
Under review as a conference paper at ICLR 2020

UNDERSTANDING KNOWLEDGE DISTILLATION IN
NON-AUTOREGRESSIVE MACHINE TRANSLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-autoregressive machine translation (NAT) systems predict a sequence of out-
put tokens in parallel, achieving substantial improvements in generation speed
compared to autoregressive models. Existing NAT models usually rely on the
technique of knowledge distillation, which creates the training data from a pre-
trained autoregressive model for better performance. Knowledge distillation is
empirically useful, leading to large gains in accuracy for NAT models, but the
reason for this success has, as of yet, been unclear. In this paper, we first de-
sign systematic experiments to investigate why knowledge distillation is crucial
to NAT training. We find that knowledge distillation can reduce the complexity of
data sets and help NAT to model the variations in the output data. Furthermore,
a strong correlation is observed between the capacity of an NAT model and the
optimal complexity of the distilled data for the best translation quality. Based
on these findings, we further propose several approaches that can alter the com-
plexity of data sets to improve the performance of NAT models. We achieve the
state-of-the-art performance for the NAT-based models, and close the gap with the
autoregressive baseline on WMT14 En-De benchmark.1

1 INTRODUCTION

Traditional neural machine translation (NMT) systems (Bahdanau et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017) generate sequences in an autoregressive fashion; each target token is predicted
step-by-step by conditioning on the previous generated tokens in a monotonic (e.g. left-to-right)
order. While such autoregressive translation (AT) models have proven successful, the sequential de-
pendence of decisions precludes taking full advantage of parallelism afforded by modern hardware
(e.g. GPUs) at inference time. On the other hand, there is a recent trend of non-autoregressive trans-
lation (NAT) models (Gu et al., 2018; Lee et al., 2018), trading the model’s capacity for decoding
efficiency by making it possible predict the whole sequence or multi-token chunks of the sequence
simultaneously. Such a non-autoregressive factorization assumes that the output tokens are indepen-
dent from each other. However, this assumption obviously does not hold in reality and as a result
NAT models generally perform worse than standard AT models.

One key ingredient to reducing the performance degradation of NAT models that is used in almost
all existing works (Gu et al. (2018); Lee et al. (2018); Stern et al. (2019), inter alia) is creation of
training data through knowledge distillation (Hinton et al., 2015). More precisely, sequence-level
knowledge distillation (Kim & Rush, 2016) – a special variant of the original approach – is applied
during NAT model training by replacing the target side of training samples with the outputs from a
pre-trained AT model trained on the same corpus with a roughly equal number of parameters. It is
usually assumed (Gu et al., 2018) that knowledge distillation’s reduction of the “modes” (alternative
translations for an input) in the training data is the key reason why distillation benefits NAT training.
However, this intuition has not been rigorously tested, leading to three important open questions:

• Exactly how does distillation reduce the “modes”, and how we could we measure this reduction
quantitatively? Why does this reduction consistently improve NAT models?

• What is the relationship between the NAT model (student) and the AT model (teacher)? Are
different varieties of distilled data better for different NAT models?
1Code will be released after the review period.

1

Under review as a conference paper at ICLR 2020

• Due to distillation, the performance of NAT models is largely bounded by the choice of AT
teacher. Is there a way to further close the performance gap with standard AT models?

In this paper, we aim to answer the three questions above, improving understanding of knowledge
distillation through empirical analysis over a variety of AT and NAT models. Specifically, our con-
tributions are as follows:

• We first visualize explicitly on a synthetic dataset how modes are reduced by distillation (§3.1).
Inspired by the synthetic experiments, we further propose metrics for measuring complexity and
faithfulness for a given training set. Specifically, our metrics are the conditional entropy and
KL-divergence of word translation based on an external alignment tool, and we show these are
correlated with NAT model performance (§3.2).

• We conduct a systematic analysis (§4) over four AT teacher models and six NAT student mod-
els with various architectures on the standard WMT14 English-German translation benchmark.
These experiments find a strong correlation between the capacity of an NAT model and the opti-
mal dataset complexity for the best translation quality.

• Inspired by these observations, we propose approaches to further adjust the complexity of the
distilled data in order to match the model’s capacity (§5). We also show that we can achieve the
state-of-the-art performance for NAT and largely match the performance of the AT model.

2 BACKGROUND

2.1 NON-AUTOREGRESSIVE NEURAL MACHINE TRANSLATION

In order to model the joint probability of the output sequence y, NMT models usually generate each
output token conditioned on the previous generated ones p(y|x) =

∏T
t=1 p(yt|y<t,x), known as

the autoregressive factorization. To generate a translation from this model, one could predict one
token at a time from left to right and greedily take arg max over each output probability distribution.
Besides greedy decoding, beam search is often employed to generate better translations by consid-
ering a fixed number of hypotheses. In this work, we study non-autoregressive translation (NAT), a
special subset of NMT models with an additional restriction (zeroth-order Markov assumption) upon
the output predictions or a subset thereof. The simplest formulation of an NAT model independently
factors the conditional distribution: p(y|x) =

∏T
t=1 p(yt|x).

Standard NAT models (Gu et al., 2018) adopt a similar architecture as the Transformer (Vaswani
et al., 2017) and make non-autoregressive predictions for the entire sequence with one forward pass
of the decoder. However, because multiple translations are possible for a single input sentence
(the so-called multi-modality problem; Gu et al. (2018)), vanilla NAT models can fail to capture
the dependencies between output tokens and tend to make egregious mistakes such as outputting
tokens repeatedly. To improve the model’s ability to handle multi-modality, recent works have
incorporated approaches including (1) relaxing the fully non-autoregressive restriction and adopting
K decoding passes (instead of just one) to iteratively refine the generated outputs (Lee et al., 2018;
Ghazvininejad et al., 2019; Wang et al., 2018; Stern et al., 2018; 2019; Gu et al., 2019); (2) using
latent variables (Kaiser et al., 2018; Ma et al., 2019; Shu et al., 2019) or structured information such
as syntax trees (Akoury et al., 2019) to capture translation variation; (3) training NAT models with
objectives other than maximum likelihood (Wang et al., 2019; Wei et al., 2019; Shao et al., 2019)
which ameliorates the effects of multi-modality. However, to achieve competitive performance with
the autoregressive model, almost all existing NAT models rely on training using data distilled from
a pre-trained AT model instead of the real parallel training set, as described below.

2.2 SEQUENCE-LEVEL KNOWLEDGE DISTILLATION

Knowledge distillation (Liang et al., 2008; Hinton et al., 2015) was originally proposed for train-
ing a weaker student classifier on the targets predicted from a stronger teacher model. A typ-
ical approach is using the label probabilities produced by the teacher as “soft targets” qi =
exp(zi/τ)

/∑
j exp(zj/τ) for training the student model, where qi and zi are the probability and

the logit of class i respectively and τ is the temperature. Prior work has shown the effectiveness

2

Under review as a conference paper at ICLR 2020

of adopting knowledge distillation in adversarial defense (Papernot et al., 2016), neural network
compression (Howard et al., 2017), and fast inference of speech synthesis (Oord et al., 2018).

In the context of sequence generation, Kim & Rush (2016) extend knowledge distillation to the
sentence level using “hard targets” from a pretrained large teacher model to train a small sequence
generation model. More precisely, the teacher distribution q(t|x) is approximated by its mode:
q(t|x) ≈ 1{t = arg maxt∈T q(t|x)} with the following objectives:

Lseq-KD = −Ex∼data

∑
t∈T

q(t|x) log p(t|x)

≈ −Ex∼data,ŷ=argmax
t∈T

q(t|x) [log p(t = ŷ|x)] ,
(1)

where t ∈ T is the space of possible target sequences. This can also be seen as a special case
of the standard distillation over the sentence space when the temperature τ approaches 0, which is
equivalent to taking the arg max over all feasible translations. While the “hard target” ŷ is the most
likely translation predicted by the teacher, in practice we use beam search as an approximation. As
mentioned earlier, almost all the existing literature trains NAT models using sequence-level knowl-
edge distillation from a pre-trained AT model to achieve competitive performance. Particularly, it is
common to train the teacher model as a standard Transformer (Vaswani et al., 2017) with a roughly
equal number of trainable parameters as the desired NAT model on the real data. In this paper, we
will first study how this knowledge distillation process affects the behavior of NAT models.

3 HOW DOES DISTILLATION IMPROVE NAT?

In this section, we start from an introductory example to illustrate how NAT models fail to capture
the multi-modality of data. Then we propose a metric to assess the multi-modality of a data set and
use that to test our hypothesis about the mechanism of knowledge distillation for NAT models.

3.1 SYNTHETIC EXPERIMENT FOR MULTI-MODALITY

Dataset. We start by investigating NAT’s difficulties in modeling multi-modality in output data
using a synthetic setup where we explicitly include multiple modes in the training data. More
specifically, we utilize three language pairs – English-German (En-De), English-French (En-Fr),
and English-Spanish (En-Es) – from the Europarl parallel corpus.2 We extract sentences that have
aligned sentences for all languages, and create a multi-reference En-De/Es/Fr corpus. In this case
every English input sentence always corresponds to target sentences in three different languages,
which forms three explicit output modes. Notably, this is similar to the one-to-many translation
setting in Johnson et al. (2017) but in our case we do not have an explicit signal (e.g. target language
tag) to tell the NMT model which target language to translate to.

Models. We train both the AT and NAT models on this concatenated data set, then compare the
distributions of translations with each other. We use the standard Transformer(base) model (Vaswani
et al., 2017) as the AT model, and a simplified version of Gu et al. (2018) as the NAT model where
the decoder’s inputs are monotonically copied from the encoder embeddings and a length predictor
is learned to predict the target sentence length. Both models are trained for 300, 000 steps using
maximum likelihood. After training, we use both models to translate the English sentences in the
validation and test sets.

Visualization of AT Outputs. The synthetic setup enables us to better understand and visualize
the modes in the outputs more easily. First, we visualize the outputs from the AT model. For every
translated sentence, we visualize the estimated probability distribution of language classes as a point
in Fig. 1 (a). This probability is calculated as the average of the posterior probability of each token,
and it is estimated based on the Bayes’ law:

p(li|y) ≈ 1

T

T∑
t=1

p(li|yt) =
1

T

T∑
t=1

p(yt|li)p(li)∑
k p(yt|lk)p(lk)

(2)

2https://www.statmt.org/europarl/

3

https://www.statmt.org/europarl/

Under review as a conference paper at ICLR 2020

De

Es

Fr

(a) AT Baseline

De

Es

Fr

(b) NAT Baseline

De

Es

Fr

(c) NAT Random Select

De

Es

Fr

(d) NAT Distill

Figure 1: Posterior distribution of language IDs for the outputs from different models. Each transla-
tion is represented as a point inside the simplex ∆2 = {(pde, pes, pfr)|pk ∈ (0, 1), pde +pes +pfr = 1}
where pk is the estimated probability of being translated into language k ∈ (de, es, fr). We distin-
guish the language that has the largest probability with different colors.

where li denotes the language class i, and p(yt|li) is the token frequency of yt in language li. We
assume p(li) follows a uniform distribution. As shown in Fig. 1 (a), points of the AT outputs are
clustered closely to each vertex of the simplex which indicates that the AT model prefers to generate
the whole sequence in one language. This phenomenon verifies our assumption that decoding from
the AT model (distillation) is essentially selecting “modes” over the real data.

Visualization of NAT Outputs. We visualize outputs for the NAT model trained on the same data
in Fig. 1 (b). In contrast to the AT results, the NAT points are scattered broadly inside the simplex,
indicating the NAT model fails to capture the mode of language types. Instead, it predicts tokens
mixed with multiple languages, which corroborates our hypothesis about the NAT model.

Next, we create two datasets that have fewer modes than the original dataset. First, we randomly
select a single target sentence from one of the three languages for each source sentence. Second, we
perform distillation, decoding from the AT model trained on the combined training set. As noted in
the AT results, distillation will also roughly be selecting a language mode, but we conjecture that this
selection may be more systematic, selecting a particular language for a particular type of training
sentence. As shown in Fig. 1(c) (d), NAT models trained on both of these datasets are more likely
to choose one mode (language) when generating translations, showing that training with reduced
modes is essential for NAT model. Furthermore, points in Fig. 1 (d) are clearly clustered better
than (c) indicating that modes selected by AT models are indeed likely more systematic and easy to
capture than those generated by randomly assigning a language for each sentence.

3.2 QUANTITATIVE MEASURES FOR PARALLEL DATA

To better study why distillation is crucial for NAT models, in this section, we propose quantita-
tive measures for analyzing the complexity and faithfulness of parallel data, two properties that we
hypothesize are important for NAT training.

Measure of Complexity. Inspired by the observations in the synthetic experiments, we propose to
use a measure of translation uncertainty, specifically operationalized as conditional entropy, as the
measurement of complexity C(d) for any given dataset d:

H(Y|X = x) =
∑
y∈Y

p(y|x) log p(y|x)

≈
∑
y∈Y

Ty∏
t=1

p(yt|x))(
Ty∑
t=1

log p(yt|x)) asm.1: conditional independence

≈
Ty∑
t=1

∑
yt∈A(x)

p(yt|Align(yt)) log p(yt|Align(yt)) asm.2: alignment model

=

Tx∑
t=1

H(y|x = xt)

(3)

4

Under review as a conference paper at ICLR 2020

d En-De En-Es En-Fr Full Real Data Random Selection Distillation

C(d) 3.12 2.81 2.89 3.67 3.30 2.64

Table 1: Complexity C(d) (↑ more complex) of the Europarl data set of different settings in §3.1.

where we use x and y to denote a word in the source and target vocabulary respectively. Tx and Ty
denote the length of the source and target sentences. To make the computation tractable, we make
two additional assumptions on the conditional distribution p(y|x):

• Assumption 1: We assume the target tokens are independent given the source sentence. Then
the conditional entropy of a sentence can be converted into the sum of entropy of target words
conditioned on the source sentence x.

• Assumption 2: We assume the distribution of p(yt|x) follows an alignment model (Dyer et al.,
2013)3 where yt is is generated from the word alignment distribution p(yt|Align(yt)). This makes
it possible to simplify the conditional entropy to the sum of entropy of target words conditioned
on the aligned source words.

The corpus level complexityC(d) is then calculated by adding up the conditional entropyH(Y|X =
x) of all sentences and averaging over all source tokens, denoted C(d) = 1

|Vx|
∑

x∈Vx H(y|x).

To illustrate that the proposed metric is a reasonable measure of complexity of a parallel corpus,
in Tab. 1 we compute C(d) for the parallel data of different language pairs, the concatenated data
set and the distilled data from the AT model described in §3.1. We observe that the conditional
entropy of the distilled data is much smaller than that of the original concatenated data as well as the
random-selection data mentioned above. Additionally, we find that the conditional entropy of En-Es
and En-Fr are similar but that of En-De is relatively larger, which can also explain why the student
NAT model prefers to predict the modes of Es or Fr more often than De as shown in Fig. 1(d).

Measure of Faithfulness. C(d) reflects the level of multi-modality of a parallel corpus, and we
have shown that a simpler data set is favorable to an NAT model. However, it is not fair to assess the
data set only by its complexity, e.g. we can trivially construct a simple data set with no variations
in the output, which obviously won’t be useful for training. The other important measurement of
the data set is its faithfulness to the real data distribution. To measure the faithfulness of a parallel
corpus d, we use KL-divergence of the alignment distribution between the real parallel data set r
and an altered parallel data set d, denoted F (d):

F (d) =
1

|Vx|
∑
x∈Vx

∑
y∈Vy

pr(y|x) log
pr(y|x)

pd(y|x)
(4)

4 EMPIRICAL STUDY

In this section, we perform an extensive study over a variety of non-autoregressive (NAT) models
trained from different autoregressive (AT) teacher models, to assess how knowledge distillation
affects the performance of NAT models.

4.1 EXPERIMENTAL SETTINGS

Data. We use the data set commonly used by prior work as our evaluation benchmark: WMT14
English-German (En-De)4. We use newstest2013 as the validation set for selecting the best
model, and newstest2014 as the test set. We learn a byte-pair encoding (BPE, Sennrich et al.,
2016) vocabulary of 37,000 on the tokenized data.

AT Models. We set up four Transformer models with different parameter sizes: Transformer-
tiny/small/base/big denoted as tiny, small, base, big respectively. We build base and big models
following settings described in Vaswani et al. (2017), and reduce the model sizes for tiny, small to
create weaker teacher models. Details of the model architectures can be found in Appendix A.

3We follow https://github.com/clab/fast_align to compute the alignment given the dataset.
4http://www.statmt.org/wmt14/translation-task.html

5

https://github.com/clab/fast_align
http://www.statmt.org/wmt14/translation-task.html

Under review as a conference paper at ICLR 2020

All the models are trained using the Adam optimizer (Kingma & Ba, 2014) with the maximum
number of steps set to 300, 000. After training, we use the resulting AT models to decode the whole
training set with beam size 5 and replace the real target sentences to create a new parallel corpus.

NAT Models. We consider the following NAT models, from vanilla to state-of-the-art. All the
models are using the Transformer as the basic backbone and are (re-)implemented based on Fairseq5

except for FlowSeq. We briefly outline the methods and parameters here, and describe detailed
settings in the Appendix A.

• Vanilla NAT (Gu et al., 2018): Similarly to §3.1, we use a simplified version where the decoder’s
inputs are directly copied from the encoder without considering latent variables.

• FlowSeq (Ma et al., 2019): FlowSeq adopts normalizing flows (Kingma & Dhariwal, 2018) as
the latent variables to model the mappings from source sentences to a latent space.

• NAT with Iterative Refinement (iNAT, Lee et al., 2018): iNAT extends the vanilla NAT by
iteratively reading and refining the translation. The number of iterations is set to 10 for decoding.

• Insertion Transformer (InsT, Stern et al., 2019): InsT adopts a similar architecture as iNAT
while generating the sequence by parallel insertion operations. Here, we only consider InsT
trained with uniform loss as described in the original paper.

• MaskPredict (MaskT, Ghazvininejad et al., 2019): MaskT adopts a masked language model
(Devlin et al., 2018) to progressively generate the sequence from an entirely masked input. The
number of iterations is set to be 10.

• Levenshtein Transformer (LevT, Gu et al., 2019): LevT uses similar architectures as in InsT
and MaskT while generating based on both insertion and deletion operations. We experiment with
a base and big LevT model (LevT and LevT-big in Tab. 2).

We also summarize the parameter size, performance and relative decoding speed of the NAT models
introduced in Tab. 2. We use the decoding time of vanilla NAT to represent one unit of time, and
Iters × Pass represents the relative time units used for each model.

Models Params BLEU Pass Iters

AT models
AT-tiny 16M 23.3 − n
AT-small 37M 25.6 − n
AT-base 65M 27.1 − n
AT-big 218M 28.2 − n

NAT models
vanilla 71M 11.4 1 1
FlowSeq 73M 18.6 13 1
iNAT 66M 19.3 1 k � n
InsT 66M 20.9 1 ≈ log2 n
MaskT 66M 23.5 1 10
LevT 66M 25.2 1 3k � n
LevT-big 220M 26.5 ≈3 3k � n

Table 2: AT and NAT models. Number of param-
eters and test BLEU when trained on the real data
demonstrate model capacity. Iters is number of
passes used in decoding for output length n and hy-
perparameter k. Pass is relative time used for one
pass of decoding.

As mentioned earlier, we analyze each model
by training from both the real and 4 distil-
lation targets. We train the NAT models for
the same number of steps as the AT mod-
els. For a fair comparison of the actual abil-
ity of each NAT-based model, we test all the
models based on “greedy decoding” without
any advanced search algorithms (e.g. length
beam (Ghazvininejad et al., 2019), noisy par-
allel decoding (Ma et al., 2019), or re-ranking
from the teacher model (Gu et al., 2018)).
Notably, the vanilla NAT and FlowSeq output
translations with single forward pass, while
the remaining models are based on the itera-
tive refinement.

4.2 ANALYSIS OF THE DISTILLED DATA

We compare different dimensions of the data
generated by the four AT models and the real
data set in Fig. 3. First, Fig. 3 (a) shows that
as the capacity of the AT model increases, the
complexity C(d) of the distilled data increases, which indicates that the multi-modality increases
as well. At the same time, we observe that F (d) defined in §3.2 also decreases, showing that the
distilled data more faithfully represents the word-level translation distribution of the original data.
Second, we plot the BLEU score of the distilled data w.r.t to the real data set in (b) and we observe
that the BLEU score of the distilled data from a higher-capacity teacher model is higher, which is
both intuitive and in agreement with the results on KL divergence.

5https://github.com/pytorch/fairseq

6

https://github.com/pytorch/fairseq

Under review as a conference paper at ICLR 2020

For more than 30 years , Josef Winkler has been writing from the heart , telling of the hardships of his childhood and youth .

Josef Winkler schreibt sich seit mehr als 30 Jahren die Nöte seiner Kindheit und Jugend von der Seele .

Seit mehr als 30 Jahren schreibt Josef Winkler aus dem Herzen und erzählt von der Not seiner Kindheit und Jugend .

Source

Distilled Target

Real Target

Figure 2: A sampled pair together with its real target from the distilled data of the base-AT model.
Chunks annotated in the same colors are approximately aligned with each other.

tiny small base big real

2.9

3.0

3.1

3.2

F(
d)

Conditional Entropy
KL divergence

tiny small base big real
28

30

32

34

BL
EU Training Set BLEU

tiny small base big real
0.350

0.375

0.400

0.425

0.450

0.475

0.500

Re
or

de
rin

g

Fuzzy Reordering Score

1.50

1.75

2.00

2.25

2.50

2.75

C(
d)

Figure 3: Complexity C(d) (↑ more complex), faithfulness F (d) (↓ more faithful), training BLEU,
and reordering score (↑ more monotonic alignment) of different distilled sets of WMT14-ENDE.

We also investigate how the relative ordering of words in the source and target sentences is changed
during distillation. We use the fuzzy reordering score proposed in Talbot et al. (2011). A larger
fuzzy reordering score indicates the more monotonic alignments. As shown in Fig 3 (c), the distilled
data has significantly less reordering compared to the real parallel sentences, and the distilled data
from a weaker AT teacher is more monotonic than a stronger AT teacher. We also show a randomly
sampled example in Fig. 2 where compared to the real translation, the AT distilled target is much
more monotonically aligned to the source sentence. This has potential benefits in that these simpler
reordering patterns may be easier to learn for NAT models, but also disadvantages in that it may
prevent NAT models from learning complex reordering patterns.

4.3 ANALYSIS OF DISTILLATION STRATEGIES

In §4.2, we have shown that decoding with an AT model reduces the conditional entropy of
the parallel data set, which mitigates multi-modality in the output data. But does the decod-
ing method of the AT model affect this change in the data set? We also investigate differ-
ent decoding strategies when creating distilled data, using the base Transformer model as the
teacher and the vanilla NAT model as the student. In Tab. 3, four decoding methods are
presented: sampling, sampling within the top-10 candidates, beam search, and greedy decod-
ing. With the same AT model, the performance of the NAT model differs widely depending
on the decoding approach, where distillation with beam search results in the best performance.

Decoding Method C(d) F (d) BLEU

sampling 3.623 3.354 6.6
sampling (Top 10) 2.411 2.932 14.6
greedy 1.960 2.959 18.9
beam search 1.902 2.948 19.5

Table 3: Comparisons of decoding methods
on WMT14-ENDE newstest 2014 test set.

We can see that beam search or greedy decoding can
reduce the complexity of the real data the most while
maintaining high faithfulness. In contrast, sampling
based decoding methods less aggressively reduce the
modes in the output sequence. This finding is in con-
cert with Ott et al. (2018), who demonstrate that be-
cause beam search approximately selects the most
probable translation, it effectively reduces diversity
in the output translations compared to sampling or
the true distribution.

4.4 DISTILLED DATA V.S. NAT MODELS

We next examine the relationship between the NAT students and distilled training data from different
AT models. In Fig. 4, we demonstrate results for the NAT models listed in §4.1. We use the test
set performance on real data as a simple metric to measure the capacity of the NAT model and
arrange the subfigures in an increasing order of the performance (left-to-right, top-to-bottom). The
results in the figure demonstrate that, interestingly, weaker NAT students prefer distilled data with

7

Under review as a conference paper at ICLR 2020

tiny small base big real
18

20

22

24

26

28

Te
st

 B
LE

U

19.3
20.28

19.5

17.99
11.40

Transformer (Vaswani et al., 2017)
Vanilla NAT (Gu et al., 2018)

tiny small base big real

19.9

22.0 21.65 21.43

18.55Transformer (Vaswani et al., 2017)
FlowSeq (Ma et al., 2019)

tiny small base big real

22.69
23.72 24.13 23.74

19.31
Transformer (Vaswani et al., 2017)
iNAT (Lee et al., 2018)

tiny small base big real
20

22

24

26

28

30

Te
st

 B
LE

U

23.49

24.93
25.69

24.9

20.93
Transformer (Vaswani et al., 2017)
InsT (Stern et al., 2019)

tiny small base big real

23.77

25.17
26.2 26.42

23.52

Transformer (Vaswani et al., 2017)
MaskT (Ghazvininejad et al., 2019)

tiny small base big real

24.01

25.91
26.94 27.43

25.1824.11

26.28
27.24

27.82

26.47

Transformer (Vaswani et al., 2017)
LevT (Gu et al., 2019)
LevT-big (Gu et al., 2019)

Figure 4: The performance of NAT models of varying capacity trained on both the real and the
distilled data from tiny, small, base and big AT models on WMT14-ENDE newstest 2014 test sets.

smaller complexity as measured above in §4.2. The best performance of NAT models – from lower
capacity ones to higher capacity ones – is achieved with distilled data of lower complexity to higher
complexity, e.g. the vanilla NAT model performs best when using the distilled data from a small
Transformer whereas the LevT achieves the best performance when training with the distilled data
from a big Transformer. Third, and notably, by simply changing the distilled data set upon which
the models are trained, we are able to significantly improve the state-of-the-art results for models in
a particular class. For example, FlowSeq increased to 22, by simply changing from the distilled data
of Transformer(base) to Transformer(small). Finally, we find that by distilled from a big-AT model,
LevT is able to close the gap with the Transformer (base) with a similar number of parameters. Both
LevT and LevT-big achieve the state-of-the-art performance for NAT-based models.

5 IMPROVEMENTS TO KNOWLEDGE DISTILLATION

The previous section shows that the optimal complexity of the dataset is highly correlated with the
capacity of the NAT model. In this section, we introduce three techniques that can be used to alter
the distilled data to match the capacity of NAT model. Specifically, these techniques can be used to
simplify the data further (BANs, MoE) for a lower-capacity student model or increase faithfulness
of the data set (Interpolation) for a higher-capacity student model.

Born-Again Networks. We apply Born-Again neworks (BANs) to create a simplified dataset for
NAT models. BANs were originally proposed as a self-distillation technique (Furlanello et al., 2018)
that uses the output distribution of a trained model to train the original model. Starting from the real
data, we repeatedly train new AT models with decoded sentences from the AT model at the previous
iteration. This process is repeated for k times and yields k distilled data sets, upon which we perform
NAT training and examine how the k born-again teachers affect the performance of NAT students.

We conduct experiments using the vanilla NAT model (Gu et al., 2018) (which achieved the best
performance with distilled data from a small Transformer in §4.4) and the base Transformer as the
AT model. As shown in Fig. 5, we can make the following observations: (i) The performance of the
base AT model almost remains unchanged during the reborn iterations. (ii) The performance of the
vanilla NAT model can be improved by 2 BLEU when using the distilled data from reborn iteration
6. (iii) As the reborn iterations continue, the complexity of the distilled data decreases and becomes
constant eventually. Meanwhile, the quality of the distilled data compared to the real data decreases.

Mixture-of-Experts. The mixture-of-expert model (MoE; Shen et al. (2019)) learns different ex-
perts for diverse machine translation, and different mixture components were shown to capture con-

8

Under review as a conference paper at ICLR 2020

base R1 R2 R3 R4 R5 R6 R7
Reborn Iterations

25

26

27

28

Te
st

 B
LE

U

AT BLEU scores

base R1 R2 R3 R4 R5 R6 R7
Reborn Iterations

19

20

21

22

Te
st

 B
LE

U

19.5
19.97

20.48
20.9720.77

21.3121.47

20.84

NAT BLEU scores

base R1 R2 R3 R4 R5 R6 R7
Reborn Iterations

1.80

1.82

1.84

1.86

1.88

1.90

C(
d) Conditional Entropy

KL divergence

2.95

3.00

3.05

3.10

3.15

3.20

F(
d)

Figure 5: Reborn experiments: (from left to right) performance of the base AT model, performance
of the vanilla NAT model, C(d) and F (d) of distilled data sets. R-i denotes the i-th reborn iteration.

1 2 3 4 5 6 7
Num. of Experts

25

26

27

28

Te
st

 B
LE

U

AT BLEU scores

1 2 3 4 5 6 7
Num. of Experts

18

19

20

21

Te
st

 B
LE

U
19.5

19.79

20.71

20.06 20.27

18.49

19.43

NAT BLEU scores

1 2 3 4 5 6 7
Num. of Experts

1.84

1.86

1.88

1.90

C(
d) Conditional Entropy

KL divergence

2.96

2.98

3.00

3.02

3.04

F(
d)

Figure 6: MoE experiments: (from left to right) performance of the base AT model, performance of
the vanilla NAT model, C(d) and F (d) of distilled data sets w.r.t the number of experts.

sistent translation styles across examples. Inspired by this, we use one expert from the mixture
model to translate the training data, which is supposed to generate a single style of translation and
reduce the diversity in the original data set. Then we use the best single-expert translations as the
distilled data to train the vanilla NAT model. Specifically, we follow Shen et al. (2019)’s setup, using
the base Transformer model and uniform hard mixture model, varying the number of experts.

In Fig. 6, we observe that the performance of the best expert of MoE tends to decrease as the number
of experts increases. However, the complexity (C(d)) and faithfulness (F (D)) of distilled data from
different MoE models has a relatively large variance. Compared to using the distilled data from a
plain base AT model, the performance of NAT model is improved by 1.21 BLEU when using the
distilled data from the MoE model with the number of experts of 3 which produces the distilled data
with least complexity.

d C(d) F (d) BLEU

base 1.902 2.948 26.94
base-inter 1.908 2.916 27.32

Table 4: Results w/ and w/o sequence-
level interpolation with LevT.

Sequence-Level Interpolation. §4.4 shows stronger NAT
models (e.g. MaskT, LevT) have the ability to learn from
the dataset that is closer to the real data, and achieve bet-
ter performance. We adopt the sequence-level interpolation
proposed in Kim & Rush (2016) as a natural way to create
a better dataset. Different from distillation, interpolation
picks the sentence with the highest sentence-level BLEU
score w.r.t. the ground truth from K−best beam search hy-
potheses. In our experiments, we first run beam search using the base Transformer model with a
beam size of 5 then select the sentences with the highest BLEU score from the top-3 candidates.

Tab. 4 compares the performance of LevT trained with distilled data from the AT model with the
standard distillation or interpolation. We observe that selection with BLEU score from the base AT
model (base-inter) improves the performance of LevT ∼ 0.4 BLEU while the dataset complexity
C(d) does not increase much.

6 CONCLUSION

In this paper, we first systematically examine why knowledge distillation improves the performance
of NAT models. We conducted extensive experiments with autoregressive teacher models of differ-
ent capacity and a wide range of NAT models. Furthermore, we defined metrics that can quanti-
tatively measure the complexity of a parallel data set. Empirically, we find that a higher-capacity
NAT model requires a more complex distilled data to achieve better performance. Accordingly, we

9

Under review as a conference paper at ICLR 2020

propose several techniques that can adjust the complexity of a data set to match the capacity of an
NAT model for better performance.

REFERENCES

Nader Akoury, Kalpesh Krishna, and Mohit Iyyer. Syntactically supervised transformers for faster
neural machine translation. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 1269–1281, Florence, Italy, July 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/P19-1122. URL https://www.aclweb.org/
anthology/P19-1122.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations (ICLR),
2015.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pp. 65–72, 2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Chris Dyer, Victor Chahuneau, and Noah Smith. A simple, fast, and effective reparameterization of
IBM Model 2. In NAACL, 2013.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born-again neural networks. In International Conference on Machine Learning, pp. 1602–1611,
2018.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1243–1252. JMLR. org, 2017.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Constant-time machine
translation with conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, Canada, April 30-May 3, 2018, Conference Track Proceedings, 2018.

Jiatao Gu, Changhan Wang, and Jake Zhao. Levenshtein transformer. In Advances in Neural Infor-
mation Processing Systems 33. 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. Automatic eval-
uation of translation quality for distant language pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pp. 944–952. Association for Computational
Linguistics, 2010.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil
Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and Jeffrey Dean.
Google’s multilingual neural machine translation system: Enabling zero-shot translation. Trans-
actions of the Association for Computational Linguistics, 5:339–351, 2017.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam
Shazeer. Fast decoding in sequence models using discrete latent variables. In International Con-
ference on Machine Learning, pp. 2395–2404, 2018.

10

https://www.aclweb.org/anthology/P19-1122
https://www.aclweb.org/anthology/P19-1122
http://arxiv.org/abs/1810.04805

Under review as a conference paper at ICLR 2020

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pp. 1317–1327, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 1173–1182, 2018.

Percy Liang, Hal Daumé III, and Dan Klein. Structure compilation: trading structure for features.
In ICML, pp. 592–599, 2008.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. Flowseq: Non-
autoregressive conditional sequence generation with generative flow. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing, Hong Kong, November 2019.

Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, et al. Parallel wavenet: Fast
high-fidelity speech synthesis. In International Conference on Machine Learning, pp. 3915–3923,
2018.

Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Analyzing uncertainty in
neural machine translation. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 3953–3962,
2018. URL http://proceedings.mlr.press/v80/ott18a.html.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pp. 582–597. IEEE, 2016.

Maja Popović. chrf: character n-gram f-score for automatic mt evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, pp. 392–395, 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://www.aclweb.
org/anthology/P16-1162.

Chenze Shao, Yang Feng, Jinchao Zhang, Fandong Meng, Xilin Chen, and Jie Zhou. Retriev-
ing sequential information for non-autoregressive neural machine translation. arXiv preprint
arXiv:1906.09444, 2019.

Tianxiao Shen, Myle Ott, Michael Auli, et al. Mixture models for diverse machine translation:
Tricks of the trade. In International Conference on Machine Learning, pp. 5719–5728, 2019.

Raphael Shu, Jason Lee, Hideki Nakayama, and Kyunghyun Cho. Latent-variable non-
autoregressive neural machine translation with deterministic inference using a delta posterior.
arXiv preprint arXiv:1908.07181, 2019.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study of
translation edit rate with targeted human annotation. In In Proceedings of Association for Machine
Translation in the Americas, pp. 223–231, 2006.

Milos Stanojevic and Khalil Simaan. Beer: Better evaluation as ranking. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pp. 414–419, 2014.

11

http://proceedings.mlr.press/v80/ott18a.html
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162

Under review as a conference paper at ICLR 2020

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep au-
toregressive models. In Advances in Neural Information Processing Systems, pp. 10107–10116,
2018.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible
sequence generation via insertion operations. arXiv preprint arXiv:1902.03249, 2019.

David Talbot, Hideto Kazawa, Hiroshi Ichikawa, Jason Katz-Brown, Masakazu Seno, and Franz J
Och. A lightweight evaluation framework for machine translation reordering. In Proceedings of
the Sixth Workshop on Statistical Machine Translation, pp. 12–21. Association for Computational
Linguistics, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Chunqi Wang, Ji Zhang, and Haiqing Chen. Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
479–488, 2018.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive
machine translation with auxiliary regularization. arXiv preprint arXiv:1902.10245, 2019.

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang Lin, and Xu Sun. Imitation learning for non-
autoregressive neural machine translation. arXiv preprint arXiv:1906.02041, 2019.

12

Under review as a conference paper at ICLR 2020

A EXPERIMENTAL DETAILS

A.1 AT MODELS

Model All the AT models are implemented based on the Transformer model using fairseq (Ott
et al., 2019), and we basically follow the fairseq examples to train the transformers6. Following the
notation from Vaswani et al. (2017), we list the basic parameters of all the AT model we used:

Models tiny small base big

dmodel 256 512 512 1024
dhidden 1024 1024 2048 4096
nlayers 3 3 6 6
nheads 4 8 8 16
pdropout 0.1 0.1 0.3 0.3

Table 5: Basic hyper-parameters of architecture for AT models.

Training For all experiments, we adopt the Adam optimizer (Kingma & Ba, 2014) using β1 =
0.9, β2 = 0.98, ε = 1e− 8. The learning rate is scheduled using inverse sqrt with a maximum
learning rate 0.0005 and 4000 warmup steps. We set the label smoothing as 0.1. All the models are
run on 8 GPUs for 300, 000 updates with an effective batch size of 32, 000 tokens. The best model
is selected based on the validation loss except for FlowSeq which uses valid BLEU score.

Decoding After training, we use beam-search with a fixed beam size 5 for all AT models to create
the distilled dataset. No length penalty is used.

A.2 NAT MODELS

Model Tab. 2 also lists all the NAT models we test in this work. In general, all the NAT models ex-
cept FlowSeq and LevT-big adopts a similar architecture and hyper-parameters as the Transformer-
base (see Tab. 5). LevT-big is a naive extension of the original LevT model with a comparable
parameter setting as Transformer-big (Tab. 5). For FlowSeq, we use the base model (FlowSeq-base)
described in (Ma et al., 2019). We re-implemented the vanilla NAT as a simplified version of Gu
et al. (2018) where instead of modeling fertility as described in the original paper, we monotonically
copy the encoder embeddings to the input of the decoder. All the models except InsT require the
additional module to predict the length of the output sequence, or the number of placeholders to be
inserted, which is implemented as a standard softmax classifier over the lengths of [0, 256). For
LevT, we also have a binary classifier to predict the deletion of the incorrect tokens.

Training Similar to the AT models, all the NAT models are trained using the Adam optimizer with
the same learning rate scheduler, in which the warmup steps are set to 10, 000. We train the FlowSeq
model on 32 GPUs with a batch size as 2048 sentences, while all the other models are trained on
8 GPUs with an effective batch size of 64, 000 tokens. Note that, the batch sizes for training NAT
is typically larger than the AT model to make the learning sufficient. There are also specialized
training settings for each models:

• iNAT (Lee et al., 2018): following the original paper, we train the iNAT model jointly with 4
iterations of refinement during training. For each iteration, the model has the 50% probability to
learn as a denoising autoencoder, and the rest of the probability to learn from the model’s own
prediction.

• InsT (Stern et al., 2019): in this work, we only consider training the Insertion Transformer (InsT)
using the slot-loss based on the uniform loss function (Stern et al., 2019). That is, we assign equal
probabilities to all the insertable tokens inside each slot.

• MaskT (Ghazvininejad et al., 2019): following the original paper, we train the model as a typical
masked language model where the ratio of masked tokens is sampled from 0 ∼ 100%.
6https://github.com/pytorch/fairseq/blob/master/examples/translation.

13

https://github.com/pytorch/fairseq/blob/master/examples/translation

Under review as a conference paper at ICLR 2020

• LevT (Gu et al., 2019): in this work, we only consider sequence generation tasks, which means
the training of LevT is very similar to InsT. We use sentences with randomly deleted tokens to
learn insertion, and learn deletion based on the model’s own prediction.

Decoding For a fair comparison over all the NAT models, we use greedy decoding for all the
model without considering any advance decoding methods such as searching or re-ranking from a
teacher model. For the vanilla NAT and FlowSeq, decoding is quite straight-forward and simply
picking the arg max at every position. For iNAT and MaskT, we fix the decoding steps as 10. Both
InsT and LevT decode in an adaptive number of iterations, and we set the maximum iterations for
both models as 10. A special EOS penalty that penalizes generating too short sequences is tuned
based on the validation set for both InsT and LevT.

For all models, final results are calculated as tokenized BLEU score.

B REAL DATA STATISTICS

The detailed dataset split for WMT14 En-De is shown in Tab. 6. In Fig. 7, we also plot the histogram
of the conditional entropy of each pair of sentences H(y|x) in the real parallel data and different
distilled data sets from the big-AT, base-AT, small-AT and tiny-AT respectively. It shows that the
distribution of the sentence-level conditional entropy differs widely. The mode ofH(y|x) in the real
data is the highest and follows by distilled data from the big-AT, base-AT, small-AT and tiny-AT.
This observation aligns with the complexity value C(d) proposed in §3.2.

Dataset Train Valid Test Vocabulary

WMT’14 En-De 4,500,966 3000 3003 37,009

Table 6: Dataset statistics for WMT14 En-De.

0 1 2 3 4 5 6 7
Sentence-level Conditional Entropy H(y|x)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

distill tiny
distill small
distill base
distill big
real data

Figure 7: Density of conditional entropy C(d) of each sentence pairs in different distilled data sets
and the real data.

C ADDITIONAL METRICS

In Figure 8, we also showed results with different metrics together with BLEU scores consider-
ing BLEU score sometimes cannot capture the change of the system. We considered 5 additional
metrics in our experiments: METEOR (Banerjee & Lavie, 2005), RIBES (Isozaki et al., 2010),
ChrF (Popović, 2015) TER (Snover et al., 2006), and BEER (Stanojevic & Simaan, 2014). Not
surprisingly, we find that all the metrics are correlated with the original BLEU scores quite well
showing the similar trend as discussed earlier.

14

Under review as a conference paper at ICLR 2020

tiny small base big

18.0

18.5

19.0

19.5

20.0

19.3

20.28

19.5

17.99
BELU4

tiny small base big
0.450

0.455

0.460

0.465

0.470

0.475

0.480

0.457

0.477

0.466

0.454

METEOR

tiny small base big

0.184

0.186

0.188

0.190

0.192

0.194

0.187

0.193

0.189

0.185

RIBES

tiny small base big
0.490

0.495

0.500

0.505

0.510

0.515

0.497

0.512

0.502

0.493

ChrF

tiny small base big

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.702

0.66

0.688

0.713

TER

tiny small base big

0.540

0.545

0.550

0.555

0.560

0.542

0.558

0.55

0.542

BEER

Figure 8: The performance of variant measure (BLEU ↑, METEOR ↑, RIBES ↑, ChrF ↑, TER ↓,
BEER ↑) for the vanilla NAT model trained on the distilled data from tiny, small, base and big AT
models on WMT14-ENDE newstest 2014 test sets.

D SYNTHETIC DATA WITH ACCESS TO THE TRUE DISTRIBUTION

D.1 BACKGROUND: BAYESIAN DECISION THEORY

Bayesian decision theory is a fundamental statistical approach to the problem of pattern classifica-
tion, which provides a principled rule of finding the optimal classification decision using probability
and losses that accompany such decisions.

In the problem of structured prediction, let x denote the input sequence and y denote the output
label sequence. Let H denote all the possible hypothesis functions from the input to the output
space: H = {h : X → Y}. Let r(y|x) denote the conditional risk on the input x, which is the
expected loss of predicting y based on the posterior probabilities:

r(y|x) = EP (y′|x)[L(y,y′)] (5)

, where L(y,y′) is the loss function that penalizes predicting the true target y′ as y. The classifica-
tion task aims to find a hypothesis function h that minimizes the overall risk R given by

R(h) = EP (x)[r(h(x)|x)] (6)

This is known as the Bayes risk. To minimize the overall risk, obviously we need to minimize the
conditional risk for each input x. The Bayesian decision rule states that the global minimum of
R(h) is achieved when the classifier make predictions that minimize each conditional risk given x
and this gives the Bayes optimal classifier:

h∗(x) = arg min
y∈Y

r(y|x) (7)

Let us consider two loss functions defined in Eq. 5. First is the sequence-level loss Lseq(y,y′) =
1− I(y = y′), then in this case the Bayes classifier is:

h∗seq(x) = arg max
y∈Y

P (y|x) (8)

, which is the most probable output label sequence given the input sequence x.

15

Under review as a conference paper at ICLR 2020

Second let us consider the token-level loss Ltok(y,y′) =
∑T

t=1 1 − I(yt = y′t), i.e the sum of
zero-one loss at each time step. We have:

h∗tok(x) = arg min
y∈Y

EP (y′|x)[L2(y,y′)]

= arg max
y∈Y

EP (y′|x)[
∑T

t=1 I(yt = y′t)]

= arg max
y∈Y

∑T
t=1 EP (y′|x)[I(yt = y′t)]

= arg max
y∈Y

∑T
t=1 EP (y′

t|x)[I(yt = y′t)]

= arg max
y∈Y

T∏
t=1

P (yt|x)

(9)

This suggests that the Bayes classifier finds the most probable label at each time step given the input
sequence.

D.2 EXPERIMENTAL SETUPS AND ANALYSIS

To study how training data affects the performance of a weaker classifier, we construct a Hidden
Markov Model (HMM) by sampling the parameters of the transition and emission probabilities
uniformly within (0, a] and (0, b] respectively. A higher value of a and b indicates an HMM model
with higher uncertainty. We refer this HMM as the “true HMM” as our real data generator. Next we
consider a weaker classifier that uses a low-dimension bidirectional-LSTM (Bi-LSTM) to encode the
input sequence and individual softmax functions at each time step to predict labels independently,
which is referred as the “Bi-LSTM” classifier. Obviously, the Bi-LSTM classifier is not able to
model the dependencies between output labels embedded in the HMM, and it is equivalent to a
simplified non-autoregressive generation model.

We generate the real training data Dreal = {(x1,y1), · · · , (xN ,yN)} of size N by sampling from
the joint probability of the true HMM. Similarly we sample Ntest data points as the test data and
Nvalid data points as the validation data. We evaluate the classifier’s token-level accuracy tacc and

sequence-level accuracy sacc on the test data respectively, where tacc =
∑Ntest

i=1

∑T
t=1 I(h(xi)

t=yt
i)

T×Ntest

and sacc =
∑Ntest

i=1 I(h(xi)=yi)

Ntest
. These two metrics correspond to the token-level loss Ltok and

sequence-level loss Lseq on each data point of the test data.

First, we use h∗seq(x) to generate the distillation labels y′ from the true HMM, which corresponds
to applying the Viterbi decoding to each xi in Dreal. The training data set Dseq is created with (xi,
y′i). Next, we use h∗tok(x) to generate the distillation labels ŷ and create the training data Dtok of
(xi, ŷi). To generate ŷ, we apply the forward-backward algorithm to each xi in Dreal and obtain
P (yti |xi). We take arg max over the label space L: ŷti = arg max

yt
i∈L

P (yti |xi).

We use these three training data (Dreal, Dtok, Dseq) to train the Bi-LSTM classifier respectively.
We repeat the experiment for 50 times by constructing 50 HMM models with different random
seeds as the data generator. We find that when evaluating with the token-level accuracy tacc, mod-
els trained with Dtok yields the best performance (Bi-LSTM trained with Dtok win 97.6% runs);
when evaluating with the sequence-level accuracy sacc, models trained with Dseq yields the best
performance (Bi-LSTM trained with Dseq win 98.5% runs). This is because the Bi-LSTM clas-
sifier has difficulty modeling the true data distribution defined by an HMM. On the other hand, it
is easier for the Bi-LSTM classifier to model the distributions of Dseq and Dtok. Data sets Dseq

and Dtok define deterministic conditional distributions over the input data, which are much sim-
pler than the real data distribution. By definition, Dtok is created by the optimal Bayes classifier
h∗tok(x), this means that the Bi-LSTM classifier trained with Dtok can better capture the distribu-
tion of P (yt|x) = max

ut

P (ut|x), which can generalize better to the test data when evaluated with

the token-level accuracy. Similarly, Bi-LSTM trained with Dseq performs better on the test data
with the sequence-level metric.

This corroborates our observation in machine translation task that NAT has difficulty in modeling the
real conditional distribution of true sentence pairs. However, when using the distilled data translated

16

Under review as a conference paper at ICLR 2020

from a pretrained autoregressive model with beam-search decoding, it performs better on the test set
when evaluated with the BLEU score metric.

17

	Introduction
	Background
	Non-autoregressive Neural Machine Translation
	Sequence-level Knowledge Distillation

	How does Distillation Improve NAT?
	Synthetic Experiment for Multi-modality
	Quantitative Measures for Parallel Data

	Empirical Study
	Experimental Settings
	Analysis of the Distilled Data
	Analysis of Distillation Strategies
	Distilled Data v.s. NAT Models

	Improvements to Knowledge Distillation
	Conclusion
	Experimental Details
	AT Models
	NAT Models

	Real Data Statistics
	Additional Metrics
	Synthetic Data with access to the True Distribution
	Background: Bayesian Decision Theory
	Experimental Setups and Analysis

