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Abstract

Bilevel optimization has been widely applied in many important machine learning1

applications such as hyperparameter optimization and meta-learning. Recently,2

several momentum-based algorithms have been proposed to solve bilevel optimiza-3

tion problems faster. However, those momentum-based algorithms do not achieve4

provably better computational complexity than O(ε−2) of the SGD-based algo-5

rithm. In this paper, we propose two new algorithms for bilevel optimization, where6

the first algorithm adopts momentum-based recursive iterations, and the second7

algorithm adopts recursive gradient estimations in nested loops to decrease the8

variance. We show that both algorithms achieve the complexity ofO(ε−1.5), which9

outperforms all existing algorithms by the order of magnitude. Our experiments10

validate our theoretical results and demonstrate the superior empirical performance11

of our algorithms in hyperparameter applications.12

1 Introduction13

Bilevel optimization has become a timely and important topic recently due to its great effectiveness in14

a wide range of applications including hyperparameter optimization [7, 5], meta-learning [30, 16, 1],15

reinforcement learning [14, 21]. Bilevel optimization can be generally formulated as the following16

minimization problem:17

min
x∈Rp

Φ(x) := f(x, y∗(x)) s.t. y∗(x) = arg min
y∈Rq

g(x, y). (1)

Since the outer function Φ(x) := f(x, y∗(x)) depends on the variable x also via the optimizer18

y∗(x) of the inner-loop function g(x, y), the algorithm design for bilevel optimization is much19

more complicated and challenging than minimization and minimax optimization. For example, if20

the gradient-based approach is applied, then the gradient of the outer-loop function (also called21

hypergradient) will necessarily involve Jacobian and Hessian matrices of the inner-loop function22

g(x, y), which require more careful design to avoid high computational complexity.23

This paper focuses on the nonconvex-strongly-convex setting, where the outer function f(x, y∗(x)) is24

nonconvex with respect to (w.r.t.) x and the inner function g(x, y) is strongly convex w.r.t. y for any x.25

Such a case often occurs in practical applications. For example, in hyperparameter optimization [7],26

f(x, y∗(x)) is often nonconvex with x representing neural network hyperparameters, but the inner27

function g(x, ·) can be strongly convex w.r.t. y by including a strongly-convex regularizer on y. In28

few-shot meta-learning [1], the inner function g(x, ·) often takes a quadratic form together with a29

strongly-convex regularizer. To efficiently solve the deterministic problem in eq. (1), various bilevel30

optimization algorithms have been proposed, which include two popular classes of deterministic31

gradient-based methods respectively based on approximate implicit differentiation (AID) [28, 9, 8]32

and iterative differentiation (ITD) [25, 6, 7].33

Recently, stochastic bilevel opitimizers [8, 17] have been proposed, in order to achieve better efficiency34

than deterministic methods for large-scale scenarios where the data size is large or vast fresh data35

needs to be sampled as the algorithm runs.36
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In particular, such a class of problems adopt functions by:37

Φ(x) := f(x, y∗(x)) := Eξ[F (x, y∗(x); ξ)], g(x, y) := Eζ [G(x, y; ζ)]

where the outer and inner functions take the expected values w.r.t. samples ξ and ζ, respectively.38

Along this direction, [17] proposed a stochastic gradient descent (SGD) type optimizer (stocBiO),39

and showed that stocBiO attains a computational complexity of O(ε−2) in order to reach an ε-40

accurate stationary point. More recently, several studies [2, 19, 11] have tried to accelerate SGD-type41

bilevel optimizers via momentum-based techniques, e.g., by introducing a momentum (historical42

information) term into the gradient estimation. All of these optimizers follow a single-loop design,43

i.e., updating x and y simultaneously. Specifically, [19] proposed an algorithm MSTSA by updating44

x via a momentum-based recursive technique introduced by [3, 33]. [11] proposed an optimizer45

SEMA similarly to MSTSA but using the momentum recursive technique for updating both x and46

y. [2] proposed an algorithm STABLE, which applies the momentum strategy for updating the47

Hessian matrix, but the algorithm involves expensive Hessian inverse computation. However, as48

shown in Table 1, SEMA, MSTSA and STABLE achieve the same complexity order ofO(ε−2) as the49

SGD-type stocBiO algorithm, where the momentum technique in these algorithms does not exhibit50

the theoretical advantage. Such a comparison is not consistent with those in minimization [3] and51

minimax optimization [15], where the single-loop momentum-based recursive technique achieves52

provable performance improvements over SGD-type methods. This motivates the following natural53

but important question:54

• Can we design a faster single-loop momentum-based recursive bilevel optimizer, which achieves55

order-wisely lower computational complexity than SGD-type stocBiO (and all other momentum-56

based algorithms), and is also easy to implement with efficient matrix-vector products?57

Although the existing theoretical efforts on accelerating bilevel optimization algorithms have been ex-58

clusively focused on single-loop design, empirical studies in [17] suggested that double-loop bilevel59

algorithms such as BSA [8] and stocBiO [17] achieve much better performances than single-loop60

algorithms such as TTSA [14]. A good candidate suitable for accelerating double-loop algorithms61

can be the popular variance reduction method, such as SVRG [18], SARAH [27] and SPIDER [4],62

which typically yield provably lower complexity. The basic idea is to construct low-variance gradient63

estimators using periodic high-accurate large-batch gradient evaluations. So far, there has not been64

any study on using variance reduction to accelerate double-loop bilevel optimization algorithms. This65

motivates the second question that we address in this paper:66

• Can we develop a double-loop variance-reduced bilevel optimizer with improved computational67

complexity over SGD-type stocBiO (and all other existing algorithms)? If so, whether such a68

double-loop algorithm holds advantage over the single-loop algorithms in bilevel optimization?69

1.1 Main Contributions70

This paper proposes two algorithms for bilevel optimization, both outperforming all existing algo-71

rithms by the order of magnitude.72

We first propose a single-loop momentum-based recursive bilevel optimizer (MRBO). MRBO updates73

variables x and y simultaneously, and uses the momentum recursive technique for constructing low-74

variance mini-batch estimators for both the gradient ∇g(x, ·) and the hypergradient ∇Φ(·); in75

contrast to previous momentum-based algorithms that accelerate only one gradient or neither. Further,76

MRBO is easy to implement, and allows efficient computations of Jacobian- and Hessian-vector77

products via automatic differentiation. Theoretically, we show that MRBO achieves a computational78

complexity (w.r.t. computations of gradient, Jacobian- and Hessian-vector product) of O(ε−1.5),79

which outperforms all existing algorithms by an order of ε−0.5. Technically, our analysis needs80

to first characterize the estimation property for the momentum-based recursive estimator for the81

Hessian-vector type hypergradient and then uses such a property to further bound the per-iteration82

error due to momentum updates for both inner and outer loops.83

We then propose a double-loop variance-reduced bilevel optimizer (VRBO), which is the first84

algorithm that adopts the recursive variance reduction for bilevel optimization. In VRBO, each inner85

loop constructs a variance-reduced gradient (w.r.t. y) and hypergradient (w.r.t. x) estimators through86

the use of large-batch gradient estimations computed periodically at each outer loop. Similarly to87

MRBO, VRBO involves the computations of Jacobian- and Hessian-vector products rather than88
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Table 1: Comparison of stochastic algorithms for bilevel optimization.
Algorithm Gc(F, ε) Gc(G, ε) JV(G, ε) HV(G, ε) Hyyinv(G, ε)

MSTSA [19] O(ε−2) O(ε−2) O(ε−2) Õ(ε−2) /
SEMA [11] Õ(ε−2) Õ(ε−2) Õ(ε−2) Õ(ε−2) /
STABLE [2] O(ε−2) O(ε−2) / / O(ε−2)

stocBiO [17] O(ε−2) O(ε−2) O
(
ε−2
)

Õ
(
ε−2
)

/
MRBO (ours) O(ε−1.5) O(ε−1.5) O

(
ε−1.5

)
Õ
(
ε−1.5

)
/

VRBO (ours) O(ε−1.5) O(ε−1.5) O
(
ε−1.5

)
Õ
(
ε−1.5

)
/

Gc(F, ε) and Gc(G, ε): number of gradient evaluations w.r.t. F and G.
Jv(G, ε): number of Jacobian-vector products∇x∇yG(·)v. Õ(·): omit log 1

ε
terms.

Hv(G, ε): number of Hessian-vector products∇2
yG(·)v.

Hyyinv(G, ε): number of evaluations of Hessian inverse [∇2
yG]−1.

Hessians or Hessian inverse. Theoretically, we show that VRBO achieves the same near-optimal89

complexity of O(ε−1.5) as MRBO and outperforms all existing algorithms. Technically, differently90

from the use of variance reduction in minimization and minimax optimization, our analysis for VRBO91

needs to characterize the variance reduction property for the Hessian-vector type of hypergradient92

estimators, which introduces additional errors to handle in the telescoping and convergence analysis.93

Our experiments show that VRBO achieves the highest accuracy among all comparison algorithms,94

and MRBO converges fastest among its same type of single-loop momentum-based algorithms. In95

particular, we find that our double-loop VRBO algorithm converges much faster than other single-96

loop algorithms including our MRBO, which is in contrast to the existing efforts exclusively on97

accelerating the single-loop algorithms [2, 19, 11]. Such a result also differs from those phenomenons98

observed in minimization and minimax optimization, where single-loop algorithms often outperform99

double-loop algorithms. We anticipate that this is because the outer-loop estimation of hypergradient100

(which is unique in bilevel optimization) can be very sensitive to the inner-loop output y. Thus, for101

each outer-loop iteration, sufficient inner-loop iterations in the double loop structure provide a much102

more accurate output close to y∗(x) than a single inner-loop iteration, and thus help to estimate a103

more accurate hypergradient in the outer loop. This further facilitates better outer-loop iterations and104

yields faster overall convergence.105

1.2 Related Works106

Bilevel optimization approaches: At the early stage of bilevel optimization studies, a class of107

constraint-based algorithms [13, 32, 26] were proposed, which tried to penalize the outer function108

with the optimality conditions of the inner problem. To further simplify the implementation, gradient-109

based bilevel algorithms were then proposed, which include but not limited to AID-based [30, 7, 31],110

ITD-based [9, 28, 8] methods, and stochastic bilevel optimizers such as BSA [8], stocBiO [17], and111

TTSA [14]. The finite-time (i.e., non-asymptotic) convergence analysis for bilevel optimization has112

been recently studied in several works [8, 17, 14]. In this paper, we propose two novel stochastic113

bilevel algorithms using momentum recursive and variance reduction techniques, and show that they114

order-wisely improve the computational complexity over existing stochastic bilevel optimizers.115

Momentum-based recursive approaches: The momentum recursive technique was first introduced116

by [3, 33] for minimization problems, and has been shown to achieve improved computational117

complexity over SGD-based updates in theory and in practice. Several works [19, 2, 11] applied the118

similar single-loop momentum-based strategy to bilevel optimization to accelerate the SGD-based119

bilevel algorithms such as BSA [8] and stocBiO [17]. However, the computational complexities of120

these momentum-based algorithms are not shown to outperform that of stocBiO. In this paper, we121

propose a new single-loop momentum-based recursive bilevel optimizer (MRBO), which we show122

achieves order-wisely lower complexity than existing stochastic bilevel optimizers.123

Variance reduction approaches: Variance reduction has been studied extensively for conventional124

minimization problems, and many algorithms have been designed along this line, including but125

not limited to SVRG [18, 23], SARAH[27], SPIDER [4], SpiderBoost [34] and SNVRG [37].126

Several works [24, 35, 36, 29] recently employed such techniques for minimax optimization to127

achieve better complexities. In this paper, we propose the first-known variance reduction-based128

bilevel optimizer (VRBO), which achieves a near-optimal computational complexity and outperforms129

existing stochastic bilevel algorithms.130
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Two concurrent works: As we were finalizing this submission, two concurrent studies were posted131

on arXiv recently ([20] was posted on May 8 and [12] was posted on May 5). Both studies overlap132

only with our MRBO algorithm, nothing similar to our VRBO. Specifically, [20] and [12] respec-133

tively proposed the SUSTAIN and SBO algorithms for bilevel optimization, both using single-loop134

momentum-based design as our MRBO. Although SUSTAIN and SBO have been shown to achieve135

the same theoretical complexity of O(ε−1.5) as our MRBO (and VRBO), both algorithms have136

major drawbacks in their design, so that their empirical performance (as we demonstrate in our137

experiments) is much worse that our MRBO (and even worse than our VRBO). SUSTAIN adopts138

only single-sample for each update (whereas MRBO uses minibatch for stability); and SBO requires139

to compute Hessian inverse at each iteration (whereas MRBO uses Hessian-vector products for fast140

computation). As an additional note, our experiments demonstrate that our VRBO significantly141

outperforms all these single-loop algorithms SUSTAIN and SBO as well as our MRBO.142

2 Two New Algorithms143

In this section, we propose two new algorithms for bilevel optimization. Firstly, we introduce the144

hypergradient of the objective function Φ(xk), which is useful for designing stochastic algorithms.145

Property 1. The (hyper)gradient of Φ(x) = f(x, y∗(x)) in eq. (1) takes a form of146

∇Φ(xk) = ∇xf(xk, y
∗(xk))−∇x∇yg(xk, y

∗(xk))[∇2
yg(xk, y

∗(xk))]−1∇yf(xk, y
∗(xk)). (2)

However, it is not necessary to compute y∗ for updating x at every iteration, and it is not time and147

memory efficient to compute Hessian inverse matrix in eq. (2) explicitly. Here, we estimate the148

hypergradient similarly to [17, 8], which takes a form of149

∇Φ(xk) = ∇xf(xk, yk)−∇x∇yg(xk, yk)η

Q−1∑
q=−1

Q∏
j=Q−q

(I − η∇2
yg(xk, yk))∇yf(xk, yk), (3)

where the Neumann series η
∑∞
i=0(I − ηG)i = G−1 is applied to approximate the Hessian inverse.150

2.1 Momentum-based Recursive Bilevel Optimizer (MRBO)151

As shown in Algorithm 1, we propose a Momentum-based Recursive Bilevel Optimizer (MRBO) for152

solving the bilevel problem in eq. (1).153

Algorithm 1 Momentum-based Recursive Bilevel Optimizer (MRBO)
1: Input: Stepsize λ, γ > 0, Coefficients α0, β0, Initializers x0, y0, Hessian Estimation Number Q,

Batch Size S, Constant c1, c2,m, d > 0
2: for k = 0, 1, . . . ,K do
3: Draw Samples By,Bx = {Bj(j = 1, . . . , Q),BF ,BG} with batch size S for each component
4: if k = 0: then
5: vk = ∇̂Φ(xk;Bx), uk = ∇yG(xk, yk;By)
6: else
7: vk = ∇̂Φ(xk;Bx) + (1− αk)(vk−1 − ∇̂Φ(xk−1;Bx))
8: uk = ∇yG(xk, yk;By) + (1− βk)(uk−1 −∇yG(xk−1, yk−1;By))
9: end if

10: update: ηk = d
3√m+k

, αk+1 = c1η
2
k, βk+1 = c2η

2
k

11: xk+1 = xk − γηkvk, yk+1 = yk − ληkvk
12: end for

MRBO updates in a single-loop manner, where the momentum recursive technique STORM [3] is154

employed for updating both x and y at each iteration simultaneously. To update y, at step k, MRBO155

first constructs the momentum-based gradient estimator uk based on the current ∇yG(xk, yk;By)156

and the previous∇yG(xk−1, yk−1;By) using a minibatch By of samples (see line 8 in Algorithm 1).157

Note that the hyperparameter βk decreases at each iteration, so that the gradient estimator uk is more158

determined by the previous uk−1, which improves the stability of gradient estimation, especially159

when yk is close to the optimal point. Then MRBO uses the gradient estimator for updating yk (see160

line 11). The stepsize ηk decreases at each iteration to reduce the convergence error.161

To update x, at step k, MRBO first constructs the momentum-based recursive hypergradient esti-162

mator vk based on the current ∇̂Φ(xk;Bx) and the previous ∇̂Φ(xk−1;Bx) computed using several163
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independent minibatches of samples Bx = {Bj(j = 1, . . . , Q),BF ,BG} (see line 7 in Algorithm 1).164

The hyperparameter αk decreases at each iteration, so that the new gradient estimation vk is more165

determined by the previous vk−1, which improves the stability of gradient estimation, especially when166

xk is around the optimal point. Specifically, the hypergradient estimator ∇̂Φ(xk;Bx) is designed167

based on the expected form in eq. (3), and takes a form of:168

∇̂Φ(xk;Bx) = ∇xF (xk, yk;BF )

−∇x∇yG(xk, yk;BG)η
∑Q−1
q=−1

∏Q
j=Q−q(I − η∇2

yG(xk, yk;Bj))∇yF (xk, yk;BF ), (4)

Note that MRBO computes the above estimator recursively using only Hessian vectors rather than169

Hessians (see Appendix A) in order to reduce the memory and computational cost. Then MRBO uses170

the estimated gradient vk for updating xk (see line 11). The stepsize ηk decreases at each iteration to171

facilitate the convergence.172

As we will show in Section 3.2, MRBO is the first algorithm that exploits the advantage of the173

momentum technique for achieving order-wisely better complexity than SGD-type stochastic bilevel174

algorithms, whereas previously proposed momentum algorithms SEMA [11], MSTSA [19] and175

STABLE [2] do not exhibit such an advantage.176

2.2 Variance Reduction Bilevel Optimizer (VRBO)177

Although all of the existing momentum algorithms [2, 19, 11] (and two current studies [20, 12]) for178

bilevel optimization follow the single-loop design, empirical results in [17] suggest that double-loop179

bilevel algorithms can achieve much better performances than single-loop algorithms. Thus, as shown180

in Algorithm 2, we propose a double-loop algorithm called Variance Reduction Bilevel Optimizer181

(VRBO). VRBO adopts the variance reduction technique in SARAH [27]/SPIDER [4] for bilevel182

optimization, which is suitable for designing double-loop algorithms. Specifically, VRBO constructs183

the recursive variance-reduced gradient estimators for updating both x and y, where each update of184

x in the outer-loop is followed by (m+ 1) inner-loop updates of y. VRBO divides the outer-loop185

iterations into epochs, and at the beginning of each epoch computes the hypergradient estimator186

∇̂Φ(xk, yk;S1) and the gradient ∇yG(xk, yk;S1) based on a relatively large batch S1 of samples187

for variance reduction, where ∇̂Φ(xk, yk;S1) takes a form of188

∇̂Φ(xk, yk;S1) = 1
S1

∑S1

i=1

(
∇xF (xk, yk; ξi)

−∇x∇yG(xk, yk; ζi)η
∑Q−1
q=−1

∏Q
j=Q−q(I − η∇2

yG(xk, yk; ζji ))∇yF (xk, yk; ξi)
)
, (5)

where all samples in S1 = {ζji (j = 1, . . . , Q), ξi, ζi, i = 1, . . . , S1} are independent. Note that189

eq. (5) takes a different form from MRBO in eq. (4), but the Hessian-vector computation method190

for MRBO is still applicable here. Then, VRBO recursively updates the gradient estimators for191

∇yG(x̃k,t, ỹk,t;S2) and ∇̂Φ(x̃k,t, ỹk,t;S2) (which takes the same form as eq. (5)) with a small192

sample batch S2 (see lines 11 to 16) during inner-loop iterations.193

We remark that VRBO is the first algorithm that adopts the recursive variance reduction method for194

bilevel optimization. As we will shown in Section 3, VRBO achieves the same nearly-optimal com-195

putational complexity as MRBO (and outperforms all other existing algorithms). More interestingly,196

as a double-loop algorithm, VRBO empirically significantly outperforms all existing single-loop197

momentum algorithms including MRBO. More details and explanation are provided in Section 4.198

3 Main Results199

In this section, we first introduce several standard assumptions for the analysis, and then present the200

convergence results for the proposed MRBO and VRBO algorithms.201

3.1 Technical Assumptions and Definitions202

Assumption 1. Assume that the inner function G(x, y; ζ) is µ-strongly-convex w.r.t. y for any ζ and203

the outer function Φ(x; ξ) := F (x, y∗(x); ξ) is nonconvex w.r.t. x for any ξ.204

We then make the following assumptions on the Lipschitzness and bounded variance, as adopted by205

the existing studies [8, 17, 14] on stochastic bilevel optimization.206
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Algorithm 2 Variance Reduction Bilevel Optimizer (VRBO)
1: Input: Stepsize β, α > 0, Initializer x0, y0, Hessian Q, Sample Size S1, S2, Periods q
2: for k = 0, 1, . . . ,K do
3: if mod(k, q) = 0: then
4: Draw a batch S1 of i.i.d. samples
5: uk = ∇yG(xk, yk;S1), vk = ∇̂Φ(xk, yk;S1)
6: else
7: uk = ũk−1,m+1, vk = ṽk−1,m+1

8: end if
9: xk+1 = xk − αvk

10: Set x̃k,−1 = xk, ỹk,−1 = yk, x̃k,0 = xk+1, ỹk,0 = yk, ṽk,−1 = vk, ũk,−1 = uk
11: for t = 0, 1, . . . ,m+ 1 do
12: Draw a batch S2 of i.i.d samples
13: ṽk,t = ṽk,t−1 + ∇̂Φ(x̃k,t, ỹk,t;S2)− ∇̂Φ(x̃k,t−1, ỹk,t−1;S2)
14: ũk,t = ũk,t−1 +∇yG(x̃k,t, ỹk,t;S2)−∇yG(x̃k,t−1, ỹk,t−1;S2)
15: x̃k,t+1 = x̃k,t, ỹk,t+1 = ỹk,t − βũk,t
16: end for
17: yk+1 = ỹk,m+1

18: end for

Assumption 2. Let z := (x, y). Assume the functions F (z; ξ) and G(z; ζ) satisfy, for any ξ and ζ,207

a) F (z; ξ) is M -Lipschitz, i.e., for any z, z′, |F (z; ξ)− F (z′; ξ)| ≤M‖z − z′‖.208

b) ∇F (z; ξ) and ∇G(z; ζ) are L-Lipschitz, i.e., for any z, z′,209

‖∇F (z; ξ)−∇F (z′; ξ)‖ ≤ L‖z − z′‖, ‖∇G(z; ζ)−∇G(z′; ζ)‖ ≤ L‖z − z′‖.

c) ∇x∇yG(z; ζ) is τ -Lipschitz, i.e., for any z, z′, ‖∇x∇yG(z; ζ)−∇x∇yG(z′; ζ)‖ ≤ τ‖z− z′‖.210

d) ∇2
yG(z; ζ) is ρ-Lipschitz, i.e., for any z, z′, ‖∇2

yG(z; ζ)−∇2
yG(z′; ζ)‖ ≤ ρ‖z − z′‖.211

Note that Assumption 2 also implies that Eξ‖∇F (z; ξ) − ∇f(z)‖2 ≤ M2, Eζ‖∇x∇yG(z; ζ) −212

∇x∇yg(z)‖2 ≤ L2 and Eζ‖∇2
yG(z; ζ)−∇2

yg(z)‖2 ≤ L2.213

Assumption 3. Assume that∇G(z; ξ) has bounded variance, i.e., Eξ‖∇G(z; ξ)−∇g(z)‖2 ≤ σ2.214

We next define the ε-stationary point for a nonconvex function as the convergence criterion.215

Definition 1. We call x̄ an ε-stationary point for a function Φ(x) if ‖∇Φ(x̄)‖2 ≤ ε.216

3.2 Convergence Analysis of MRBO Algorithm217

To analyze the convergence of MRBO, bilevel optimization presents two major challenges due to the218

momentum recursive method in MRBO, beyond the previous studies of momentum in conventional219

minimization and minimax optimization. (a) Outer-loop updates of bilevel optimization use hypergra-220

dients, which involve both the first-order gradient and the Hessian-vector product. Thus, the analysis221

of the momentum recursive estimator for such a hypergradient is much more complicated than that222

for the vanilla gradient. (b) Since MRBO applies the momentum-based recursive method to both223

inner- and outer-loop iterations, the analysis needs to capture the interaction between the inner-loop224

gradient estimator and the outer-loop hypergradient estimator. Below, we will provide two major225

properties for MRBO, which develop new analysis for handling the above two challenges.226

In the following proposition, we characterize the variance bound for the hypergradient estimator in227

bilevel optimization, and further use such a bound to characterize the variance of the momentum228

recursive estimator of the hypergradient.229

Proposition 1. Suppose Assumptions 1, 2 and 3 hold, the hypergradient estimator ∇̂Φ(xk;Bx) w.r.t.230

x based on a minibatch Bx of dataset has bounded variance231

E‖∇̂Φ(xk;Bx)−∇Φ(xk)‖2 ≤ G2, (6)
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where G2 = 2M2

S + 12M2L2η2(Q+1)2

S + 2M2L2(Q+2)(Q+1)2η2σ2

S . Further, let ε̄k = vk − ∇Φ(xk),232

where vk denotes the momentum recursive estimator for the hypergradient. Then the per-iteratioon233

variance bound of vk satisfies234

E‖ε̄k‖2 ≤ E[2α2
kG

2 + 2(1− αk)2L2
Q‖xk − xk−1‖2

+ 2(1− αk)2L2
Q‖yk − yk−1‖2 + (1− αk)2‖ε̄k−1‖2], (7)

where L2
Q = 2L2 + 4τ2η2M2(Q+ 1)2 + 8L4η2(Q+ 1)2 + 2L2η4M2ρ2Q2(Q+ 1)2.235

The variance bound G of the hypergradient in eq. (6) scales with the number Q of Neumann series236

terms (i.e., the number of Hessian vectors) and can be reduced by that minibatch size S.237

Then the bound eq. (7) further captures how the variance ‖ε̄k‖ of momentum recursive hypergradient238

estimator changes after one step iteration. Clearly, the term (1− αk)2‖ε̄k−1‖2 indicates a variance239

reduction per iteration, and the remain three terms captures the impact of the randomness due to the240

update in step k, including the variance of the stochastic hypergradient estimator G2 (as captured in241

eq. (6)) and the stochastic update of both variables x and y. In particular, the variance reduction term242

plays a key role in the performance improvement for MRBO over other existing algorithms.243

Proposition 2. Suppose Assumptions 1, 2, 3 hold and γ ≤ 1
4LΦηk

, where LΦ = L + 2L2+τM2

µ +244

ρLM+L3+τML
µ2 + ρL2M

µ3 . Then, we have245

E[Φ(xk+1)] ≤ E[Φ(xk)] + 2ηkγ(L′
2‖yk − y∗(xk)‖2 + ‖ε̄k‖2 + C2

Q)− 1
2γηk
‖xk+1 − xk‖2,

where CQ = (1−ηµ)Q+1ML
µ , L′

2
= max{(L+ L2

µ + Mτ
µ + LMρ

µ2 )2, L2
Q}.246

Proposition 2 characterizes how the objective function value decreases (i.e., captured by E[Φ(xk+1)]−247

E[Φ(xk)]) due to one-iteration update ‖xk+1 − xk‖2 of variable x (last term in the bound). Such a248

value reduction is also affected by the tracking error ‖yk − y∗(xk)‖2 of the variable y (i.e., yk does249

not equal the desirable y∗(xk)), the variance ‖ε̄k‖2 of momentum recursive hypergradient estimator,250

and the Hessian inverse approximation error CQ w.r.t. hypergradient.251

Based on Propositions 1 and 2, we next characterize the convergence of MRBO.252

Theorem 1. Apply MRBO to solve the problem eq. (1). Suppose Assumptions 1, 2, and 3 hold.253

Let hyperparameters c1 ≥ 2
3d3 + 9λµ

4 , c2 ≥ 2
3d3 + 75L′2λ

2µ ,m ≥ max{2, d3, (c1d)3, (c2d)3}, y1 =254

y∗(x1), 0 ≤ λ ≤ 1
6L , 0 ≤ γ ≤ min{m

1/3

2Ld ,
1

4LΦηK
, λµ√

150L′2L2/µ2+8λµ(L2
Q+L2)

}. Then, we have255

1
K

∑K
k=1

(
L′2

4 ‖y
∗(xk)− yk‖2 + 1

4‖ε̄k‖
2 + 1

4γ2η2
k
‖xk+1 − xk‖2

)
≤ M ′

K (m+K)1/3, (8)

where L′2 is defined in Proposition 2, and M ′ = Φ(x1)−Φ∗

γd +
(

2G2(c11+c22)d2

λµ +
2C2

Qd
2

η2
K

)
log(m +256

K) + 2G2

Sλµdη0
.257

Theorem 1 captures the simultaneous convergence of the variables xk, yk and ‖ε̄k‖: the tracking error258

‖y∗(xk)− yk‖ converges to zero, and the variance ‖ε̄k‖ of the momentum recursive hypergradient259

estimator reduces to zero, both of which further facilitate the convergence of xk and the algorithm.260

By properly choosing the hyperparameters in Algorithm 1 to satisfy the conditions in Theorem 1, we261

obtain the following computational complexity for MRBO.262

Corollary 1. Under the same conditions of Theorem 1 and choosing K = O(ε−3), Q = O(log( 1
ε )),263

MRBO in Algorithm 1 finds an ε-stationary point with the gradient complexity of O(ε−1.5) and the264

(Jacobian-) Hessian-vector complexity of O(ε−1.5).265

As shown in Corollary 1, MRBO achieves the computational complexity of O(ε−1.5), which out-266

performs all existing stochastic bilevel algorithms by a factor of O(ε−0.5) (see Table 1). Further,267

this also achieves the best known complexity of O(ε−1.5) for vanilla nonconvex optimization via268

first-order stochastic algorithms. As far as we know, this is the first result to demonstrate the improved269

performance of single-loop recursive momentum over SGD-type updates for bilevel optimization.270
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3.3 Convergence Analysis of VRBO Algorithm271

To analyze the convergence of VRBO, we need to first characterize the statistical properties of the272

hypergradient estimator, in which all the gradient, Jacobian-vector, and Hessian-vector have recursive273

variance reduction forms. We then need to characterize how the inner-loop tracking error affects274

the outer-loop hypergradient estimation error in order to establish the overall convergence. The275

complication in the analysis is mainly due to the hypergradient in bilevel optimization, which does276

not exist in the previous studies of variance reduction in conventional minimization and minimax277

optimization. Below, we provide two properties of VRBO for handling the aforementioned challenges.278

In the following proposition, we characterize the variance of the hypergradient estimator, and further279

use such a bound to characterize the cumulative variances of both the hypergradient and inner-loop280

gradient estimators based on the recursive variance reduction technique over all iterations.281

Proposition 3. Suppose Assumptions 1, 2, 3 hold. Then the hypergradient estimator ∇̂Φ(xk, yk;S1)282

defined in eq. (5) w.r.t. x has bounded variance as283

E‖∇̂Φ(xk, yk;S1)−∇Φ(xk)‖2 ≤ σ′2

S1
, (9)

where σ′2 = 2M2 + 28L2M2η2(Q+ 1)2. Let ∆k = E(‖vk −∇Φ(xk)‖2 + ‖uk −∇yg(xk, yk)‖2),284

where vk and uk denote the recursive variance reduction estimators for hypergradient and inner-loop285

gradient respectively. Then, the cumulative variance of vk and uk is bounded by286 ∑K−1
k=0 ∆k ≤ 4σ′2K

S1
+ 22α2L2

Q

∑K−2
k=0 E‖vk‖2 + 4

3E‖∇yg(x0, y0)‖2. (10)

As shown in eq. (9), the variance bound of the hypergradient estimator increases with the number Q287

of Hessian-vector products for approximating the Hessian inverse and can be reduced by the batch288

size S1. Then eq. (10) further provides an upper bound on the cumulative variance
∑K−1
k=0 ∆k of the289

recursive hypergradient estimator and inner-loop gradient estimator.290

Proposition 4. Suppose Assumptions 1, 2, 3 hold. Then, we have291

E[Φ(xk+1)] ≤ E[Φ(xk)] + αL′2

µ2 E‖∇yg(xk, yk)‖2 + αE‖∇̃Φ(xk)− vk‖2 − (α2 −
α2

2 LΦ)E‖vk‖2,

where L′2 = (L+ L2

µ + Mτ
µ + LMρ

µ2 )2 and ∇̃Φ(xk) takes a form of292

∇̃Φ(xk) = ∇xf(xk, yk)−∇x∇yg(xk, yk)[∇2
yg(xk, yk)]−1∇yf(xk, yk). (11)

Proposition 4 characterizes how the objective function value decreases (i.e., captured by E[Φ(xk+1)]−293

E[Φ(xk)]) due to one iteration update ‖vk‖2 of variable x (last term in the bound). Such a value re-294

duction is also affected by the moments of gradient w.r.t. y and the variance of recursive hypergradient295

estimator.296

Based on Propositions 3 and 4, we next characterize the convergence of VRBO.297

Theorem 2. Apply VRBO to solve the problem eq. (1). Suppose Assumptions 1, 2, 3 hold. Let298

α = 1
20LΦ

, β = 2
13LQ

, S2 ≤ 2(Lµ + 1)Lβ,m = 16
µβ − 1, q = µLβS2

µ+L . Then, we have299

1
K

∑K−1
k=0 E‖∇Φ(xk)‖2 ≤ O(Q

4

K + Q6

S1
+Q4(1− ηµ)2Q). (12)

Theorem 2 shows that VRBO converges sublinearly w.r.t. the number K of iterations with the300

convergence error consisting of two terms. The first error term Q6

S1
is caused by the minibatch gradient301

and hypergradient estimation at outer loops and can be reduced by increasing the batch size S1302

(in fact, Q scales only logarithmically with S1). The second error term Q4(1 − ηµ)2Q is due to303

the approximation error of the Hessian-vector type of hypergradient estimation, which decreases304

exponentially fast w.r.t. Q. By properly choosing the hyperparameters in Algorithm 2, we obtain the305

following complexity result for VRBO.306

Corollary 2. Under the same conditions of Theorem 2, choose S1 = O(ε−2), S2 = O(ε−1), Q =307

O(log( 1
ε )),K = O(ε−2). Then, VRBO finds an ε-stationary point with the gradient complexity of308

O(ε−1.5) and Hessian-vector complexity of O(ε−1.5).309

Similarly to MRBO, Corollary 2 indicates that VRBO also outperforms all existing stochastic310

algorithms for bilevel optimization by a factor of O(ε−0.5) (see Table 1). Further, although MRBO311

and VRBO achieve the same theoretical computational complexity, VRBO empirically performs312

much better than MRBO (as well as other single-loop momentum-based algorithms MSTSA [19],313

STABLE [2], and SEMA [11]), as will be shown in Section 4.314
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4 Experiments315

In this section, we compare the performances of our proposed VRBO and MRBO algorithms with316

the following bilevel optimization algorithms: AID-FP [10], reverse [6] (both are double-loop deter-317

ministic algorithms), BSA [8] (double-loop stochastic algorithm), MSTSA [19] and SUSTAIN [20]318

(single-loop stochastic algorithms), STABLE [2] (single-loop stochastic algorithm with Hessian in-319

verse computations), and stocBiO [17] (double-loop stochastic algorithm). SEMA [11] is not included320

in the list because it performs similarly to SUSTAIN. Our experiments are run over a hyper-cleaning321

application on MNIST. We provide the detailed experiment specifications in Appendix B.322

As shown in Figure 1 (a) and (b), the convergence rate (w.r.t. running time) of our VRBO and the323

SGD-type stocBiO converge much faster than other algorithms in comparison. Between VRBO and324

stocBiO, they have comparable performance, but our VRBO achieves a lower training loss as well as325

a more stable convergence. Further, our VRBO converges significantly faster than all single-loop326

momentum-based methods. This provides some evidence on the advantage of double-loop algorithms327

over single-loop algorithms for bilevel optimization. Moreover, our MRBO achieves the fastest328

convergence rate among all single-loop momentum-based algorithms, which is in consistent with329

our theoretical results. In Figure 1 (c), we compare our algorithms MRBO and VRBO with three330

momentum-based algorithms, i.e., MSTAS, STABLE, and SUSTAIN, where SUSTAIN (proposed331

in the concurrent work [20]) achieves the same theoretical complexity as our MRBO and VRBO.332

However, it can be seen that MRBO and VRBO are significantly faster than the other three algorithms.333

All three plots suggest an interesting observation that double-loop algorithms tend to converge faster334

than single-loop algorithms as demonstrated by (i) double-loop VRBO performs the best among all335

algorithms; and (ii) double-loop SGD-type StocBiO, GD-type reverse and AID-FP perform even better336

than single-loop momentum-accelerated stochastic algorithm MRBO; and (iii) double-loop SGD-337

type BSA (with single-sample updates) converges faster than single-loop momentum-accelerated338

stochastic MSTSA, STABLE and SUSTAIN (with single-sample updates). Such a phenomenon339

has been observed only in bilevel optimization (to our best knowledge), and occurs oppositely in340

minimization and minimax problems, where single-loop algorithms substantially outperform double-341

loop algorithms. The reason for this can be that the outer-loop estimation of hypergradient in bilevel342

optimization is very sensitive to the inner-loop output y. Thus, for each outer-loop iteration, sufficient343

inner-loop iterations in the double-loop structure provides a much more accurate output close to y∗(x)344

than a single inner-loop iteration, and thus helps to estimate a more accurate hypergradient in the345

outer loop. This further facilitates better outer-loop iterations and yields faster overall convergence.346
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(a) Noise rate p = 0.1
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Figure 1: training loss v.s. running time.

5 Conclusion347

In this paper, we proposed two novel algorithms MRBO and VRBO for the nonconvex-strongly-348

convex bilevel stochastic optimization problem, and showed that their computational complexities349

outperform all existing algorithms orderwisely. In particular, MRBO is the first momentum algo-350

rithm that exhibits the orderwise improvement over SGD-type algorithms for bilevel optimization,351

and VRBO is the first that adopts the recursive variance reduction technique to accelerate bilevel352

optimization. Our experiments demonstrate the superior performance of these algorithms, and further353

suggest that the double-loop design may be more suitable for bilevel optimization than the single-354

loop structure. We anticipate that our analysis can be applied to studying bilevel problems under355

various other loss geometries. We also hope that our study can motivate further comparison between356

double-loop and single-loop algorithms in bilevel optimization.357
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