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Abstract

Graph Neural Networks (GNNs) and Graph Kernels (GKs) are two fundamental1

tools used to analyze graph-structured data. Efforts have been recently made in de-2

veloping a composite graph learning architecture combining the expressive power3

of GNNs and the transparent trainability of GKs. However, learning efficiency on4

these models should be carefully considered as the huge computation overhead.5

Besides, their convolutional methods are often straightforward and introduce severe6

loss of graph structure information. In this paper, we design a novel quantum graph7

learning model to characterize the structural information while using quantum8

parallelism to improve computing efficiency. Specifically, a quantum algorithm is9

proposed to approximately estimate the neural tangent kernel of the underlying10

graph neural network where a multi-head quantum attention mechanism is intro-11

duced to properly incorporate semantic similarity information of nodes into the12

model. We empirically show that our method achieves competitive performance13

on several graph classification benchmarks, and theoretical analysis is provided to14

demonstrate the superiority of our quantum algorithm.15

1 Introduction16

Fusing quantum computing and classic machine learning has become a promising subject of research.17

Quantum-based algorithms have been proposed in recent years, from naive quantum non-parametric18

machine learning [51, 35, 42, 31] to classic-quantum hybrid deep leaning [7, 10, 45, 36, 14]. Despite19

that quantum machine learning (QML) has shown its potential in many machine learning tasks,20

quantum computing for graph learning is still in its early stage [60]. Inspired by the two popular21

classes of methods for learning on graph data, i.e., Graph Neural Networks (GNNs) [19, 38, 20, 66]22

and Graph Kernels (GKs) [22], several works attempt to build quantum graph learning architecture23

that captures the structural information of graph data, such as Quantum Graph Neural Networks24

(QGNNs) [63, 7, 11, 16, 1] and Quantum Graph Kernel Methods (QGKs) [55, 3, 24, 4]. A brief25

review about quantum graph learning is illustrated in Fig. 1.26

Some quantum subroutines for attribute encoding [5, 69] and structural encoding [63, 45] have been27

developed to dissolve the characteristics of the graph into the quantum model. However, most present28

quantum graph learning models are hybrid such that the expressive capability depends more on the29

complexity of the classic modules [69]. It is difficult to characterize the structure information and30

attribute information of the graph by the quantum components without the participation of classic31

modules. Even worse, the frequent interactions between classical systems and quantum environments32

generally incur additional overhead [54]. It is unclear whether the introduced quantum module33

can improve the performance of the model as well as the training efficiency. Besides, most of34

existing proposals for quantum machine learning for graphs lack a clear demonstration of a quantum35

superiority for tasks on classical datasets.36
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Using quantum computing power to boost the trainability and expressive behaviour of classic machine37

learning models provides one of the most promising direction for quantum machine learning. It38

is demonstrated that the power of quantum computing could be used to find atypical but useful39

patterns that classical systems are not considered to be able to generate effectively [14, 23, 27], and40

accelerate the training process of existing classic models [35, 42, 70]. Several quantum algorithms41

[51, 44, 43] based on the HHL algorithm [21] show the exponential speedup compared with their42

classical counterpart, with a assumption that a quantum random access memory (QRAM) [34] is43

accessible. Recent literature employ quantum algorithms to efficiently train deep neural networks44

[70], reconstruct unsupervised clustering [33] and supervised kernel classifier [42]. It is hopeful that45

quantum computing could provide a new learning paradigm. In addition, simulations and physical46

experiments have proved the potential of using quantum algorithms to encode and process regular47

classical data such as text and image [59, 6].48

Beyond vanilla GNNs and GKs, composite graph learning studies have emerged that combine the49

advantages of both areas [17, 49, 10, 18]. However, the computation overheads is extremely large50

due to either the dense gram matrix [17], or the large number of substructures to be compared after51

graph decomposition [10]. Prospectively, the barrier that conventional model is difficult to train52

and scale up is expected to be circumvented with the help of the uniqueness of quantum computing.53

Early research involves altering the amplitude of quantum basis states to accomplish a quantum logic54

operations [8], which is profitable from the huge quantum Hilbert space to encode the normalized55

data. Recently, simultaneous transformation of basic states in quantum superposition using quantum56

parallelism is regarded as a remarkable manifestation of quantum superiority, which is successfully57

implemented in classic machine learning to reduce the computational overheads [35, 36, 70]. These58

strategies could be helpful in the regime of training graph models with either the non-convex nature59

of the training procedure, or the poor scalability w.r.t. training size.60

In this paper, we focus on quantum machine learning of graph-structured data with attributed nodes61

and binary edges. Inspired by recent quantum neural network methods [36, 70] that efficiently62

reconstruct the dynamics of classic neural networks using quantum computing techniques, a new63

quantum graph learning model is proposed which is analogue to train an infinite-width GNN with64

attention mechanism, where the number of heads goes to infinity. Our contributions are:65

• For the first time, we show that the infinite-width GNN, namely graph tangent neural network66

[17] can be trained in a quantum reconstructive paradigm, by introducing a quantum aggregation67

transformation and a quantum kernel estimation adaptive to the different sizes of graph. This68

composite quantum graph learning architecture preserves the expressive power of GNNs and the69

transparent trainability of GKs as the composite graph learning model does.70

• A quantum-friendly self-attention mechanism (transformer) is employed to incorporate semantic71

correlation information of all node pairs of the graph into the model, which can be naturally adopted72

by quantum algorithms with additional relaxation. To our best acknowledge, this is the first for73

leveraging attention mechanism in quantum graph learning. In contrast, the present quantum graph74

learning algorithms can only undertake propagation between the adjoining neighbors [45, 24, 63],75

and constrain themselves to specify identical priority to distinct neighbours [1, 11].76

• We evaluate our quantum model on graph classification benchmarks. The results show that our77

method achieves competitive performance compared with the classic baselines including both78

GNNs and GKs. Besides, we give a theoretical analysis showing that our GraphQNTK reduces the79

running time complexity of graph kernel neural networks from O(N2) to O(N).80

2 Methodology81

2.1 Preliminaries82
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Figure 1: Overview of quantum graph learning.

We first briefly review the most common setting83

for GNNs and the corresponding neural tangent84

kernel (NTK), and by the way the notation is given.85

A graph G = (V,E) is denoted by a collection86

of nodes V and edges E. Each node has a d-87

dimensional feature vector hv ∈ Rd, v ∈ V , and88

H ∈ Rn×d is the feature matrix stacking all nodes89

features. For graph classification, we consider the90
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dataset with a set of graphs {G1, . . . , GN} ⊆ G and their labels {y1, . . . , yN} ⊆ Y . Our goal is to91

learn to predict labels of unseen graphs.92

The formulation of GNN The differences of GNNs mainly depend on the different settings of93

message propagation process. Here we consider a simple message passing framework [19] and the94

propagation of the l-th (l ∈ [L]) layer is given as:95

ĥl
u :=

∑
v∈N (u)∪{u}

h(l−1)
v , (1)

96

hl
u :=

√
cσ
dL
σ

(
Wl

R

√
cσ
dL−1

σ

(
Wl

R−1 · · ·
√
cσ
d1

· σ
(
Wl

1ĥ
l
u

)))
, (2)

where N (u) denotes the neighbors of u, cσ is the scaling factor, dl is the output dimension of the l-th97

layer, σ is an element-wise activated function, and Wl
R is learnable weights performing on the input98

for R times of the l-th layer (equivalent to R fully-connected layers without the bias term).99

For graph classification, the output is a permutation invariance function acting on the collection of all100

node features in the last layer. The popular sum_pooling function is adopted: hG =
∑

u∈V hL
u ..101

NTK of the infinite-width GNN. Consider a training set {(xi, yi)}Ni=1 ⊂ Rd × R. When an over-102

parameterized fully connected network f(θ,x) : Rd → R whose width is allowed to go to infinity103

and parameters θ are randomly initialized and trained with gradient descent, the dynamics of the104

network is equivalent to the kernel regression [30]. This is the so called neural tangent kernel (NTK):105

H(t)ij =

〈
∂f (θ(t), xi)

∂θ
,
∂f (θ(t), xj)

∂θ

〉
, (3)

which remains constant during training, i.e., H(t) = H(0). And we replace H(t) with H for106

convenience. The final prediction for a test datapoint x∗ is107

f(x∗) = k∗H
−1y, (4)

where yi = yi and k∗ ∈ RN is the vector whose i-th element denotes the NTK value between xi and108

x∗.109

It is discovered that convolutional neural networks (CNNs) with infinite-width channels and infinite110

number of filters also have the same behaviour [2]. Inspired by this, Du et al. [17] adopts the designing111

strategy of NTK and leverages a GNN architecture to design new graph kernels, which is called112

graph neural tangent kernel (GNTK). The dynamics of training the GNTK is equivalent to train an113

infinitely-wide GNN initialized with random weights trained with gradient descent. Specifically,114

consider two input graph G = (V,E) and G′ = (V ′, E′) with |V | = n and |V | = n′, the GNTK115

Θ ∈ Rn×n′
and the relative covariance matrix Σ ∈ Rn×n′

in the l-th layer of the feature aggregation116

phase as described in Eq. 1 after R fully-connected layers are given by117 [
Σl

0 (G,G
′)
]
uu′ =

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Σl−1

R (G,G′)
]
vv′ ,

[
Θl

0 (G,G
′)
]
uu′ =

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Θl−1

R (G,G′)
]
vv′ ,

(5)

which is an affine transformation of the input GNTK and covariance respectively where118 [
Θ0

R(G,G
′)
]
uu′ and

[
Σ0

R(G,G
′)
]
uu′ are both defined to be h⊤

u hu′ . We replace them with119 [
Θ0(G,G′)

]
uu′ and

[
Σ0(G,G′)

]
uu′ respectively without ambiguity.120

The successive fully-connected layers defined in Eq. 2 are used to update the node hidden feature121

after aggregation. Specifically, the GNTK of the fully-connected layer is recursively associated to122

that of the previous layer, and the transformation is given by123 [
Σl

r (G,G
′)
]
uu′ = σ̂(r−1)

([
Σl

r−1 (G,G
′)
]
uu′

)
, r ∈ [R], (6)

where σ̂(r) : [−1, 1] → R denotes the the conjugate activation function corresponding to the activated124

function σ with centered Gaussian processes of covariance at the r-th fully-connected layer, as125

described in [15]. And the derivation of the covariance is126 [
Σ̇l

r (G,G
′)
]
uu′

= ˆ̇σ
(
σ̂(r−1)

([
Σl

r−1 (G,G
′)
]
uu′

))
, (7)
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where ˆ̇σ denotes the derivative of σ. Given Eq. 6 and Eq. 7, the transformation of the GNTK for the127

feature update phase denoted by Eq. 2 is given by128

[
Θl

R (G,G′)
]
uu′ =

R∑
r=1

[
Σl

0 (G,G
′)
]
uu′

(
R∏

r′=r

[
Σ̇l

0 (G,G
′)
]
uu′

)
. (8)

Therefore, computing each element of the GNTK (or covariance) matrix is only reliant on the element129

at the same place of the GNTK (or covariance) matrix in the previous fully-connected layer. The final130

GNTK corresponding the two input graphs G and G′ determined by the sum_pooling function:131

Θ (G,G′) =
∑

u∈V,u′∈V ′

[
ΘL

R (G,G′)
]
uu′ . (9)

Intuitively, calculating each element of the GNTK of fully-connected layers could be accelerating132

by a proper quantum kernel estimation algorithm. However, it is indirect to realize an end-to-end133

speedup for GNTK since calculating the element of GNTK requires an affine transformation. To134

circumvent this barrier, we derive a unitary quantum aggregation transformation to bridge the gap135

between quantum kernel methods and estimation of GNTK.136

2.2 QNTK with Attention Mechanism137

Aggregate (affine transformation)

Update (fully-connected layers)

Attention (transformer)

Quantum Kernel 
Estimation

Quantum Aggregation 
Transformation

Infinite-width-limit GNTKGNN with Attention  
Mechanism

Inner Product Estimation

Recursively

Quantum Arithmetic

Figure 2: Framework for GNN with attention mechanism and its
corresponding GNTK. The GNN comprises a message transmission
process similar to the vanilla GCN but involves a transformer at the
tail of the model (excluding the last layer), which characterizes the
global semantic similarity between each pairs of nodes. The neighbor
aggregation is kept since the two nodes connected by an edge often
have stronger semantic relationship. The dynamics of the infinite-
width-limit GNN is analogous to kernel methods and we reconstruct
it by quantum algorithms to estimate the kernel.

Before giving the analyti-138

cal quantum reconstruction139

of GNTK with multi-head at-140

tention mechanism, we first141

elaborate on how to inte-142

grate the transformer layer143

into the GNN as described144

in Sec. 2.1. The result-145

ing GraphQNTK can be effi-146

ciently reconstructed by quan-147

tum computing paradigm,148

which gives a quadratic speed-149

up over the classic estimation150

of GNTK. The mechanism to151

build the GNN and estimate152

the GNTK is shown in Fig. 2.153

GNN with multi-head atten-154

tion. The aggregation pro-155

cess of vanilla GCN [38] re-156

gards the contribution of each157

node’s neighbor to the central158

node as equally important, which can be viewed as learning an averaged filter across the whole graph159

[65], leading to a great loss of structure information. Besides, the aggregation only is performed160

within the adjoining neighbors under the assumption that the graph is homophilous. The method may161

fail to learn effective graph structures for message passing [12]. To capture the global node similarity162

semantics of the provided graph, numerous attempts that employ transformer for graph learning have163

been developed [26, 50, 52, 67]. Consider the input feature matrix Hl
in ∈ RN×sl where N denotes164

the number of samples and sl is the dimension of feature at layer l before implementation of the165

transformer. The single transformer layer is to project the input Hl
in ∈ RN×sl by three matrices,166

i.e., Wl
Q ∈ Rsl×slK , Wl

K ∈ Rsl×slK and Wl
V ∈ Rsl×slV , to the corresponding representations167

Ql,Kl,Vl. The formulation is given as168

Ql = Hl
inW

l
Q, Kl = Hl

inW
l
K , Vl = Hl

inW
l
V , Ĥl = ζ

(
Gl

)
Vl, Gl =

QlKl⊤√
slK

, (10)

where ζ denotes an element-wise activated function. The multi-head attention alternative is given by169

Hl
out =

[
Ĥl

head1 , . . . , Ĥ
l
headM

]
Wl

O, (11)
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where Wl
O ∈ R(MslV )×sl projects the N ×MslV concatenated multi-head feature matrix back to170

N × sl matrix.171

Let Y and Θ denote the neural network Gaussian Process Kernel (NNGP) [50] and NTK after172

the transformer layer, and let Ỹ and Θ̃ be the input NNGP and NTK before the transformer layer.173

Consider two input feature vector x and x′. When the output dimension of the transformer layer and174

the number of heads go to infinity, i.e., sl → ∞, slK → ∞, slV → ∞,M → ∞, the output NTK is:175

Θ
(
x,x′) = 2Y

(
x,x′)+ ζ

(
Ỹ (x,x)

)
Θ̃

(
x,x′) ζ (Ỹ (

x′,x′))⊤
,

Y
(
x,x′) = ζ

(
Ỹ (x,x)

)
Ỹ

(
x,x′) ζ (Ỹ (

x′,x′))⊤
,

(12)

where the under the restriction that 1) Wl
Q and Wl

K share the same weighs, and 2) scaling the dot176

products between Ql and Kl by their dimension instead of the square root of the same quantity, i.e.,177

Gl = QlKl⊤

slK
. The detailed proof can be found in [25].178

To efficiently estimate the element of the NTK defined by the transformer layer using quantum179

parallel, we consider the identity activated function, i.e., ζ = I , and slightly modify the Eq. 12 as180

Θ
(
x,x′) = 2Y

(
x,x′)+ T̃

(
x,x′)⊙Θ

(
x,x′) ,

Y
(
x,x′) = T̃ζ

(
x,x′)⊙ Ỹ

(
x,x′) , (13)

where T̃ (x,x′) is the result of matrix multiplication between the column vector of the diagonal of181

Ỹ (x,x) and row vector of the diagonal of Ỹ (x′,x′), and T̃ζ is the result of matrix multiplication182

between the diagonal of those two matrix after activated operation. It is reasonable to accept this183

modification since in the limit of infinite width neural network the output converges in distribution to184

a multivariate normal with a block diagonal covariance [50]. Notice that the difference between the185

definition of NNGP and the covariance of NTK is that the former denotes the expectation with respect186

to the output before the activated operation, while the later after the denotes the expectation with187

respect to the output after the activated operation [30]. Consequently, we consider that Y is equal to188

the covariance of NTK within the transformer layer as the result of the identity activated function.189

GNTK with infinite-width-limit attention. To appropriately incorporate semantic similarity in-190

formation of nodes into the model, a multi-head attention mechanism is implemented at the tail191

of the each GNN layer except the first and the last layer, and the calculation of the GNTK with192

infinite-width-limit attention is to insert an additional procedure after the fully connected layers. For193

the two input graphs G and G′, the formulation derived by Eq. 13 is given as194 [
Θ̂l

R

(
G,G′)]

uu′
= 2

[
Σl

R

(
G,G′)]

uu′
+

[
Tl (G,G′)]

uu′

[
Θl

R

(
G,G′)]

uu′
,[

Σ̂l
R

(
G,G′)]

uu′
=

[
Tl (G,G′)]

uu′

[
Σl

R

(
G,G′)]

uu′
,

(14)

where Tl (G,G′) is the result of matrix multiplication between the column vector of the diagonal of195

Σl
R (G,G) and row vector of the diagonal of Σl

R (G′, G′). The affine transformation of the input196

GNTK corresponding to the aggregation phase as described in Eq. 5 is changed to (similar to Σl
0):197 [

Θl
0

(
G,G′)]

uu′
=

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Θ̂l−1

R

(
G,G′)]

vv′
, (15)

2.3 The Proposed GraphQNTK198

We first show that estimating the single-layer GraphQNTK and its covariance with infinite-width-199

limit attention mechanism can be efficiently reconstructed in the regime of quantum computing, and200

generalize to the multi-layer model. The following statements only consider two input graphs G =201

(V,E) and G′ = (V ′, E′) with |V | = n and |V ′| = n′, and the corresponding feature matrix H =202

[h⊤
1 , · · · ,h⊤

u , · · · ,h⊤
n ] ∈ Rn×d and H′ = [h⊤

1 , · · · ,h⊤
u′ , · · · ,h⊤

n′ ] ∈ Rn′×d. The approximate203

estimation of GNTK is denoted as Θ̄ ∈ Rn×n′
and its element is Θ̄uu′ . The corresponding204

covariance is Σ̄ ∈ Rn×n′
and Σ̄uu′ . We use Θ̄GG′ ∈ R to represent GraphQNTK after readout. We205

omit the subscript R for clarity. The same setting can be easily generalized to the arbitrary pair of206

graphs G,G′ ∈ G by introducing auxiliary index registers. First, we introduce the quantum data207

structure accessible to the classical data, as commonly used by QML algorithms [51, 35, 33, 70].208
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Feature encoding. Using the storage structure as stated in our proposed Theorem 1 in Appendix,209

the feature matrix can be prepared into the QRAM at the initialization of the algorithm. The data210

encoding only occurs a single time and readout operation only takes logarithmic complexity time211

with respect to the number of samples n and dimension of feature d. The quantum representations212

corresponding to the encoded feature vector and feature matrix are as follows213

|u⟩ |0⟩ → |u⟩ |hu⟩ , |0⟩ → 1

∥H∥F

∑
u

∥hu∥ |u⟩,

∣∣u′〉 |0⟩ → ∣∣u′〉 |hu′⟩ , |0⟩ → 1

∥H′∥F

∑
u′

∥hu′∥ |u′⟩.
(16)

Estimation of the initialized NTK. The empirical uncentered covariance of inputs
[
Σ0(G,G′)

]
uu′214

and the initialized GNTK
[
Θ0(G,G′)

]
uu′ is the inner product between hu and hu′ . Fol-215

lowing a similar approach to [36], the inner product between two vectors with respect to216

their quantum representations can be estimate efficiently by introducing an auxiliary register.217

Specifically, estimation of the inner product h⊤
u hu′ can be performed by constructing the state218

1√
2
(|u⟩|u′⟩|0⟩| |hu⟩⟩+ |u⟩|u′⟩|1⟩| |hu′⟩⟩). Applying a Hadamard gate on the third register gives the219

state |u⟩|u′⟩
(√
Puu′ |0, guu′⟩+

√
1− Puu′ |1, g′uu′⟩

)
, where Puu′ =

1+h⊤
u hu′
2 is the estimation of220

the inner product. This procedure takes O(log d) time and we denote this quantum operation by D0,221

and we add a subscript to denote the corresponding conditioned operator, i.e, D0
uu′ represents D0 is222

conditioned acting on the basis state coupled with state |0⟩ → |u⟩|u′⟩. We can perform the D0
uu′ in su-223

perposition such that the state 1√
nn′

∑
u∈V

∑
u′∈V ′ |u⟩|u′⟩

(√
Puu′ |0, guu′⟩+

√
1− Puu′ |1, g′uu′⟩

)
224

can be generated in time O(log(nd)).225

Quantum aggregation transformation. Recall that an affine transformation (refer to Eq. 5 and226

Eq. 15) acting on the GNTK and its covariance is relative to the neighborhood aggregation defined by227

Eq. 1. Therefore, it is indirect to realize an end-to-end speedup similar to the estimation of the inner228

product since the transformation of each element of NTK and the covariance is not independent. To229

circumvent this barrier, we derive a unitary quantum aggregation transformation to approximately230

reconstruct the affine transformation. Consider the quantum operation D0
uu′ : |u⟩|u′⟩|0⟩|0⟩ →231

|u⟩|u′⟩
(√
Puu′ |0, guu′⟩+

√
1− Puu′ |1, g′uu′⟩

)
that is employed to estimate the inner product of232

two feature vectors. Define a unitary operator which is used to perform aggregation transformation233

U =
∑

v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

|v⟩
∣∣v′〉 ⟨v| 〈v′∣∣⊗D0

vv′ , (17)

which can be generated by introducing conditional quantum evolution [21]. The operation ⊗ denotes234

the tensor product. We apply the U with Hadamard gates to the given initial state, which is given as235

H⊗UH⊗|0⟩⊗|0⟩|0⟩ → H⊗U
∑
v,v′

∣∣v, v′〉 |0⟩|0⟩
→ H⊗

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

∣∣v, v′〉 (√Pvv′ |0, gvv′⟩+
√

1− Pvv′
∣∣1, g′vv′

〉)
→

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

√
Pvv′ |0⟩⊗ +

√
· |other⟩+ · · ·

(18)

where
√
· |other⟩ represents other computational basis states except for |0⟩⊗ with amplitude

√
·, and236

the detailed mathematical expression and the scalar for state normalization are omitted since the237

result of the affine transformation has been embedded into the amplitude of |0⟩⊗. The (·)⊗ denotes238

that there could be multiple unitary operations acting on multiple registers, depending on the number239

of qubits required to encode the classic data. Similar to the inner product estimation, the quantum240

aggregation transformation can be performed in superposition and the resulting superposition is241

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩
(√

Auu′ |0, yuu′⟩+
√

1−Auu′
∣∣1, y′

uu′
〉)

,

√
Auu′ =

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

√
Pvv′

|v| × |v′| .

(19)

The amplitude
√
Auu′ can be encoded into an ancillary register by using Amplitude Es-242

timation (Theorem 3) and Median Evaluation (Theorem 4). The obtained quantum state243
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1√
nn′

∑
u∈V

∑
u′∈V ′ |u⟩|u′⟩|Āuu′⟩|yuu′⟩ whose third register carries the approximate result after244

aggregation transformation as described in Eq. 5 and Eq. 15, where |Auu′ − Āuu′ | ≤ ϵ and |yuu′⟩ is a245

garbage state. The runtime is O(log(nd)log(1/∆)/ϵ) and ∆ is the proximity defined by the Median246

Evaluation. Note that Āuu′ is actually the polynomial combination of the element-wise square root247

of the NTK from the previous layer, thus it is an approximate aggregation transformation. In the248

experiment, we empirically show that this approximation has a restrictive effect on the performance.249

Quantum kernel estimation For fully-connected neural network, the calculation of each ele-250

ment of the NTK and its covariance is only reliant on the element at the same position of the251

covariance matrix in the previous fully-connected layer. Besides, the affine transformation of the252

GNTK and its covariance can be efficiently approximated by quantum aggregation transforma-253

tion and the result has been embedded into the basis states of a superposition. In general, there254

exits a unitary V :
∑

x |x, 0⟩ →
∑

x |x, f(x)⟩ for any classical function f with the same time255

complexity to evaluate each element of the NTK and each element of the covariance [47, 70].256

Specifically, an oracle which operates as the same as classical function defined by Eq. 8 is im-257

plemented on the third register of 1√
nn′

∑
u∈V

∑
u′∈V ′ |u⟩|u′⟩|Āuu′⟩|yuu′⟩. The resulting NTK is258

1√
nn′

∑
u∈V

∑
u′∈V ′ |u⟩|u′⟩|Θ̄uu′⟩|yuu′⟩, where Θ̄uu′ is the approximate estimation of its classical259

counterpart after R fully-connected layers. The oracle is expected to be with the same complexity260

of its classical counterpart, which is associative to the number of fully-connected layers and is261

independent on the number of training samples n. For estimation of the GNTK after a transformer262

layer (Eq. 14), the covariance Σl
R (G,G) for any G ∈ G requires to be estimated in advance. It263

means that the state 1
n

∑
u∈V

∑
u′∈V |u⟩|u′⟩|Σ̄uu′⟩|yuu′⟩ must be estimated for any G(V,E) ∈ G264

before input the different graphs, and we only consider the element when u = u′. By taking the265

partial trace on the second register, we obtain the state 1√
n

∑
u∈V |u⟩|Σ̄uu⟩|yuu⟩ for graph G and266

1√
n′

∑
u′∈V ′ |u′⟩|Σ̄u′u′⟩|yu′u′⟩ for graph G′. Thus, estimation of the GNTK and its covariance267

corresponding to the multiplication part in Eq. 14 is given as268

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Θ̄uu′⟩|yuu′⟩ → 1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Θ̄uu′ × Σ̄uu × Σ̄u′u′⟩|yuu′⟩,

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Σ̄uu′⟩|yuu′⟩ → 1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Σ̄uu′ × Σ̄uu × Σ̄u′u′⟩|yuu′⟩.
(20)

This is performed by using the conditional quantum adder and the multiplier conditioned on the269

index register, i.e. |u⟩ and |u′⟩, which are designed by [62, 53, 40]. The final GNTK after the270

transformer layer can be directly generated by additional quantum arithmetic operations that perform271

an element-wise addition between the covariance to the GNTK.272

Estimation the GNTK for multiple layers The quantum aggregation transformation requires that the273

approximate NTK and its covariance are embedded into the amplitudes of a superposition. However,274

after the quantum kernel estimation, these matrix are embedded into the quantum basis states of a275

superposition. To extract them back to the amplitudes, we apply Conditional Rotation [36] on the276

register containing the approximate GNTK (and the covariance), which is given by277

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Θ̄uu′⟩ → 1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩(auu′ |0⟩+
√

1− a2
uu′ |1⟩),

1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩|Σ̄uu′⟩ → 1√
nn′

∑
u∈V

∑
u′∈V ′

|u⟩|u′⟩(buu′ |0⟩+
√

1− b2uu′ |1⟩),
(21)

where auu′ =

√
Θ̄uu′

maxuu′(Θ̄uu′)
and buu′ =

√
Σ̄uu′

maxuu′(Σ̄uu′)
. We denote this quantum operation as278

Dl, l ∈ {1, . . . , L}, where DL is used for the quantum readout operation. Similar to the operation279

D0, the quantum aggregation transformation can be performed by generating a unitary operator by280

introducing conditional quantum evolution. Notice that auu′ and buu′ can be viewed as
√
Puu′ in the281

setting of the single-layer GraphQNTK.282

Quantum readout The resulting NTK is embedded into the basis states of a superposition since283

the algorithm ends up in the fully-connected layers. Similar to the classic readout operation, the284

summation of all the elements of the NTK matrix at the L-th layer is required. We use Conditional285

Rotation to extract the NTK back to the amplitude, and define a unitary O which is a generalization286
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of the unitary U , where287

O =
∑
v∈V

∑
v′∈V

|v⟩
∣∣v′〉 ⟨v| 〈v′∣∣⊗DL

vv′ . (22)

The unitary O sums the square root of all the elements of the GraphQNTK matrix. And the288

resulting GraphQNTK between two input graphs is Θ̄GG′ =
(
∑

u∈V,u′∈V ′
√

Θ̄uu′ )2

n×n′ , where Θ̄uu′ is289

the GraphQNTK of the last layer.290

Quantum inference to unseen data We assume that the test data and the label of the training set291

are already encoded into the QRAM such that |k∗⟩ ∈ RN , the GraphQNTK between the test graph292

G∗, can be evaluated as the same way to the evaluation between the training data. Let Θ̄ ∈ RN×N293

denote the GraphQNTK. The final prediction for a test datapoint G∗ is294

f∗(G∗) = ⟨k∗|Θ̄−1|y⟩, (23)

which requires solving the linear equation |E⟩ = Θ̄−1|y⟩ and performing inner product es-295

timation on ⟨k∗|E⟩. A popular quantum algorithm which is designed to solve the quantum296

linear systems problem (QLSP) is developed by [13], and its runtime is O(log(N)κs poly-297

log (κs/ϵ)) where s is the sparsity of matrix Θ̄ and κ is the condition number. To realize298

the quantum speedup, we assume a specific sparsity pattern is created in the quantum stor-299

age that only keeps O(logN) number of non-zero elements of the N × N GraphQNTK ma-300

trix and the well-conditioning is achieved by using Gershgorin circle theorem similar to [70].301

Table 1: Classification accuracies on graphs with discrete node at-
tributes. The AttentionGNTK denotes the GNTK with attention
mechanism without both sparsity and well conditioning, while the
GraphQNTK is the kernel after performing these two transformations
to meet the conditions for the use of quantum matrix inversion. The
results of other models are taken from [17] except QS-CNN, which we
evaluate on our dataset separation.
Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M

WL subtree [56] 90.4 ± 5.7 75.0 ± 3.1 59.9 ± 4.3 86.0 ± 1.8 73.8 ± 3.9 50.9 ± 3.8
AWL [29] 87.9 ± 9.8 - - - 74.5 ± 5.9 51.5 ± 3.6
RetGK [68] 90.3 ± 1.1 75.8 ± 0.6 62.5 ± 1.6 84.5 ± 0.2 71.9 ± 1.0 47.7 ± 0.3
GNTK [17] 90.0 ± 8.5 75.6 ± 4.2 67.9 ± 6.9 84.2 ± 1.5 76.9 ± 3.6 52.8 ± 4.6

GCN [38] 85.6 ± 5.8 76.0 ± 3.2 64.2 ± 4.3 80.2 ± 2.0 74.0 ± 3.4 51.9 ± 3.8
GraphSAGE [20] 85.1 ± 7.6 75.9 ± 3.2 63.9 ± 7.7 77.7 ± 1.5 72.3 ± 5.3 50.9 ± 2.2
PatchySAN [48] 92.6 ± 4.2 75.9 ± 2.8 60.0 ± 4.8 78.6 ± 1.9 71.0 ± 2.2 45.2 ± 2.8
GIN [66] 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7 75.1 ± 5.1 52.3 ± 2.8

QS-CNN [69] 93.1 ± 4.7 78.2 ± 4.6 66.0 ± 4.4 81.4 ± 2.6 72.1 ± 3.7 46.2 ± 4.2

AttentionGNTK 90.0 ± 8.5 76.2 ± 3.8 66.2 ± 5.1 84.1 ± 1.2 76.9 ± 3.2 52.9 ± 3.5
GraphQNTK 88.4 ± 6.5 71.1 ± 3.2 62.9 ± 5.0 77.2 ± 2.7 73.3 ± 3.6 48.1 ± 4.3

302

2.4 Complexity Study303

In Sec. 2.3, we discuss how304

to approximately estimate305

GNTK using quantum com-306

puting paradigm between307

two input graphs. The time308

complexity is dominated by309

the quantum aggregation310

transformation procedure311

as it requires encoding the312

amplitude into an addi-313

tional register, which takes314

O(log(nd)log(1/∆)/ϵ)315

time. Other quantum316

operations including esti-317

mation of the inner product,318

estimation of the GNTK319

within the neighborhood320

aggregation and the fully-connected feature updating and quantum readout are totally unitary321

operations which can be efficiently performed under the regime of quantum computing. For322

estimating GNTK of each pairs of the graphs (G,G′) whereG,G′ ∈ G, each element of GraphQNTK323

Θ̄ can be generated simultaneously by introducing auxiliary index registers. The quantum runtime is324

O(log(Nnd)). However, evaluating GNTK of the infinite-width-limit attention requires computing325

the kernel where the input is two same graphs, which can be implemented in time O(N). The result326

should be stored in QRAM in advance which will be used to update GNTK corresponding the327

multi-head attention as described in Eq. 14. Therefore, it takes O(N log(Nnd)) time to train the328

proposed quantum graph learning model, which achieves quadratic speedup compared to the existing329

GKs and completed approaches with O(N2) time.330

3 Experiments331

We evaluate our method for both GNTK and GraphQNTK with attention mechanism on several332

graph classification datasets involving either discrete or continuous attributes. All the experiments333

are performed on a workstation with a single machine with 1TB memory, one physical CPU with 28334

cores Intel(R) Xeon(R) W-3175X CPU @ 3.10GHz, and a single GPU (Nvidia Quadro RTX 8000).335

For our method and all the compared models, We follow the same setting as [17, 66], and report the336

average test accuracy and its standard deviation over a 10-fold cross validation on each dataset.337
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3.1 Experiments setup338

Datasets. For graph with discrete attributes, the benchmark datasets include four bioinformatics339

datasets MUTAG, PTC, NCI1, PROTEINS and three social network datasets IMDB-BINARY, IMDB-340

MULTI. For each graph, the input attributes is category of the node and they are transformed to341

one-hot encoding representations. For datasets where the graphs have no node features, i.e. only342

graph structure matters, we use degrees as input node features. For graph with continuous attributes,343

we selcect four benchmark datasets including ENZYMES, PROTEINS full, BZR, COX2. All the344

datasets can be found in [37]. The statistic information of the datasets are given in Tab. 3 in Appendix.345

Compared baselines. We compare our method with state-of-the-art GKs such as WL kernel [56],346

AWL [29], RetGK [68], GNTK [17], WWL [61], and GNNs including GCN [38], PatchySAN [48],347

GCKN [10], GraphSAGE [20] and GIN [66]. For quantum graph learning, there are very few baseline348

available. We report the performance of the quantum walk based subgraph convolutional neural349

network (QS-CNN) developed by [69]. The data separation we use is the same as [66] for graph350

datasets with discrete attributes. For graph dataset with continuous attributes, we follow the same351

protocol as used in [61] to normalize the input feature vectors for a fair comparison.352

Table 2: Classification accuracies on graphs with continuous attributes.
The accuracies of other models are taken from [10]. We only take the
results of GCKN under the supervised learning for a fail comparison.
We utilize the similar settings that preprocess the continuous node
features to a normalized feature vector as in [61] for fair comparison
(Note that the data encoded into the QRAM requires normalization,
thus it is reasonable to use this data-prepossessing operation).
Dataset ENZYMES PROTEINS BZR COX2

RBF-WL [61] 68.4 ± 1.5 75.4 ± 0.3 81.0 ± 1.7 75.5 ± 1.5
HGK-WL [46] 63.0 ± 0.7 75.9 ± 0.2 78.6 ± 0.6 78.1 ± 0.5
HGK-SP [46] 66.4 ± 0.4 75.8 ± 0.2 76.4 ± 0.7 72.6 ± 1.2
WWL [61] 73.3 ± 0.9 77.9 ± 0.8 84.4 ± 2.0 78.3 ± 0.5
GNTK [17] 69.6 ± 0.9 75.7 ± 0.2 85.5 ± 0.8 79.6 ± 0.4
GCKN [10] 72.8 ± 1.0 77.6 ± 0.4 86.4 ± 0.5 81.7 ± 0.7

AttentionGNTK 69.2 ± 1.1 76.8 ± 1.2 86.7 ± 1.3 82.1 ± 0.4
GraphQNTK 64.8 ± 0.7 72.5 ± 0.3 80.1 ± 1.7 74.3 ± 1.9

Results. We apply dif-353

ferent hyper-parameter set-354

tings toL ∈ {2, 4, 6, 8} and355

R ∈ {1, 2, 3} and select356

the model with the best av-357

eraged accuracy. We test358

the kernel regression using359

SVM classifier and the reg-360

ularization parameter is de-361

termined using the search362

protocol which is the same363

as the [17]. We report the364

performance of the quan-365

tum approximate GNTK be-366

fore and after the matrix367

sparsity and conditioning368

operations. The numerical369

results are listed in Tab. 2.3370

for datasets with discrete attributes and Tab. 3.1 for datasets with continuous attributes. The attention371

method we integrate to the infinite-width GNNs brings to an improvement in the performance of372

the model. The results show that the GNTK with attention mechanism achieves better classification373

accuracy for graph data with medium number of nodes and edges. It is demonstrated that the infinite-374

width-limit attention captures global node similarity semantics and learns effective structure of the375

provided graph, which brings an remarkable accuracy improvement of the model compared with376

the vanilla GNTK [17]. Moreover, our model performs better than QS-CNN on more than 60% of377

the datasets with discrete attributes, given the caveat that QS-CNN is a hybrid graph learning model378

where the contribution of the classic components (CNNs, spatial message passing) in their model379

cannot be ignored. While the matrix sparsity and conditioning operations have a great influence on380

the model’s performance, it can be found that the classification performance of GNTK evaluated by381

quantum algorithms is still comparable with that of GKs and vanilla GNNs, where a tradeoff exists382

between the performance of the model and the quantum computational efficiency.383

4 Conclusion and Broader Impact384

This paper has presented a quantum graph learning model to characterize the structural information385

while using quantum parallelism to improve computing efficiency. We propose quantum algorithm to386

approximately estimate the neural tangent kernel of the underlying graph neural network where a387

multi-head quantum attention mechanism is introduced to incorporate semantic similarity of nodes.388

Empirical results on graph classification tasks as well as theoretical analysis show the superiority of389

our method. The limitation of the paper is that currently it only addresses graph-level embedding and390

we leave node-level quantum learning for future work. Our work may raise concerns for encryption,391

privacy protection etc. when the quantum hardware become more feasible.392
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(d) Did you discuss whether and how consent was obtained from people whose data you’re586

using/curating? [N/A]587

(e) Did you discuss whether the data you are using/curating contains personally identifiable588

information or offensive content? [N/A]589

5. If you used crowdsourcing or conducted research with human subjects...590

(a) Did you include the full text of instructions given to participants and screenshots, if591

applicable? [N/A]592
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A Related Works597

In this section, we provide background on quantum graph learning and graph neural networks that598

have the potential to be trained using quantum computing.599

A.1 Graph Kernel Neural Network600

Graph kernel neural networks [17, 10, 18] is a class of graph learning method combining the properties601

of both GNNs and GKs. Forward process of the model tends to transmit node information like GNNs602

[65], layer by layer, whereas the node (or graph) features live in the implicit reproducing kernel603

Hilbert space (RKHS) of a specific kernel [39]. The mainstream of graph kernel neural networks604

can be divided into completed and approximated approaches. For the former, the output is a kernel605

matrix where each entry denotes the similarity of graph pairs, afterwards support vector machin is606

used to perform classification or regression task. While the later generates the approximate feature of607

the finite projected RKHS at the expense of information loss.608

We consider the completed approaches for the basis of our proposed quantum graph learning model,609

since the access to the explicit feature information requires measuring the relative quantum repre-610

sentations, which incurs quantum collapse [32]. In the next section, we demonstrate that the graph611

tangent kernel neural networks coincides with the condition of quantum parallel implementation by612

introducing the quantum aggregation transformation and the quantum kernel estimation techniques.613

A.2 Quantum Graph Learning614

Quantum graph learning aims at leveraging quantum physics to extract graph structural information,615

bringing up new possibilities for quantum computing applications. It is generally nontrivial to616

analyze classical data under the regime of quantum computing, since the encoding and decoding617

between classical vectors (or matrices) and their corresponding quantum states should be carefully618

designed. In addition, encoding the irregular graph data and diverse structure topology may incur619

different configurations of quantum models. Advanced contributions has developed some techniques620

to overcome these issues. A hybrid graph learning method developed by [69, 16] encode the structure621

information and generate a new adjacent matrix evaluating by the using quantum walk. The resulting622

adjacent information captures the global topological arrangement information for graph substructures.623

Adiabatic evolution [63] and conditional unitary [45] are applied to evolve the quantum systems624

dependent on the underlying graph structure. In addition, the node attribute is encoded using625

variational circuit [1] or a quantum random access memory [57]. Processing the encoded quantum626

representation of the original graph can be realized via either a naive quantum algorithm [63] or a627

hybrid method [11]. Then a post-processing operation is performed to further analyze the quantum628

output. A brief review about quantum graph learning is illustrated in Fig. 1. Generally speaking, the629

researchers exploit to encode the graph structure and node features in the quantum system through630

various schemes, and then process the information through quantum layers and auxiliary classical631

layers. Finally, the (quantum) results are decoded through post-processing. However, most quantum632

graph learning models requires that adjustable parameters in the quantum algorithm need to be633

updated frequently, where takes great computational overheads. Moreover, the classical components634

in post-processing may dominate the performance of the model, thus weakening the role of the635

quantum part. In this paper, We seek to establish a parameter-free quantum graph learning model to636

maximize the efficacy of quantum computing.637
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Table 3: Statistic information of the used datasets.
Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M ENZYMES BZR COX2

size 188 1113 344 4110 1000 1500 600 405 467
classes 2 2 2 2 2 3 6 2 2
attr. dim. - - - - - - 18 3 3
avg. nodes 18 39 26 30 20 13 32.6 35.8 41.2
avg. edges 20 73 51 32 97 66 62.1 38.3 43.5

We notice that there are researches which are abbreviated as QNTK [58, 41], similar to ours nominally.638

But their definition is quite different from ours. The motivation of these two papers is to analyze the639

trainability and expressive power of variational quantum circuits through NTK. In contrast, in our640

work, QNTK is a metric measuring the similarity of two input graphs. In this context, NTK is the641

kernel that captures the dynamics of infinite-width GNNs, as well as the multi-head attention where642

the number of heads and the dimension of output go to infinity.643

B More Analysis644

B.1 Quantum Access Memory645

Theorem 1 Let |Xp⟩ = 1
∥Xp∥

∑d−1
q=0 Xpq|j⟩ denotes the amplitude encoding of the p-th row of data646

X ∈ Rn×d. There exists a data structure to store the entries of X into the QRAM which is stated as647

i) |p⟩ |0⟩ → |p⟩ |Xp⟩648

ii) |0⟩ → 1
∥X∥F

∑
p ∥Xp∥ |p⟩649

in time T for p ∈ [n]. Using the binary tree QRAM architecture proposed by [34], the time T to store650

and readout a new element scale logarithmically with respect to both n and d.651

B.2 Inner Product Estimation652

Theorem 2 There exists a quantum operation A that evaluates the inner product of two quantum653

representations with respect to their d-dimensional classical vectors in time O(log d).654

Proof. By introducing an auxiliary register, with the initial state |p⟩|q⟩ 1√
2
(|0⟩ + |1⟩)|0⟩, the map655

1√
2
(|p⟩|q⟩|0⟩|0⟩ + |p⟩|q⟩|1⟩|0⟩) → 1√

2
(|p⟩|q⟩|0⟩| |Xp⟩⟩ + |p⟩|q⟩|1⟩| |Xq⟩⟩) can be performed in656

O(log d) for two quantum representations |Xp⟩ and |Xq⟩ with respect to their classical vectors657

Xp ∈ Rd and Xq ∈ Rd. Applying a Hadamard gate on the third register, the state becomes658

1

2
|p⟩|q⟩ (|0⟩ (|Xp⟩+ |Xq⟩) + |1⟩ (|Xp⟩ − |Xq⟩)) . (24)

The probability of measuring 0 on the third register is given by Ppq =
1+⟨Xp|Xq⟩

2 . Thus the state659

defined by Eq. 24 can be reformulated as |p⟩|q⟩
(√

Ppq |0, gpq⟩+
√

1− Ppq

∣∣1, g′pq〉) where |gpq⟩660

and
∣∣g′pq〉 are garbage states.661

B.3 Amplitude Estimation662

Theorem 3 Given a unitary operator U such that U : |0⟩ 7→ √
p|y⟩|0⟩+

√
1− p |y′⟩ |1⟩ in time T ,663

where p > 0 is the probability of measuring 0, it is possible to obtain the state |y⟩|0⟩ using O( T√
p )664

queries to U , or to estimate p with relative error δ using O( T
δ
√
p ) queries to U . The detailed proof665

can be found in [9].666

B.4 Median Evaluation667

Theorem 4 Consider a unitary U : |0⊗m⟩ 7→
√
α|v, 1⟩ +

√
1− α|g, 0⟩ for some 1/2 ≤ α ≤ 1 in668

time T . There exits a quantum algorithm that, for any ∆ > 0 and for any 1/2 < α0 ≤ α, produce a669
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Table 4: Running time comparison between different models.

MUTAG NCI1 IMDB-B IMDB-M

GIN 22 sec 67 min 19 min 24 min
GNTK 9 sec 18 min 4 min 7 min
Ours 14 sec 21 min 4 min 9 min

state |ψ⟩ such that ∥|ψ⟩ −
∣∣0⊗mL

〉
|x⟩∥ ≤

√
2∆ for some integer L in time670

2T

⌈
log(1/∆)

2 (|α0| − 1/2)
2

⌉
. (25)

Refer to [64] for a detailed proof.671

C Additional Experiments and Discussion672

C.1 Running time comparison673

We supplement the training time of our model on four selected datasets and compare it with two other674

models. To make a fair comparison, we set the layers of all the models to 2. All the experiments are675

performed on a workstation with a single machine with 1TB memory, one physical CPU with 28676

cores Intel® Xeon® W-3175X CPU @ 3.10GHz, and a single GPU (Nvidia Quadro RTX 8000). The677

results are shown in Tab. 4. Although the speedup introduced by the quantum algorithm depends on678

the quantum devices, it shows that our proposed model still has a computational overhead reduction679

when training on classic computers. The running time is slightly higher than that of GNTK which is680

a lack of attention mechanism. It is noticed that our model. The runtime of our model is apparently681

faster than that of GIN.682

It is worth mentioning that the quadratic quantum speedup will be realized when the quantum683

hardware becomes more feasible.684

C.2 Model Sensitivity to the Number of Layers685

In the main body of the paper, we report the best classification accuracy of the model when the686

the number of layers L is selected from {2, 4, 6, 8}. We compare the graph classification accuracy687

bewteen GIN and our model at the same number of layers and the results are given in Tab. 5 and688

Tab. 6. The number in parentheses in the table indicates the number of layers.689

From Tab. 5, it is shown that our model (AttentionGNTK) is more robust compared with GIN when690

the number of layers becomes larger. The main reason is that an additional feature aggregation, e.g.,691

the transformer, can slow down the convergence rate, which is consistent with the observations in692

[28] that connectivity enhancement can help wide and deep GNNs to avoid a discrepancy between693

prediction and the ground truth.694

While in Tab. 6, the results empirically demonstrate that our model (attentionGNTK) reaches the695

peak of classification accuracy when the number of layers is small, while GNTK needs more layers696

to reach, indicating that our model is easier to capture the global structure information of the graph.697

This could be interpreted from the theoretical perspective. The transformer (Eq. 12) captured the698

semantic information between each pair of (connected and disconnected) nodes with similar features.699

Consider G = QK⊤
√
s

in Eq. 10, where Q and K are linear transformation of the node feature matrix700

and we ignore the superscript and the subscript for simplicity. The G can be viewed as a matrix701

whose element corresponds to the similarity of each pair of nodes. Then the operation Ĥ = ζ (G)V702

transforms the node features of the last layer to the next layer depending on the node similarity. This703

enables the model to make better use of the graph structure to transmit information and perceive704

topology information over long distances.705
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Table 5: Classification accuracy between GIN [66] and ours with respect to different layers.

GIN(4) Ours(4) GIN(6) Ours(6) GIN(8) Ours(8)

MUTAG 87.6 ± 6.2 89.1 ± 7.8 88.5 ± 5.6 90.0 ± 8.5 86.2 ± 6.4 88.4 ± 7.4
PROTEINS 75.5 ± 3.0 75.0 ± 4.1 74.3 ± 3.0 76.1 ± 3.8 72.8 ± 3.5 74.2 ± 4.4
PTC 62.8 ± 5.0 64.9 ± 5.3 62.0 ± 6.2 66.2 ± 5.1 61.2 ± 7.1 63.4 ± 6.6
NCI1 82.3 ± 3.6 84.1 ± 1.2 80.1 ± 2.4 83.8 ± 1.2 77.2 ± 3.3 82.3 ± 2.2
IMDB-B 73.2 ± 4.1 75.7 ± 2.8 74.4 ± 6.0 76.9 ± 4.3 72.1 ± 5.2 75.1 ± 4.0
IMDB-M 51.7 ± 3.7 52.0 ± 4.1 52.0 ± 2.6 51.9 ± 3.7 48.2 ± 4.3 50.3 ± 4.5

Table 6: Classification accuracy between GNTK [17] and ours with respect to different layers.

GNTK(4) Ours(4) GNTK(6) Ours(6) GNTK(8) Ours(8)

PTC 62.9 ± 7.2 64.9 ± 5.3 63.5 ± 6.8 66.2 ± 5.1 65.2 ± 7.9 63.4 ± 6.6
NCI1 83.6 ± 2.1 84.1 ± 1.2 84.0 ± 0.9 83.8 ± 1.2 82.9 ± 1.8 82.3 ± 2.2
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