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ABSTRACT

We present a variational approximation to the information bottleneck of [Tishby
et al.[(1999). This variational approach allows us to parameterize the model using
a neural network and leverage the reparameterization trick for efficient training.
We call this method “Deep Variational Information Bottleneck™, or Deep VIB. We
show that models trained with the VIB objective outperform those that are trained
with other forms of regularization, in terms of generalization performance and
robustness to adversarial attack.

1 INTRODUCTION

We adopt an information theoretic view of deep networks. We regard the internal representation of
some intermediate layer as a stochastic encoding Z of the input source X, defined by a parametric
encoder p(z|x;0). Our goal is to learn an encoding that is maximally informative about our target
Y, measured by the mutual information between our encoding and the target I(Z,Y’; 8), where
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Given the data processing inequality, and the invariance of the mutual information to reparameteriza-
tions, if this was our only objective we could always ensure a maximally informative representation
by taking the identity encoding of our data (Z = X)), but this is not a useful representation of our
data. Instead we would like to find the best representation we can obtain subject to a constraint on
its complexity. A natural and useful constraint to apply is on the mutual information between our
encoding and the original data, I(X, Z) < I., where I, is the information constraint. This suggests
the objective:

mgxI(Z,Y;H) st. I(X,2;0) < I.. 2)

Equivalently, with the introduction of a Lagrange multiplier 3, we can maximize the objective func-
tion
Rip(0)=1(Z,Y;0)—38I(Z,X;0). 3)

Here our goal is to learn an encoding Z that is maximally expressive about Y while being maximally
compressive about X, where 5 > 0 controls the tradeoff This approach is known as the informa-
tion bottleneck (IB), and was first proposed in Tishby et al.[(1999). Intuitively, the first term in R;p
encourages Z to be predictive of Y; the second term encourages Z to “forget” X. Essentially it
forces Z to act like a minimal sufficient statistic of X for predicting Y.

The IB principle is appealing, since it defines what we mean by a good representation, in terms of the
fundamental tradeoff between having a concise representation and one with good predictive power
(Tishby & Zaslavsky, 2015a). The main drawback of the IB principle is that computing mutual
information is, in general, computationally challenging. There are two notable exceptions: the first
is when X, Y and Z are all discrete, as in Tishby et al.| (1999)); this can be used to cluster discrete

! Note that in the present discussion, Y is the ground truth label which is independent of our parameters so
p(y|0) = p(y).

2 Note that, in our notation, large 3 results in a highly compressed representation. In some works, the IB
principle is formulated as the minimization of I(Z, X)) — SI(Z,Y), in which case large 3 corresponds to high
mutual information between Z and Y, and hence low compression.
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data, such as words. The second case is when X, Y and Z are all jointly Gaussian (Chechik et al.,
2005). However, this is a very limiting assumption.

In this paper, we propose to use variational inference to construct a lower bound on the IB objective
in Equation[3] We call the resulting method VIB (variational information bottleneck). By using the
reparameterization trick (Kingma & Welling| |2014), we can use Monte Carlo sampling to get an
unbiased estimate of the gradient, and hence we can optimize the objective using stochastic gradient
descent. This allows us to use deep neural networks to parameterize our distributions, and thus to
handle high dimensional, continuous data, such as images, avoiding the previous restrictions to the
discrete or Gaussian cases.

We also show, by a series of experiments, that stochastic neural networks, fit using our VIB method,
are robust to overfitting, since VIB finds a representation Z which ignores as many details of the
input X as possible. In addition, they are more robust to adversarial inputs than deterministic models
which are fit using (penalized) maximum likelihood estimation. Intuitively this is because each input
image gets mapped to a distribution rather than a unique Z, so it is more difficult to pass small,
idiosyncratic perturbations through the latent bottleneck.

2 RELATED WORK

The idea of using information theoretic objectives for deep neural networks was pointed out in
Tishby & Zaslavsky| (2015b). However, they did not include any experimental results, since their
approach for optimizing the IB objective relied on the iterative Blahut Arimoto algorithm, which is
infeasible to apply to deep neural networks.

Variational inference is a natural way to approximate the problem. Variational bounds on mutual
information have previously been explored in [Agakov| (2004), though not in conjunction with the
information bottleneck objective. Mohamed & Rezende| (2015)) also explore variational bounds on
mutual information, and apply them to deep neural networks, but in the context of reinforcement
learning. We very recently discovered (Chalk et al.|(2016), who independently developed the same
variational lower bound on the IB objective as us. However, they apply it to sparse coding problems,
and use the kernel trick to achieve nonlinear mappings, whereas we apply it to deep neural networks,
which are computationally more efficient. In addition, we are able to handle large datasets by using
stochastic gradient descent, whereas they use batch variational EM.

In the supervised learning literature, the most closely related paper is the recently proposed con-
fidence penalty (entropy regularization) method of (Pereyra et all 2016). In this work, they fit a
deterministic network by optimizing an objective that combines the usual cross entropy loss with an
extra term which penalizes models for having low entropy predictive distributions. In more detail,
their cost function has the form

LN
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where H(p,q) = —3, p(y)logq(y) is the cross entropy, H(p) = H(p,p) is the entropy,

P(Ylyn) = 0y, (y) is a one-hot encoding of the label y,,, and N is the number of training exam-
ples. (Note that setting 5 = 0 corresponds to the usual maximum likelihood estimate.) In (Pereyra
et al., |2016) they show that CP performs better than the simpler technique of label smoothing, in
which we replace the zeros in the one-hot encoding of the labels by € > 0, and then renormalize so
that the distribution still sums to one. We will compare our VIB method to both confidence penalty
and label smoothing in Section 4.1}

In the unsupervised learning literature, the most closely related paper is the one on variational au-
toencoders Kingma & Welling| (2014). In fact, their method is a special case of an unsupervised
version of the VIB, but with the § parameter fixed at 1.0, as we explain in Appendix [A] (The VAE
objective, but with different values of 3, was also explored in Higgins et al.| (2016)), but from a
different perspective.)
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3 METHOD

Following standard practice in the IB literature, we assume that the joint distribution p(X,Y, Z)
factors as follows:

p(X,Y, Z) = p(Z]X, Y )p(Y[X)p(X) = p(Z|X)p(Y[X)p(X) (5)
i.e., we assume p(Z|X,Y) = p(Z|X), corresponding to the Markov chain Y <> X <« Z. This

restriction means that our representation Z cannot depend directly on the labels Y. (This opens the
door to unsupervised representation learning, which we will discuss in Appendix [A])

Recall that the IB objective has the form [(Z,Y) — BI(Z,X). We will examine each of these
expressions in turn. Let us start with I(Z,Y"). Writing it out in full, this becomes

1(2,Y) = /dydzp Y, 2 )1og(;y’ /dydzp y,2) log (3@))

where p(y|z) is defined by our encoder and Markov Chain as follows:

Z)=/dxp(y,x| /dxp ylz)p(z|z) /d W |x) @) (7)

Since this is intractable in our case, let ¢(y|z) be a variational approx1mat10n to p(y| ). This is our
decoder, which we will take to be another neural network with its own set of parameters. Using the
fact that the Kullback Leibler divergence is always positive, we have

KLp(Y|2),¢(Y]2)] > 0 = / dy p(y)2) log p(y|2) > / dypyl2)loga(ylz), @)

and hence

(6)

I(Z,)Y) > / dy dzp(y, z) log ql(jg) )
— [ dydzpty.2)0gaCely) — [ dyp(o) ogp(v) (10)
= /dydzp(y,z) logq(zly) + H(Y). (11)

Notice that the entropy of our labels H (Y") is something outside of our control and so can be ignored
for the purposes of optimization.

Focusing on the first term in Equation we can rewrite p(y, z) as p(y, z) = [dxp(z,y,z) =
J dxp(x)p(y|z)p(z|x) (leveraging our Markov assumption), which gives us a lower bound on the
first term of our objective:

1(2.Y) > / da dy dz p(x)p(yla)p(zl) log a(yl2) (12)

Now we need to tackle the second term in our objective, 31(Z, X ). We have

1(Z,X) = /dzdxp(x,z) log p(i? = /dzdxp(x,z) log p(z|x) —/dzp(z) logp(z). (13)
Pz
In general, computing the marginal distribution of our code, p(z) = [ dx p(z|x)p(x), might be

difficult. So let r(z) be a Varlatlonal approximation to this marglnal Since KL[p(Z2),r(2)] >
0 = [dzp(z)logp(z) > [ dzp(z)logr(z), we have the following upper bound:

1(Z,X) < /dx dz p(z)p(z|z) log pﬁ?igi) . (14)

Combining both of these bounds we have that
HZY) = B1(2,X) = [ dodydzpla)p(ylo)p(zlo) s a(ul2)

—B/da:dzp (z|x) log ((;);) =1L. (15)
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We now discuss how to compute the lower bound L in practice. We can approximate p(x, y) using
the empirical data distribution p(z,y) = & 227:1 0z, (2)dy, (y), and hence we can write

N
L- }Vg [ dptelan)logatinlz) - el log P, (16)

Suppose we use an encoder of the form p(z|z) = N(z|f#(x), f=(z)), where f. is an MLP which
outputs both the K dimensional mean of z as well as the K x K covariance matrix. Then we
can use the reparameterization trick (Kingma & Welling| [2014)) to write p(z|z)dz = p(e)de, where
z = f(z,€) is a deterministic function of = and the Gaussian random variable e. This formulation
has the important advantage that the noise term is independent of the parameters of the model, so it
is easy to take gradients.

Putting this altogether, we get the following objective function, which we will try to minimize:
1N
Jig = N Z Eewp(e) [_ IOg Q(ynlf(mna 6))] + BKL [p(Z|xn)7 T‘(Z)] : a7
n=1

Assuming our choice of p(z|z) and r(z) allows computation of an analytic Kullback-Leibler diver-
gence, we can directly back propagate through a single sample of our stochastic code and ensure that
our gradient is an unbiased estimate of the true expected gradient. Even if our choice of encoding
distribution and variational prior do not admit an analytic KL, we could similarly reparameterize
through a sample of the divergence as in Blundell et al.|(2015)).

4 EXPERIMENTAL RESULTS

In this section, we present various experimental results, comparing the behavior of standard deter-
ministic networks to stochastic neural networks fit by optimizing the VIB objective. For simplicity,
we restrict attention to the well-known MNIST dataset, which consists of 60,000 28x28 images of
hand-drawn digits, from 10 classes.

In all the experiments, the encoder has the form p(z|z) = N (z|f%(z), fZ(x)). The f. MLP has
two hidden layers of size 1024, and uses ReLu activations. The decoder is just a logistic regression
model of the form ¢(y|z) = S(y|fa(z)), where f4(z) = Wz + b returns the logits over the C' = 10
classes, and S(a) = [exp(a.)/ Zgzl exp(ac)] is the softmax function. Finally, we treat r(2) as a
fixed K dimensional spherical Gaussian, r(z) = N (20, I).

In the special case that 8 = 0, we obtain the following objective function:

N
1
Jipo = =5 > BN (s )= () 108 S (ynl fa(2)] (18)
n=1

When 3 — 0, we observe the VIB optimization process tends to make f>(z) — 0, so the network
becomes nearly deterministic. However, in our experiments we also explicitly fit a deterministic
model that has the same form as the stochastic model, except that we just use z = f#(x) as the
hidden encoding, and drop the Gaussian layer.

4.1 BEHAVIOR ON MNIST

In this section, we compare deterministic and stochastic models on an unmodified version of the
MNIST dataset.

4.1.1 HIGHER DIMENSIONAL EMBEDDING

To demonstrate that our VIB method can achieve competitive classification results, we compared
against a deterministic MLP trained with various forms of regularization. We use a K = 256 dimen-
sional bottleneck and a diagonal Gaussian for p(z|x). The networks were trained using Tensorflow
for 200 epochs using the Adam optimizer (Kingma & Bal |2015) with a learning rate of 0.001.
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Model | error
Baseline | 1.38%
Dropout | 1.34%
Dropout (Pereyra et al.,2016) | 1.40%
Confidence Penalty | 1.36%
Confidence Penalty (Pereyra et al.,[2016) | 1.17%
Label Smoothing | 1.40%
Label Smoothing (Pereyra et al.,[2016) | 1.23%
VIB(5=10"7) | 1.13%

Table 1: Test set misclassification rate on MNIST using K = 256. We compare our method (VIB) to
an equivalent deterministic model using various forms of regularization. The discrepancy between
our results for confidence penalty and label smoothing and the numbers reported in (Pereyra et al.,
2016) are due to slightly different hyperparameters.

The results are shown in Table[I] We see that we can slightly outperform other forms of regulariza-
tion that have been proposed in the literature. Of course, the performance varies depending on /3.
Figure[I|(a) plots the train and test error vs /3, for the case where we use a single Monte Carlo sample
of z when predicting, and also for the case where we average over 12 posterior samples (i.e., we use

pylz) = & Zle q(y|2®) for z° ~ p(z|z), where S = 12).

We see several interesting properties in Figure a). First, we notice that the error rate shoots up
once (3 rises above the critical value of 5 ~ 107“. This corresponds to a setting where the mutual
information between X and Z is less than log,(10) bits, so the model can no longer represent the
fact that there are 10 different classes. Second, we notice that, for small values of 3, the test error
is higher than the training error, which indicates that we are overfitting. This is because the network
learns to be more deterministic, forcing o ~ 0, thus reducing the benefits of regularization. Third,
we notice that for intermediate values of 3, Monte Carlo averaging helps.

In Figure [I[c), we plot the IB curve, i.e., we plot I(Z,Y) vs I(Z, X) as we vary 3. As we allow
more information from the input through to the bottleneck (by lowering 3), we increase the mutual
information between our embedding and the label on the training set, but not necessarily on the test
set, as is evident from the plot.

In Figure[T[d) we plot the second term in our objective, the upper bound on the mutual information
between the images X and our stochastic encoding Z, which in our case is simply the relative
entropy between our encoding and the fixed isotropic unit Gaussian prior. Notice that the y-axis is a
logarithmic one. This demonstrates that our best results (when 3 is between 10~2 and 10~2) occur
where the mutual information between the stochastic encoding and the images is on the order of 10
to 100 bits.

4.1.2 TwO DIMENSIONAL EMBEDDING

To better understand the behavior of our method, we refit our model to MNIST using a K = 2
dimensional bottleneck, but using a full covariance Gaussian. (The neural net predicts the mean
and the Cholesky decomposition of the covariance matrix.) Figure[I(b) shows that, not surprisingly,
the classification performance is worse, but the overall trends are the same as in the K = 256
dimensional case. The IB curve (not shown) also has a similar shape to before, except now the gap
between training and testing is even larger.

Figureprovides a visualization of what the network is doing. We plot the posteriors p(z|z) as a 2d
Gaussian ellipse (representing the 95% confidence region) for 1000 images from the test set. Colors
correspond to the true class labels. In the background of each plot is the entropy of the variational
classifier ¢(y|z) evaluated at that point.

We see several interesting properties. First, as 3 decreases (so we pass less information through),
the posterior covariances become larger, and the classes start to overlap. Second, once (3 passes a
critical value, the encoding “collapses”, and essentially all the class information is lost. Third, there
is a fair amount of posterior uncertainty in the predictive distribution ¢(y|z) in the areas between
the class embeddings. Fourth, for intermediate values of 3 (say 10~! in Figure b)), predictive
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Figure 1: Results of VIB model on MNIST. (a) Error rate vs $ for K = 256 on train and test set.
“1 shot eval” means a single posterior sample of z, “avg eval” means 12 Monte Carlo samples. The
spike in the error rate at 3 ~ 102 corresponds to a model that is too highly regularized. (b) Same
as (a), but for K = 2. Performance is much worse, since we pass through a very narrow bottleneck.
(©) I(Z,Y) vs I(Z, X) as we vary ( for K = 256. We see that increasing I(Z, X) helps training
set performance, but can result in overfitting. (d) I(Z, X) vs 8 for K = 256. We see that for a good
value of 3, such as 10~2, we only need to store about 10 bits of information about the input.

(@) B = 1073, errme = 3.18%, (b) B = 1071, errme = 3.44%, (¢) B = 10°, errme = 33.82%,
err; = 3.24% err; = 4.32% err; = 62.81%.

Figure 2: Visualizing embeddings of 1000 test images in two dimensions. We plot the 95% confi-
dence interval of the Gaussian posterior p(z|z) = N (i, ) as an ellipse. The images are colored
according to their true class label. The background greyscale image denotes the entropy of the vari-
ational classifier evaluated at each two dimensional location. As S becomes smaller, and we forget
more about the input, the embeddings start to overlap to such a degree that the classes become in-
distinguishable. We also report the test error using a single sample, err;, and using 12 Monte Carlo
samples, errmc. For “good” values of 3, a single sample suffices.



Under review as a conference paper at ICLR 2017

performance is still good, even though there is a lot of uncertainty about where any individual image
will map to. This means it would be difficult for an outside agent to infer which particular instance
the model is representing, a property which we will explore more in the following sections.

4.2 BEHAVIOR ON ADVERSARIAL IMAGES

Szegedy et al.| (2013) was the first work to show that deep neural networks (and other kinds of
classifiers) can be easily “fooled” into making mistakes by changing their inputs by imperceptibly
small amounts. In this section, we will show how training with the VIB objective makes models
significantly more robust to such adversarial inputs.

4.2.1 TYPES OF ADVERSARIES

Since the initial work by Szegedy et al.|(2013)) and |Goodfellow et al.| (2014), many different adver-
saries have been proposed. Most attacks fall into three broad categories: optimization-based attacks
(Szegedy et al., 2013} |Carlin1 & Wagner, [2016; Moosavi-Dezfooli et al., 2016; |Papernot et al., 2015}
Robinson & Graham| 2015} |[Sabour et al., 2016)), which directly run an optimizer such as L-BFGS
or ADAM (Kingma & Bal, 2015) on image pixels to find a minimal perturbation that changes the
model’s classification; single-step gradient-based attacks (Goodfellow et al.l 2014; |Kurakin et al.,
2016; Huang et al.| 2015)), which choose a gradient direction of the image pixels at some loss, and
then take a single step in that direction; and iterative gradient-based attacks (Kurakin et al., |2016),
which take multiple small steps along the gradient direction of the image pixels at some loss, recom-
puting the gradient direction at each step

Many adversaries can be formalized as either untargeted or targeted variants. An untargeted ad-
versary can be defined as A(X, M) — X', where A(.) is the adversarial function, X is the in-
put image, X’ is the perturbed output, and M is the target model. A is considered successful if
M(X) # M(X’). Recently, Moosavi-Dezfooli et al.| (2016) showed how to create a “universal”
adversarial perturbation 0 that can be added to any image X in order to make M (X + §) # M (X).

A targeted adversary can be defined as A(X, M, 1) — X', where [ is an additional target label, and
A is only considered successful if M(X') =1 Fj Targeted attacks usually require larger magnitude
perturbations, since the adversary cannot just “nudge” the input across the nearest decision boundary,
but instead must force it into a desired decision region.

In this work, we focus on the Ly attack method proposed in (Carlin1 & Wagner| (2016)), which has
been shown to attack more models with smaller perturbations than any other method published to
date. We consider both targeted attacks and untargeted attacksE]

4.2.2 ADVERSARIAL ROBUSTNESS

There are multiple definitions of adversarial robustness in the literature. The most basic, which we
shall use, is accuracy on adversarially perturbed versions of the test set.

It is also important to have a measure of the magnitude of the adversarial perturbation. Since ad-
versaries are defined relative to human perception, the ideal measure would explicitly correspond to
how easily a human observer would notice the perturbation. In lieu of such a measure, it is common
to compute the size of the perturbation using Ly, L1, Lo, and Lo, norms (Szegedy et al.l 2013}
Goodfellow et al., [2014; |Carlini & Wagner, 2016; [Sabour et al., 2016). In particular, the Ly norm

3 There are also other adversaries that don’t fall as cleanly into those categories, such as “fooling im-
ages” from Nguyen et al.|(2014), which remove the human perceptual constraint, generating regular geometric
patterns or noise patterns that networks confidently classify as natural images; and the idea of generating ad-
versaries by stochastic search for images near the decision boundary of multiple networks from |Baluja et al.
(2015).

*|Sabour et al.|(2016) proposes a variant of the targeted attack, A(Xs, M, X1, k) — X, where X is the
source image, X is a target image, and k is a target layer in the model M. A produces X% by minimizing the
difference in activations of M at layer k between X and X . The end result of this attack for a classification
network is still that M (X ) yields a target label implicitly specified by X7 in a successful attack.

>|Carlini & Wagner (2016) shared their code with us, which allowed us to perform the attack with exactly
the same parameters they used for their paper, including the maximum number of iterations and maximum C'
value (see their paper for details).
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measures the number of perturbed pixels, the Lo norm measures the Euclidean distance between X
and X', and the L., norm measures the largest single change to any pixel.

4.2.3 EXPERIMENTAL SETUP

We used the same model architectures as in Section [4.1] using a K = 256 bottleneck. The archi-
tectures included a deterministic (base) model trained by MLE; a deterministic model trained with
dropout (the dropout rate was chosen on the validation set); and a stochastic model trained with VIB
for various values of 3.

For the VIB models, we use 12 posterior samples of Z to compute the predictive distribution p(y|x).
This helps ensure that the adversaries can get a consistent gradient when constructing the perturba-
tion, and that they can get a consistent evaluation when checking if the perturbation was successful
(i.e., it reduces the chance that the adversary “gets lucky” in its perturbation due to an untypical
sample). We also ran the VIB models in “mean mode”, where the os are forced to be 0. This had no
noticeable impact on the results, so all reported results are for normal stochastic evaluation.

4.2.4 RESULTS AND DISCUSSION

We selected the first 10 zeros in the MNIST test set, and use the L2 optimization adversary of (Carlini
& Wagner|(2016) to try to perturb those zeros into onesﬁ Some sample results are shown in Figure
[3l We see that the deterministic models are easily fooled by making small perturbations, but for the
VIB models with reasonably large 53, the adversary often fails to find an attack (indicated by the
green borders) within the permitted number of iterations. Furthermore, when an attack is succesful,
it needs to be much larger for the VIB models. To quantify this, Figure d[a) plots the magnitude
of the perturbation (relative to that of the deterministic model) needed for a successful attack as a
function of 3. As 3 increases, the Ly norm of the perturbation decreases, but both Lo and L., norms
increase, indicating that the adversary is being forced to put larger modifications into fewer pixels
while searching for an adversarial perturbation.

Figure f[(b) plots the accuracy on adversarially perturbed versions of the first 1000 images of the
MNIST test set as a function of 8. Each point in the plot corresponds to 3 separate executions
of three different models trained with the same value of 5. All models tested achieve over 98.4%
accuracy on the unperturbed MNIST test set, so there is no appreciable measurement distortion due
to underlying model accuracy.

We try both untargeted and targeted attacks. For targeting, we generate a random target label differ-
ent from the source label in order to avoid biasing the results with unevenly explored source/target
pairs. We see that for a reasonably broad range of 3 values, the VIB models have significantly better
accuracy on the perturbed test set than the deterministic models, which have an accuracy of 0% (the
attack of |Carlini & Wagner] (2016)) is very effective on traditional model architectures).

Figure [d{b) also reveals a surprising level of adversarial robustness even when 5 — 0. This can
be explained by the theoretical framework of [Fawzi et al.|(2016). Their work proves that quadratic
classifiers (e.g., #7 Az, symmetric A) have a greater capacity for adversarial robustness than linear
classifiers. As we show in Appendix |B| our Gaussian/softmax encoder/decoder is approximately
quadratic for all 5 < oo.

5 FUTURE DIRECTIONS

There are many possible directions for future work, including: testing on real images; using richer
parametric marginal approximations, rather than assuming 7(z) = N(0, I); exploring the connec-
tions to differential privacy (see e.g.,Wang et al.[(2016); |Cuff & Yu|(2016))); and investigating open
universe classification problems (see e.g., |Bendale & Boult (2015)). In addition, we would like to
explore applications to sequence prediction, where X denotes the past of the sequence and Y the
future, while Z is the current representation of the network. This form of the information bottleneck
is known as predictive information (Bialek et al., 2001; Palmer et al., 2015).

8 We chose this pair of labels since intuitively zeros and ones are the digits that are least similar in terms of
human perception, so if the adversary can change a zero into a one without much human-noticeable perturba-
tion, it is unlikely that the model has learned a representation similar to what humans learn.
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Figure 3: The adversary is trying to force each digit to be classified as class 1. Successful attacks
have a red background. Unsuccessful attacks have a green background. In the case that the label
is changed to an incorrect label different from the target label, the background is purple. The first
column is the original image. The second column is our deterministic baseline model. The third
column is our dropout model. The remaining columns are VIB models for different 3.

0.7

=== Targeted L2 Optimization (0->1):Loc S 0.6

2.5

> 05
9
o
2 2.0 3
[ N o
0.4
k: <
5 z
- ©
<=( 203
15 g
T
<
0.2
1.0 TTET vy s
0.1 - — Base Deterministic (Targeted/Untargeted)
== Targeted L2 Optimization
«=f= Untargeted L2 Optimization
00 mm e e e e e e e e e e e e e e e e e e e e m m e m—mmm—— - =
10 1010 10° 10°® 107 10° 10° 10" 1073 107 10 107 10° 10°® 107 10°¢ 107 10
6] 8
(a) (b)

Figure 4: (a) Relative magnitude of the perturbation, measured using Lo, Lo and L, norms, for the
images in Figure [3|as a function of 5. (We normalize all values by the corresponding norm of the
perturbation against the base model.) As 3 increases, L( decreases, but both Ly and L, increase,
indicating that the adversary is being forced to put larger modifications into fewer pixels while
searching for an adversarial perturbation. (b) Classification accuracy on Lo adversarially perturbed
images (of all classes) as a function of 5. The blue line is for targeted attacks, and the green line
is for untargeted attacks (which are easier to resist). In this case, / = 10~!! has performance
indistinguishable from 8 = 0. The deterministic model has a classification accuracy of 0% in both
the targeted and untargeted attack scenarios, indicated by the horizontal red dashed line at the bottom
of the plot.
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A CONNECTION TO VARIATIONAL AUTOENCODERS

We can also consider unsupervised versions of the information bottleneck objective. Consider the
objective:
max [(Z,X) — BI(Z,1), (19)

similar to the information theoretic objective for clustering introduced in|Slonim et al.| (2005).

Here the aim is to take our data X and maximize the mutual information contained in some encoding
Z, while restricting how much information we allow our representation to contain about the identity
of each data element in our sample (). We will form a bound much like we did in the main text.
For the first term, we form a variational decoder ¢(x|z) and take a bound:

1(Z,X) /dm dzp(z, ) log (ff) (20)
2)+ [ d2pia) [ doplalz)logalal2) @

> / d2plz) [ doplel2)oga(al2) (22)
:/dxp(x)/dzp(x|z) log q(x]2). (23)

Here we have dropped the entropy in our data H (X) because it is out of our control and we have
used the nonnegativity of the Kullbach-Leibler divergence to replace our intractable p(z|z) with a
variational decoder ¢(z|z).

Turning our attention to the second term, note that:

p(z]i) = /dxp(z|x)p(:1:|z) = /dacp(z|x)5(x — ;) = p(z|a;), (24)

and that we will take p(i) = +-.

So that we can bound our second term from above

> JE o 25)
NZ/dzp z|x;) log (( )) (26)

NZ/dzp(zmi)log E"(L)l)’ (27)

Where we have replaced the intractable marginal p(z) with a variational marginal r(z).

IN

Putting these two bounds together we have that our unsupervised information bottleneck objective
takes the form

I(Z,X) - BI(Z,i) < /dfvp(l")/dzp(ZIw) log q(z]2) *B%ZKLUJ(Z\@),T(Z)}- (28)

And this takes the form of a variational autoencoder (Kingma & Welling) 2014)), except with the
second KL divergence term having an arbitrary weight 5.

This precise setup, albeit with a different motivation was recently explored in Higgins et al.|(2016),
where they demonstrated that by changing the weight of the variational autoencoders regularization
term, there were able to achieve latent representations that were more capable when it came ot zero-
shot learning and understanding “objectness”. In that work, they motivated their choice to change
the relative weightings of the terms in the objective by appealing to notions in neuroscience. Here
we demonstrate that appealing to the information bottleneck objective gives a principled motivation
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and could open the door to better understanding the optimal choice of 8 and more tools for accessing
the importance and tradeoff of both terms.

Beyond the connection to existing variational autoencoder techniques, we note that the unsupervised
information bottleneck objective suggests new directions to explore, including targetting the exact
marginal p(z) in the regularization term, as well as the opportunity to explore tighter bounds on the
first I(Z, X) term that may not require explicit variational reconstruction.

B QUADRATIC BOUNDS FOR STOCHASTIC LOGISTIC REGRESSION DECODER

Consider the special case when the bottleneck Z is a multivariate Normal, i.e., z|z ~ N(pz, Xy)
where ¥, is a K x K positive definite matrix. The parameters p,, >, can be constructed from a
deep neural network, e.g.,

fra = Y1:K ()
chol(X,) = diag(log(1 + exp(Vx+1:2x))) + subtril(Vox +1:x (K +3)/2)-
where (x) € RE(E+3)/2 is the network output of input z.

Suppose that the prediction is a categorical distribution computed as S(WWz) where W is a
C x K weight matrix and log S(x) = x — Ise(z) is the log-soft-max function with Ise(z) =

log Ele exp(xy) being the log-sum-exp function.

This setup (which is identical to our experiments) induces a classifier which is bounded by a
quadratic function, which is interesting because the theoretical framework|Fawzi et al.|(2016) proves
that quadratic classifiers have greater capacity for adversarial robustness than linear functions.

‘We now derive an approximate bound using second order Taylor series expansion (TSE). The bound
can be made proper via [Browne & McNicholas| (2015). However, using the TSE is sufficient to
sketch the derivation.

Jensen’s inequality implies that the negative log-likelihood soft-max is upper bounded by:
108 E [S(WZ) |1z, %] < — E [log S(W Z) 1z 5]
= Wiy + E[lse(WZ)|pt, 3]
= Wy + Else(Z)|W g, WE,].

The second order Taylor series expansion (TSE) of Ise is given by,
lse(x + 8) ~ Ise(z) + 67 S(x) + 147 [diag(S(x)) - S(x)S(m)T} s.
Taking the expectation of the TSE at the mean yields,
Eno,ws,wr)llse(Wi, +6)] = Ise(W ) + EN(O,WZIWT)[(ST]S(WMGE)"i_
+ 3 Enwa,wn) 07 [diag(S(W i) — SOW i) S(Wia)T | ]
= Ise(Wsy) + 3 e (WS, W [diag(S(W ) = SOV pa) S(W )T |)
= Ise(Wiz) + 5 tr(WE, WT diag(S(Whs))) = 38(Wpa)T WEWT S(Wpsy)
— Ise(W ) + 2/SWa) WE.WTV/SWity) = ASWin) T WEWT S(Wi,)
The second-moment was calculated by noting,
E[XT BX] =Etr(XX' B) = tr(E[XX"|B) = tr(XB).
Putting this altogether, we conclude,
E SOV 2)ltar 2] 2 SOV i) exp (—5/SWhe) WEWT V/SWis) + ES(OWpe) T WEWT S(Wia))
As indicated, rather than approximate the Ise via TSE, we can make a sharp, quadratic upper bound

viaBrowne & McNicholas| (2015). However this merely changes the S(W ) scaling in the expo-
nential; the result is still log-quadratic.
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