo)

)T (
∂h1

∂h0
(xo)

)]
with corresponding eigenvalues greater

than 1. We projected the normalized hidden state of the perturbed input, xp, onto this subspace

E(xo,xp) ≡ |ĥ1(x
p)TU(xo)|2

|ĥ1(xo)TU(xo)|2
, (1)
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Figure 5: The attention matrix can reveal hallucinations. The attention matrix shows how much weight is
applied to each token in the source sequence while decoding each token in the resulting translated sequence.
A. Normal translations produce attention matrices that show a distribution of weight across most tokens in
the source sequence throughout decoding (x-axis source sequence, y-axis decoded sequence). B. However,
during hallucinations, the attention network tends to place weight on only a few input tokens. We can see
the majority of the weight throughout decoding is placed on the ”.” in the source sequence. C, D. We used
an entropy measure to quantify how distributed the attention is over the input source sequence. Shown are
the distributions for normal translations C. and hallucinations D. for the original (blue) and perturbed (green)
attention entropy values. Mean of the entropy distributions for hallucinations are statistically significantly
different (Mann–Whitney U test, p < 0.05).

where ĥ is h normalized to 1. We did this for every original sentence in our test set that had at least
10 hallucinations (around half of all original sentences). We show the count (up to 10) of perturbed
sentences such that E(xo,xp) > 1 when xp resulted in a hallucination (red) and when it did not
(blue) in Figure 6 (right panel).

Finally, we also studied the stability exponents of the decoder, focusing on how eigenvalues of
the Jacobian, ∂hT

∂h0
(x), of the hidden states of the decoder changed as a function of whether or not

a perturbation resulted in a hallucination for models trained with and without data augmentation
(Shown in Appendix 10).

Figure 6: We compared the hidden states of the decoder for both types of perturbed sentences, hallucinating
(red) and non-hallucinating (blue), with the hidden states of the decoder of the original sentence. The total
area of each histogram is normalized to 1. A. Distance between the hidden state of the decoder for perturbed
sentence and the original sentence, ‖h1(x

p)−h1(x
p)‖. B. Ratio of the norm of the hidden states of the decoder

of the perturbed sentence and the original sentence, |h1(x
p)|/|h1(x

o)|. C. The number of original sentences
(y-axis) that have 0 < n < 10, (x-axis) perturbed decodes with E(xo,xp) > 1 (see text).
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7 Discussion
In this paper we uncovered and studied a hallucination-like phenomenon whereby adding a single
additional token into the input sequence causes complete mistranslation. We showed that halluci-
nations are common in the NMT architecture we examined, as well as in its variants. We note that
hallucinations appear to be model specific. We showed that the attention matrices associated with
hallucinations were statistically different on average than those associated with input sentences that
could not be perturbed. Finally we proposed a few methods to reduce the occurrence of hallucina-
tions.

Our model has two differences from production systems. For practical reasons we studied a small
model and used a limited amount of training data. Given these differences it is likely that our model
shows more hallucinations than a quality production model. However, given news reports of strange
translations in popular public translation systems [13], the dynamical nature of the phenomenon,
the fact that input datasets are noisy and finite, and that our most effective technique for preventing
hallucinations is a data augmentation technique that requires knowledge of hallucinations, it would
be surprising to discover that hallucinations did not occur in production systems.

While it is not entirely clear what should happen when a perturbing input token is added to an input
source sequence, it seems clear that having an utterly incorrect translation is not desirable. This
phenomenon appeared to us like a dynamical problem. Here are two speculative hypotheses: perhaps
a small problem in the decoder is amplified via iteration into a much larger problem. Alternatively,
perhaps the perturbing token places the decoder state in a poorly trained part of state space, the
dynamics jump around wildly for while until an essentially random well-trodden stable trajectory is
found, producing the remaining intelligible sentence fragment.

Many of our results can be interpreted from the vantage of dynamical systems as well. For example,
we note that the NMT networks using CFN recurrent modules were highly susceptible to perturba-
tions in our experiments. This result highlights the difficulty of understanding or fixing problems in
recurrent networks. Because the CFN is embedded in a larger graph that contains an auto-regressive
loop, there is no guarantee that the chaos-free property of the CFN will transfer to the larger graph.
The techniques we used to reduce hallucinations can also be interpreted as dynamical regulariza-
tion. For example, L2 weight decay is often discussed in the context of generalization. However, for
RNNs L2 regularization can also be thought of as dynamically conditioning a network to be more
stable. L2 regularization of input embeddings likely means that rare tokens will have optimization
pressure to reduce the norm of those embeddings. Thus, when rare tokens are inserted into an in-
put token sequence, the effects may be reduced. Even the data augmentation technique appears to
have stability effects, as Appendix 10 shows the overall stability exponents are reduced when data
augmentation is used.

Given our experimental results, do we have any recommendations for those that engineer and main-
tain production NMT systems? Production models should be tested for hallucinations, and when
possible, the attention matrices and hidden states of the decoder should be monitored. Our results
on reducing hallucinations suggest that standard regularization techniques such as Dropout and L2
weight decay on the embeddings are important. Further, data augmentation seems critical and we
recommend inserting randomly chosen perturbative tokens in the input sentence as a part of the
standard training regime (while monitoring that the BLEU score does not fall). We note a down-
side of data augmentation is that, to some extent, it requires knowing the types of the pathological
phenomenon one desires to train against.
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8 Appendix
8.1 NMT Decoder Schematic

Figure 7: Schematic of the NMT decoder. The input sequence, x1:S , is encoded by a bidirectional
encoder (not shown) into a sequence of encodings, z1:S . The attention network, fatt, computes a
weighted sum of these encodings (computed weights not shown), based on conditioning information
from h and provides the weighted encoding to the 2-layer decoder, fdec, as indicated by the arrows.
The decoder proceeds forward in time producing the translation one step at a time. As the decoder
proceeds forward, it interacts with both the attention network and also receives as input the decoded
output symbol from the previous time step.

8.2 Adjusted BLEU score

Examples of pairs of sentences with different adjusted BLEU scores are as follows:

BLEU: 0.5
Sent 1: The role you play when creating the news is very important.
Sent 2: The part you play in making the news is very important.

BLEU: 0.09:
Sent 1: At the moment, men are overweighed by men.
Sent 2: Currently the majority of staff are men.

BLEU: 0.05:
Sent 1: Austria has also introduced controls to its southern and eastern boundaries.
Sent 2: The German government has also established the most recent and national
and international government institutions.

BLEU: 0.01:
Sent 1: &quot; But then, suddenly, our small Jumbo was there &quot;, says Brigitte Probst.
Sent 2: Scientists, who are not in the right place, are not in the right place.

BLEU: 0.001:
Sent 1: Mr Corbyn said that Angela Eagle, the shadow of Economic Minister, will be
represented in the economic minister, when he does not participate-for example, when
Mr. Cameron is on the
Sent 2: Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr.
Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr.
Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr.

As seen above, an adjusted BLEU score of < 0.01 means the two sentences have very few words in
common.
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8.3 Additional Examples
Additional examples of perturbed input sentences. For many sentences, there were more than one
combination of token and position that caused a hallucination. In those cases, we give several
examples of different perturbations and their hallucinations.

’@@’ indicates a subword token. For example, perturbing the beginning of the sentence ”Vor elf...”
with g@@ would give: ”gVor elf...”

Source: Vor elf Jahren sitzt Sufjan Stevens auf der Bühne im Kölner Prime Club (heute: Luxor).

Reference: Eleven years ago, Sufjan Stevens sits on the stage in the Prime Club (now Luxor) in Cologne.

NMT Translation: About eleven years ago Sufjan Stevens sits on the stage in Cologne Prime Club (today: Luxor).

Beginning: g@@ : EPEFA is the first year of the year.

Beginning: P@@ : It is possible to take a look at the location of the hotel.

Randomly: P@@ : It is possible to take a look at the location of the hotel.

Source: Die Leichen von 29 Toten werden von Muslimen bei den ersten Begräbnissen in Mekka durch die Straßen getragen

Reference: Bodies of 29 of the dead carried through the streets by Muslims as the first funerals take place in Mecca

NMT Translation: The bodies of 29 dead are carried by Muslims at the first slopes in Mecca by the streets.

Beginning: er@@ : I didn &apos;t hesitate to hesitate to contact me.

Beginning: d : EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Source: Caldiero sprach mit E! Nachrichten nach dem hart erkämpften Sieg, noch immer unter dem Schock über den Gewinn des

Großen Preises von 1 Million $.

Reference: Caldiero spoke with E! News after the hard-fought victory, still in shock about winning the $1 million

grand prize.

NMT Translation: Caldiero spoke with E, after the hard won victory, still under the shock of the winning of the Grand

Prix of 1 million $.

Beginning: mit : It was said to have a lot of fun in the world.

Beginning: werden : Don’t hesitate to contact us, if you want to be able to pay for you.

Beginning: dass : I &apos;m looking forward to having a lot of money.

Beginning: wird : I &apos;m looking forward to hearing from you.

Beginning: ( : I &apos;m sure to say that I &apos;m looking for a lot of fun.

Beginning: ) : I &apos;m looking forward to hearing from the band.

Beginning: ich : Thus, we are looking forward to hearing from you.

Beginning: t : If you &apos;re looking for a woman, you &apos;ll be able to get a lot of money.

Beginning: : : Everyone who has been able to do so, is to say that it is not a good thing to do.

Beginning: hat : Everyone who has been able to do so, is the most important thing to do.

Beginning: wie : Two years ago, he was born in the 19th century, and he was born in the 19th century.

Beginning: einen : I &apos;m looking forward to having a lot of money.

Beginning: Ich : Don’t hesitate to contact us, if you have any questions or questions you may have.

Beginning: A@@ : If you are looking for a lot of fun, you &apos;ll be able to find out more about it.

Beginning: d@@ : AVI said, &quot; I &apos;m looking forward to having a lot of money.

Beginning: Ver@@ : Looking for a lot of fun, we have a lot of fun in the world.

Beginning: nur : I &apos;m looking forward to having a lot of work.

Beginning: uns : Beautiful Williams, which is the most important thing to do.

Beginning: durch : FAQUEVE THE WILL WITH THE WILL WITH THE WITH THE WITH THE WITH THE WITH THE WITH

Beginning: kann : Don’t hesitate to contact us, but you will be able to find out more.

Beginning: P@@ : Click here to see how you &apos;re going to do this.

Beginning: Der : This is the reason why I have to say that it is not the case that it is possible to have a look at the fact

that it is not possible to find out more.

Second to end: können : I am looking forward to hearing from you.

Second to end: o : We are looking forward to hearing from you.

Second to end: de : We are looking forward to hearing from you.

Randomly: auf : After the day, we have a lot of fun in the world.

Randomly: im : Surrounded by a lot of people, we have a lot of fun.

Source: Wer an einer posttraumatischen Belastungsstörung erkrankt ist, leidet unter anderem an sogenannten Flashbacks mit

Atemnot, Schwindel, Herzrasen und Todesängsten.

Reference: Those who suffer from post-traumatic stress disorder suffer among other things from so-called flashbacks,

difficulties in breathing, dizziness, palpitations and fear of death.

NMT Translation: Those who are suffering from a post-traumatic stress, suffer from the so-called flashbacks with breathing,

darkness, heart, and death.

Beginning: mit : It is one of the oldest in the world.

Beginning: Sie : It is one of the oldest in the world.

Beginning: werden : Don’t hesitate to contact us at any time.

Beginning: dass : For example, you will be able to find the right place for you.

Beginning: sind : Amongst other things, you will be able to enjoy a breathtaking view of the city.

Beginning: wird : There are also some of the world’s most important tourist attractions.

Beginning: ) : It is one of the oldest in the world.

Beginning: als : The hotel is located in the heart of the city.

Beginning: e@@ : It is also an ideal place for you.

Beginning: Ver@@ : Amongst other things, you will be able to find the right place for you.

Beginning: nur : OSA is one of the most popular in the world.

Beginning:! : For example, it is also possible to find the right place for your stay.

Source: Laut den Medienberichten sei jedenfalls in der Früh ein erster Bus mit rund 50 Flüchtlingen in der serbischen

Grenzstadt Sid angekommen, im Lauf des Tages würden weitere Busse erwartet.

Reference: According to media reports, at least one bus with around 50 refugees arrived in the Serbian border town of Sid

in the early hours, and in the course of the day more buses are expected.

NMT Translation: According to the media report, at least in the morning, a first bus with about 50 refugees arrived in the

Serb border town of Sid would expect more buses.

Beginning: werden : Don’t hesitate to contact us at any time of your visit.

Beginning: wir : If you are looking for a busy day, then you &apos;ll find the most important thing to do.

Beginning: Ich : Don’t hesitate to contact us at any time of your visit.

Beginning: Wir : d Laut den Medienberfüre sei jederzeit einen ersten Bus einem ersten Bus mit rund 50 Rechtlingen im

Serbischen Grenzstadt Sid, im Lauf der Tage would der weiteren Busse a</s>

Beginning: kann : Don’t hesitate to contact us at any time.

Source: Neue Verhandlungen mit den Piloten
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Reference: New negotiations with pilots

NMT Translation: New negotiations with the pilots

Beginning: Die : dass Neue News bis die Piloten

Beginning: ich :

Beginning: &quot; : en Neue Negotiations mit den Piloten d

Beginning: einen : en Neue Negotiations mit den Piloten

Beginning: Das : de Neue News mit den Piloten

Beginning: Wir : d Neue Neue negotiations mit den Piloten d

Beginning: kann : de Neue Neue negotiations mit den Piloten die Piloten

Beginning: c@@ : durch Neue Neue negotiations mit den Piloten

Randomly: mit : Neuist e mehr Jahren mit der Piloten d

Randomly: kann : de Neue Neue negotiations mit den Piloten die Piloten

Source: Für die Fed-Repräsentanten beeinflussen die Marktturbulenzen die komplexe Kalkulation, wann man die Zinsen

erhöhen solle.

Reference: For Fed policymakers, the market turmoil adds to the complex calculus of when to raise the interest rate.

NMT Translation: For the Fed-Representatives, the market turbos influence the complex calculation, when we increase the

interest rate.

Randomly: uns : For FF.C.

Source: Schon länger war bekannt, dass es unter der Eisdecke von Enceladus flüssiges Wasser geben muss.

Reference: It has long been known that there must be liquid water under Enceladus &apos;s crust of ice.

NMT Translation: It was already well known that there must be fluid water under the ice cup of Enceladus.

Beginning: Ich : I am looking forward to hearing from you.

Source: Freundschaft schließen durch Backen.

Reference: Make friends through baking.

NMT Translation: Friendship by baking by baking.

Randomly: ich : Should you want to join us?

Source: In der Gesellschaft hat sich - auch wegen des Fachkräftemangels - mehrheitlich die Sichtweise durchgesetzt, dass

Flüchtlingen schneller der Zugang zum Arbeitsmarkt ermöglicht werden sollte.

Reference: As far as the majority of society is now concerned, particularly in view of skills shortage, refugees should be

allowed to gain faster access to the job market.

NMT Translation: Most of the time in the company - even because of the lack of expert labour - a majority of the view that

refugees should be made faster from access to the labour market.

Beginning:! : Unfortunately, it is not possible to have a look at the situation.

Source: Monatelang war hinter verschlossenen Türen verhandelt, gegrübelt, debattiert und gezeichnet worden.

Reference: Plans have been negotiated, mulled over, debated, and plotted behind closed doors for months.

NMT Translation: Monatelang has been negotiating, debated and drawn behind closed doors.

Beginning: un@@ : In the month of the month of the month of the month of the month of the month, it was a matter of course.

Beginning: uns : During the month of the month of the month, it was a matter of course that it is not possible for us

to take a look.

Randomly: a@@ : During the month of the month of the month, it was not possible to have the opportunity to take a look

at the situation.

Randomly: o@@ : During the month of the month of the month of the month, it was a matter of course that it was not

possible to have a look at the situation.
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9 Additional Attention Matrices
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Figure 8: Example attention matrices. (left) Attention matrix for the original input sentence. (right) Atten-
tion matrix for the perturbed input sentence. All translations of the perturbed input sentence shown here are
hallucinations. All decoding was done with the canonical model.

10 Stability analysis of the decoder

We defined a spectrum of stability exponents for the decoder and compared them between normal
translations and hallucinations (Figure 9). Concretely, we studied the stability of the decoder as a
function of a given input token sequence, x1:S of length S (denoted x below). The sequence x1:S

is run through the encoder, whose output is processed by the attention network, finally delivering an
input to the decoder. For a given input token sequence, the decoder runs until it produces an end-
of-sequence token, resulting in an output token sequence y1:T of length T (or reaches a maximal
decoded sequence length T > 3S). We were interested in studying ∂hT

∂h0
= ∂hT

∂hT−1
· · · ∂h1

∂h0
as many

stability properties can be deduced from it. We note that if one is interested in studying ∂ht

∂xs
, the

iterative process described by ∂hT

∂h0
would still be critical to understand due to the chain rule.

We defined our spectrum of stability exponents, in analogy with Lyapunov exponents, but adapted
for finite time by studying a finite-time version of Oseledets matrix, typically used in the study
of chaotic dynamical systems. In particular, the ith stability exponent is defined as λi(x) =
1
2T log (αi(x)), where αi(x) is the ith eigenvalue of the positive-semidefinite symmetric matrix(
∂hT

∂h0
(x)
)T (

∂hT

∂h0
(x)
)

and h(t) is the decoder state at time t concatenated across all layers. We
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used auto-differentiation software to exactly compute the Jacobian ∂hT

∂h0
(x) so the complexities of

the decoder circuitry were handled naturally (shown in Appendix, Section 8.15.

We show the distribution of stability exponents, comparing between all input sequences that could
be made to hallucinate, and all those that could not (Figure 9). We show these for both the canonical
model and the model trained with data augmentation. There are two observations. First, means of
the distribution of the stability exponents for the canonical model, averaged over those sentences that
could be perturbed to hallucinate, are statistically different than exponents averaged over sentences
that could not be perturbed to hallucinate. Second, the distributions of the model trained with data
augmentation show significantly reduced exponents in comparison to the canonical model.

Figure 9: Stability analysis of hallucinations vs. normal translations. (top left) Distribution of stability
exponents for canonical model for unperturbed (blue) and perturbed, no hallucination (red) input sequences
that resulted in a normal translation (Median (dots) and 25% and 75% quartiles (solid lines) shown). (top
right) Same, but translations that could be perturbed to hallucinate (blue - unperturbed, red - hallucination).
Red stars denote statistical significance (U test, p < 0.001) in the difference in stability exponents between
perturbed and unperturbed compared between normal translations and hallucinations. (bottom left, right)
Same as top, except for model trained with data augmentation.

5Methodologically, we note that it is typical to compute Lyapunov exponents using the algorithm of [5]. This
is because studying the long-time behavior of dynamical systems typically requires many thousands of system
iterations. We studied the numerical stability of our direct approach to computing our stability exponents using
random chaotic RNNs [28] and found that the direct approach was more than adequate for short sequences and
reasonable condition numbers, so we stayed with the simpler, direct approach.
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