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ABSTRACT

Learning in the latent variable model is challenging in the presence of the complex
data structure or the intractable latent variable. Previous variational autoencoders
can be low effective due to the straightforward encoder-decoder structure. In this
paper, we propose a variational composite autoencoder to sidestep this issue by
amortizing on top of the hierarchical latent variable model. The experimental
results confirm the advantages of the proposed method.

1 INTRODUCTION

The latent variable model in Figure[I[a) has been widely explored for the representation learning.
One line of research has concentrated on a broad range of data structures. For example, Kipf &
'Welling|(2016) proposed a variational graph autoencoder to consider the graph-structured data. (Chen
et al.| (2017) introduced a variational lossy autoencoder to learn the controllable representation of
the image. [Kusner et al.| (2017)) proposed a grammar variational autoencoder to directly learn from
a parse tree described by the grammar. Another line of research pays attention to the optimization
difficulty on the intractable latent variable. For instance, Mnih & Gregor| (2014)) proposed a general
score function method with control variates to optimize the model with continuous or discrete latent
variables. Maddison et al. (2017) introduced a Concrete distribution, the continuous relaxation of
the discrete distribution, to approximately reparameterize the discrete latent variable. [Nalisnick:
& Smythl (2017) extended variational autoencoders to perform posterior inference for the latent
variable of Stick-Breaking processes.

Although the promising performance has been achieved, previous variational autoencoders in Fig-
ure[I]c) can be low effective due to the straightforward encoder-decoder structure. In the presence
of the very sophisticated data or the unstable optimization on the latent variable, it is challenging
with only resort to the implementation of the encoder and the decoder. This problem motivates us
to explore a more expressive structure in the representation learning, which can further improve the
encoding efficiency and ease the optimization burden.

In this paper, we propose a variational composite autoencoder (VCAE) to sidestep this issue by
amortizing on top of the hierarchical latent variable model. As shown in Figure [T[b), a surrogate
variable is introduced between the latent variable and the data to intermediate their gap. Specifically,
in terms of the complex data structure, the representation learning is implemented hierarchically, i.e.,
the raw data is first projected into a moderate surrogate space, on top of which a latent variable is then
learned. For the optimization difficulty on the latent variable, VCAE provides a possible framework
to unify previous approaches, score function methods and reparameterization. Experimental results
demonstrate the superior performance of VCAE over state-of-the-arts in these two aspects.

2  VARIATIONAL COMPOSITE AUTOENCODERS

The key idea is illustrated in Figure [T} Compared with the one-off encoding and decoding process in
variational autoencoder (VAE) (Kingma & Welling|, |2014), we decouple the representation learning
into two sub-procedures by introducing a surrogate variable. Then the learning difficulty either on
the sophisticated data structure or the unstable optimization can be alleviated in this surrogate space.

In VCAE, we use two inference networks gy, (s|2) and ¢, (z|x) to represent the encoding processes
from x to s and z respectively. The generative processes from z to s and s to x are modeled with
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Figure 1: The idea of our work. (a) and (b) are the graphical representations of two models. z
represents the latent variable, s is the surrogate variable and x is the observation. (c) and (d) illustrate
the variational autoencoder and our variational composite autoencoder. We introduce a surrogate
variable to sidestep the learning difficulty between the latent variable and the observation.

two networks p,;(s|z) and py(z|s). The graphical representation of our hierarchical latent variable
model is illustrated in Figure[T(b). According to the encoding and decoding processes in Figure[T(d),
we can deduce a variational lower bound as follows,

np(z) > gy, [Inp(z|s)] — By, Drcr(ge, (sl2)lIpy (5]2))] = Drrlge, (2|2)[lp(2)). (1)

Previous stochastic optimization on the variational Monte Carlo objective can be seamlessly applied
to optimize this bound, which makes VCAE general to many applications. For example, when both
z and s are reparameterizable, the objective can be directly optimized by the stochastic backpropaga-
tion (Rezende et al.| 2014)). When z is the discrete variable and s is chosen to be reparameterizable,
score function methods can be used jointly with reparameterization for optimization. In this paper,
we will focus on the comparison between VAE and VCAE in the representation learning, and the
optimization effectiveness of VCAE compared with previous state-of-the-arts.

3 EVALUATION

We evaluate the effectiveness of VCAE using two benchmark tasks, generative modeling and struc-
tured prediction, with the statically binarized MNIST dataset|Salakhutdinov & Murray| (2008). The
standard partition 50000/10000/10000 is used to split the MNIST dataset into the training, valida-
tion and test sets. All sub-modules in VCAE are parameterized with the sigmoid belief network.
Specifically, 200 stochastic units interleaved by one linear layer (denoted as Linear) or two layers
of 200 tanh units (denoted as Nonlinear) are used for two encoding channels gy, (s|x), gg, (z|z) and
one decoding channel py(z|s). One sigmoid layer is fixed for py(s|z). All models are randomly
initialized and optimized by the ADAM optimizer Kingma & Ba|(2015)) with a learning rate of 3e-4.
During the test, we compute the importance-sampled estimate of the log-likelihood objective.
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Table 1: The importance-weighted es-
Figure 2: Comparison among VAE, Concrete-s and VCAE on  timate of the log-likelihood objective
generative modeling (left) and structured prediction (right). on two tasks in the test dataset.

In the first experiment, we use VCAE to directly compare with VAE (Kingma & Welling| [2014).
In the hierarchical latent variable model, the Gaussian variable and the reparameterizable Concrete
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Methods NVIL REBAR Concrete-z | Concrete-s | VCAE
Generative Linear -108.3  -107.6 -107.5 -105.3 -97.9
modeling | Nonlinear | -100.9  -102.0 -101.2 -100.6 -95.0
Structured Linear -67.9 -66.4 -66.1 -66.3 -64.4
prediction | Nonlinear | -63.8 -63.5 -67.0 -63.3 -62.9

Table 2: The importance-weighted estimate of the log-likelihood objective in the test dataset.
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Figure 3: Gradient variance comparison among NVIL, Concrete-s and VCAE (Linear: the 1st and 3rd figures,
Nonlinear: the 2nd and 4th figures) on generative modeling (left two) and structured prediction (right two).

variable (Maddison et al.l |2017) are respectively chosen as the latent variable and the surrogate
variable. Thus our VCAE will includes the Gaussian reparameterization (VAE) and the Concrete
reparameterization (Concrete-s) parts. To comprehensively understand our method, we also use
Concrete-s as a baseline in the experiments. Figure [2]and Table[I] present the performance of three
methods in the Linear case. As can be seen, VCAE outperforms two baselines in the training pro-
cedure, and achieves —95.7 and —62.1 on the two tasks respectively, which is significantly better
than VAE. Besides, as an important component in our method, Concrete-s also shows promising
performance, but still underperforms VCAE. This indicates our hierarchical representation learning
structure is more effective than those in previous VAEs.

In the second experiment, we use VCAE to optimize the challenging discrete variable model. Simi-
larly, the Concrete variable is set as the surrogate variable. Then we unify the score function method,
NVIL (Mnih & Gregor, 2014), and the reparamterization method, Concrete-s, into VCAE by ap-
plying them on gy, (z|z) and gy, (s|x) respectively. The resulting method is to compare with the
state-of-the-art approaches and the final performance is summarized in Table [2| For the generative
modeling task, the importance-weighted estimate of the log-likelihood objective for VCAE (Linear)
is —97.9, while that of the best unbiased estimators REBAR (Linear) (Tucker et al., 2017 and the
biased reparameterization method Concrete—zﬂ are —107.6 and —107.5, respectively. For the struc-
tured prediction task, VCAE outperforms all unbiased estimators and the biased reparameterization
method (Concrete-z) even in the case of continuous variable (Concrete-s). This confirm the advan-
tages of VCAE in the optimization. To present a fine-grained performance analysis of VCAE, we
further compare VCAE with NVIL and Concrete-s by tracing their gradient variance in the train-
ing phase, as the lower gradient variance the faster convergence is (Johnson & Zhang| 2013). As
shown in Figure [3| in the Linear case, the gradient variance of VCAE is between that of NVIL
and Concrete-s, and in the Nonlinear case, VCAE not only outperforms NVIL, but also surpasses
Concrete-s. This indicates on the basis of the score function method in Eq. (I), the variance is fur-
ther reduced due to the reparameterizable Concrete variable, and the improvement is even better
than both of them.

4 CONCLUSION

In this paper, we propose a variational composite autoencoder to improve the effectiveness of rep-
resentation learning. Compared with previous VAEs, VCAE enjoys the advantages of amortizing
on top of the hierarchical latent variable model. By introducing a surrogate variable to learn the in-
termediate space, both learning burden and optimization difficulty can be alleviated. Experimental
results in these two aspects demonstrate VCAE outperforms the state-of-the-art methods.

'In the test phase, the binarized Concrete samples are used to evaluate the lower bounds.
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