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ABSTRACT

Most recent gains in visual recognition have originated from the incorporation
:::::::
inclusion

:
of attention mechanisms in deep convolutional networks (DCNs). Be-

cause these networks are optimized for object recognition, they learn where to
attend using only a weak form of supervision derived from image class labels. Here,
we demonstrate the benefit of using stronger supervisory signals by teaching DCNs
to attend to image regions that humans deem important for object recognition. We
first describe a large-scale online experiment (ClickMe) used to supplement Ima-
geNet with nearly half a million human-derived “top-down” attention maps. Using
human psychophysics, we confirm that the identified “top-down ” features from
ClickMe are more diagnostic than “bottom-up”

::::::
saliency

:
features for rapid image

categorization. As a proof of concept, we extend a state-of-the-art attention net-
work and demonstrate that adding humans-in-the-loop with ClickMe supervision
significantly improves its accuracy , while also yielding

:::
and

:::::
yields

:
visual features

that are more interpretable and more similar to those used by human observers.

1 INTRODUCTION

Attention has become the subject of intensive research within the deep learning community. While
biology is sometimes mentioned as a source of inspiration (Stollenga et al., 2014; Mnih et al., 2014;
Cao et al., 2015; You et al., 2016; Chen et al., 2017; Wang et al., 2017; Biparva and Tsotsos, 2017),
the attentional mechanisms that have been considered remain limited in comparison to the rich and
diverse array of processes used by the human visual system (see Itti et al., 2005, for a review). In
addition, whereas human attention is driven by varying task demands, attention networks are solely
optimized for object recognition. This means that, unlike infants who can rely on a myriad visual
cues to learn to focus their attention (Itti et al., 2005), DCNs must solve the challenging problem
of learning where to attend from weak supervisory signals derived from statistical associations
between image pixels and class labels. Here, we investigate how explicit human supervision – to
teach

::::::
teaching

:
DCNs where to attend – affects their performance and interpretability.

1.1 RELATED WORK

::::::::
Attention

:::::::
models

::
in

::::::::::::
neuroscience

::::
Work

:::
in

::::::::::::
computational

:::::::::::
neuroscience

:::
has

:::::::
posited

::::
that

::::
there

::
are

::::
two

:::::
main

:::::::::
pathways

::::
that

:::::
guide

::::::
visual

::::::::
attention

::::::::::::::::::
(Torralba et al., 2006).

::::::::
Global

:::::::
features

::
are

:::::::
typically

::::
used

:::
to

:::::::
compute

::::::::
so-called

:::::::::
“summary

:::::::::
statistics”

:::
by

::::::::
averaging

::::::::
activities

:::::
from

::::::::
individual

::::::
feature

:::::::
channels

::::::
across

:::
the

:::::
entire

::::::
scene.

::::::
These

:::::::::::::
representations

:::
are

:::::::
designed

:::
to

::::::
capture

:::
the

:::::
scene

:::::
layout

::
or

::::::
“gist”,

::::
and

:::
are

::::::::::::
hypothesized

::
to

::::::
capture

::::::::::
contextual

::::::::::
information

:::
that

::::::
guides

::::::::
attention

::
to

::::::::::
task-relevant

:::::::
features

::::::::::::::::::::::
(Oliva and Torralba, 2007).

:::::
This

:
is
:::::
most

::::::
similar

::
to

:::
the

:::::::::::
feature-based

:::::::
attention

:::
that

::
is

::::
used

:::
in

::::
most

:::::::::::::
state-of-the-art

::::::::
networks

:::::::::::::::::::::::::::::::::::::::::::
(Bell et al., 2016; Wang et al., 2017; Hu et al., 2017)

:
.
::

A
::::::::::::::

complementary
::::
form

:::
of

::::::::
attention

::::::
known

::
as

::::::
visual

:::::::
saliency

::::::::::::::::::
(Itti and Koch, 2001)

::
is

::::::
derived

::::
from

:::::
local

::::::
feature

::::::::::::
representations,

::::
and

::
is
::::::::::

speculated
::
to

:::
act

:::
as

:
a
:::::::::::::::

task-independent
:::::::::::
topographical

:::::::
encoding

:::
of

::::::
feature

::::::::::
conspicuity

::
in

:
a
:::::
visual

::::::
scene.

::
It
:::
has

:::::
been

::::::::
proposed

:::
that

:::
the

:::::
rapid

::::::::::
convergence

::
of

:::::
these

::::
two

::::::::
pathways

::::
acts

:::
as

:::
an

:::::::
efficient

::::::::
shortcut

:::
for

:::::::
filtering

::::::
clutter

:::::
from

::::::
object

::::::::
detection

::::::::
processes

::::::::::::::::::
(Torralba et al., 2006).

:

Attention networks In addition to extensive work aimed at explicitly predicting human eye fix-
ations and/or detecting objects (see Nguyen et al., 2018, for a review), much recent work

::::
recent
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:::::::
research on image categorization has focused on the integration of

::::::::
integrating

:
attention modules

within end-to-end trainable deep network architectures. These attention modules fall into two
broad categories .

:::
that

:::
are

::::::::::
conceptually

:::::::
similar

::
to

:::
the

:::::
global

::::
and

::::
local

:::::::::
pathways

::::::
studied

::
in

:::::
visual

:::::::::::
neuroscience.

:::::::::::::
Feature-based

::::::::
attention

::::
(also

::::::
called

:::::::::::::
“channel-wise”

::::::::
attention)

::::::::
involves

:::::::
learning

:
a

::::::::::
task-specific

::::::::::
modulation

:::
that

::
is
:::::::

applied
::::::
across

::
an

::::::
entire

:::::
scene

::
to

:::::
adjust

:::::::
feature

:::::
maps.

:
Spatial at-

tention mechanisms involve
:
is
::
a

:::::::::::::
complementary

::::
form

::
of

::::::::
attention

:::::
which

:::::::
involves

:
learning a spatial

mask that enhances/suppresses the activity of units inside/outside a “spotlight" positioned over a
scene. This is done according to units’ spatial location independently of their feature tuning. Such
mechanisms have been shown to significantly improve performance on visual question answering
and captioning (e.g., Nam et al., 2017; Patro and Namboodiri, 2018). Feature-based attention (also
called “channel-wise” attention) is a complementary form of attention which involves learning a
task-specific modulation that is applied across an entire scene to adjust feature maps. In this work,
::::
Here,

:::
we

:::::::
combine

:
spatial- and feature-based attention are combined into a single mask that modulates

feature representations, as is typically done in
:::::::
similarly

::
to
:
state-of-the-art approaches (e.g., Chen

et al., 2017; Wang et al., 2017; Biparva and Tsotsos, 2017; Park et al., 2018; Jetley et al., 2018),
::::
with

:
a
::::::::::
formulation

:::
that

::::::::::
additionally

::::::::
supports

:::::::::
supervision

:::::
from

::::::
human

:::::::::
annotations.

Humans-in-the-loop computer vision A central goal of the present study is to leverage human
supervision to co-train an attention network. Previous work has shown that it is possible to augment
vision systems with human perceptual judgments on many difficult recognition problems (e.g.,
Vondrick et al., 2015; Shanmuga Vadivel et al., 2015; Kovashka et al., 2016; Deng et al., 2016).
In particular, online games, especially multi-player games, constitute an efficient way to collect
high-quality human ground-truth data (e.g., von Ahn et al., 2006; Deng et al., 2016; Das et al., 2016;
Linsley et al., 2017). In a two-player game, an image may be gradually revealed to a “student” tasked
to recognize it, by a remote “teacher” who draws “bubbles” on screen to unveil specific image parts
(Linsley et al., 2017). The need to assemble

::::::::
gameplay

::::::::
mechanics

:::::::::
introduced

:::
by

:::::::::
assembling

:
teams of

players reduces annotation noise in these games, but also greatly limits their suitability for large-scale
data collection. This can be alleviated

:::::::
limitation

::
is
::::::::
aleviated in one-player games (Deng et al., 2013;

2016; Das et al., 2016), where a single player may be asked to sharpen regions of a blurred image
to answer questions about it. This work differs from

::::
The

::::
game

::::::::::
introduced

::::
here

:::::
differs

:::::
from

::::
these

earlier studies (Linsley et al., 2017) in that it has a human player collaborate with a DCN to discover
important visual features for recognition at ImageNet scale.

Attention datasets Recording eye fixations while viewing a stimulus is a classic way to explore
visual attention (e.g., Judd et al., 2009). It is, however, difficult and costly to acquire large-scale
eye tracking data, leading researchers instead to track computer mouse movements during task-free
viewing of images

:::::
image

:::::::
viewing. Maps collected from individual observers can then be combined

into a single “bottom-up” saliency map,
:
as is done for the popular Salicon dataset (Jiang et al., 2015).

Still, Salicon contains saliency maps for 10k images, which is probably at least one order of magnitude
short of the number of samples needed for co-training a deep network in object recognition. We instead
describe a gamification procedure used to collect nearly a half-million “top-down”

:::::::::::
(task-driven)

attention maps over several months. As we demonstrate through psychophysics, our “top-down
” attention maps collected as human observers are actively engaged in identifying features that
are maximally informative about object category better reflect the observer’s

:::::::::
identifying

:::::::::
maximally

:::::::::
informative

::::::
visual

:::::::
features

:::
for

::::::
object

::::::::::::
categorization

:::::
better

::::::
reflect

::::
their

:
recognition strategy than

Salicon (section 2.2).

1.2 CONTRIBUTIONS

Our contributions are three-fold: (i) We describe the large-scale online experiment ClickMe.
ai to supplement ImageNet with nearly a half-million “top-down ” attention maps derived from
human participants. These maps are validated using human psychophysics and shown to be more
diagnostic than “bottom-up ” attention maps for rapid visual categorization. (ii) As a proof of
concept, we describe an extension of the leading squeeze-and-excitation (SE) module, which we
call the global-and-local attention (GALA) module because it combines global contextual guidance
with local saliency. This extension yields substantial gains in accuracy on ILSVRC12. (iii) Putting
humans-in-the-loop with

:::::::::::
Incorporating

:
ClickMe supervision leads to an even larger gain in accuracy

while also creating visual representations that are more interpretable and more similar to those derived
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from human observers. By supplementing ImageNet with the public release of ClickMe attention
maps, we hope to spur interest in the development of network architectures that are not only more
robust and accurate, but also more interpretable and consistent with human vision.

2 CLICKME.AI

:
A
::::::::::

large-scale
:::::
effort

::
is

::::::
needed

::
to

::::::
gather

::::::::
sufficient

:::::::
attention

::::::::::
annotations

:::
for

:::::::
training

:::::
neural

::::::::
network

::::::
models.

:
Our starting point

:::
for

:::
this

::::::::
endeavor

:
is the Clicktionary game introduced by Linsley et al.

(2017), which pairs online human participants to cooperatively annotate object images. This two-
player game was successfully used to collect attention maps for a few hundred images, but we found
it impossible to scale up the number of maps collected beyond that because of the challenge of
matching pairs of players.

:::::
These

:::::::::
limitations

::::::::
prompted

::
us

::
to

:::::::
develop ClickMe.aiis

:
, an adaptation

of Clicktionary as
:::
into

:
a single-player game , which

:::
that

:::::::
supports

:::::::::
large-scale

::::
data

:::::::::
acquisition.

:::::::
Indeed,

:::::::
ClickMe

:
successfully ran for several months and produced nearly a half-million attention maps. In

brief,

ClickMe consists of rounds of game play where human participants play with DCN partners to
recognize images from the ILSVRC12 challenge. Players viewed object images and were instructed
to use the mouse cursor to “paint” image parts that are most informative for recognizing its category
(written above the image). Once the participant clicked on the image, 14× 14 pixel bubbles were
placed wherever the cursor went until the round ended (Fig. 1). Having players annotate in this way
forced them to carefully monitor their bubbling while also preventing fastidious strategies that would
produce overly sparse salt-and-pepper types of maps.

Figure 1: The ClickMe interface for hu-
man participants and their DCN partners.
Participants select important image parts
with their mouse by “painting” translu-
cent bubbles on screen. At the same time,
image parts of roughly double the size
are shown to a DCN partner, tasked to
recognize the image. Each round lasts
until the DCN recognizes the object or
if 7 seconds have passed (the latter oc-
curred 47% of the time).

As players bubbled object parts they deemed important
for recognition, a DCN tried to recognize a version of
the image where only these bubbled parts were visible.
We tried to make the game as entertaining and fast-paced
as possible to maximize the number of rounds played by
the human players. Hence, we nearly doubled the size of
the bubbled regions shown to the DCN (21×21 pixels)
to make sure that the objects would be visible to the DCN
within a few seconds of play (Fig. 1). Thus, we do not
expect the precise bubble locations to influence the timing
or the accuracy of the DCN response. The reason for
keeping a DCN in the loop (as opposed to a random timer)
was (1) to make the game entertaining, and (2) to discour-
age human players from bubbling random locations in
an image which are potentially unrelated to the object.
Indeed, we have incorporated all the images used in Click-
tionary Linsley et al. (graciously provided by 2017)
::::::::::::::::::::::::::::::::::::
(graciously provided by Linsley et al., 2017) and found
that ClickMe maps are strongly correlated with Click-
tionary maps (see Appendix). This suggests that the use
of a DCN as a player did not bias the collected annotations, but it did allow us to collect human data
at a scale suitable for co-training a DCN with humans in the loop.

::::::
human

:::::::
attention

:::::::::::
annotations.1 A

timer controlled the number of points participants received per image, and high-scoring participants
were awarded prizes (see Appendix). Points were calculated as the proportion of time left on the
timer after the DCN achieved top-5 correct recognition for the image. If the player could not help the
DCN recognize the object within 7 seconds, the round ended and no points were awarded.

2.1 GAME STATISTICS

Data collection efforts on ClickMe.ai drew 1,235 participants (unique user IDs) to the game who
played an average of 380 images each. In total, we recorded over 35M bubbles, producing 472,946

1See also
:::
Also

:::
see Appendix for an extended discussion about why it is unlikely that human observers were

able to adopt a strategy that would be optimal for a DCN as opposed to selecting object features that they deemed
important for recognition.
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ClickMe maps on 196,499 unique images randomly selected from our preparation of ILSVRC12
(see Appendix for details). All ClickMe maps were used in subsequent experiments, regardless of
the ability of the DCN partner to correctly identify them within the time limit of a round. Fig. 2A
shows sample ClickMe maps where pixel opacity is set according to how many times a bubble was
overlaid on them over all rounds of game play where these images were presented. The maps typically
highlight local image features, emphasizing certain object parts over others. For instance, ClickMe
maps for animal categories (Fig. 2A, top row) are nearly always oriented towards facial components
even when these are not prominent (e.g., snakes). In general, we also found that ClickMe maps for
inanimate objects (Fig. 2A, bottom row) tended to exhibit a front-oriented bias, with distinguishing
parts such as engines, cockpits, and wheels receiving special attention. Additional game information,
statistics and ClickMe maps are available as Appendix.

2.2 CLICKME AND OBJECT RECOGNITION

To directly test the role that ClickMe map features play in human object recognition, we ran a rapid
visual recognition experiment (Figure 2B). This experiment compared

::::
Rapid

::::::
vision

::::::::::
experiments

::::
have

:::::::::
classically

:::::
been

::::
used

:::
in

::::::
visual

:::::::::::
neuroscience

::
to
::::::

probe
::::::
visual

::::::::
responses

::::::
while

:::::::::
controlling

::
for

::::::::
feedback

::::::::::
processing

::::::::::::::::::::::::::::::::::::::::::::::::::
(Serre et al., 2007; Thorpe et al., 1996; Eberhardt et al., 2016).

::::::
Here,

:::
we

::::::
devised

::::
such

::
a
:::::
rapid

:::::
vision

:::::::::::
classification

::::::::::
experiment

::
to

::::::::
compare

:
the contribution of “top-down ”

ClickMe features for object recognition with features derived from “bottom-up ” image saliency . We
tested human

:::::
image

:::::::
saliency

::::::
(Figure

::::
2B),

::::::
closely

:::::::::
following

:::
the

:::::::
approach

:::
of

:::::::::::::::::::
(Eberhardt et al., 2016)

:
.
:::

If
::::::
human

::::::::::
participants

:::::
were

:::::
more

::::::::
effective

::
at
:::::::::::

recognizing
::::::
object

::::::
images

::::::
based

:::
on

:::::::
ClickMe

::::::
features

:::::
than

:::::::::
bottom-up

:::::::
saliency

::::::::
features,

:::
we

::::::::
reasoned

::
it

:::::
would

:::::::
validate

::::
the

:::::::
ClickMe

::::::::
approach

:::
and

::::::::::
demonstrate

:::
the

::::::::
relevance

::
of

:::
the

::::::::
collected

::::::
feature

::::::::::
importance

::::
maps

::
to

::::::
object

::::::::::
recognition.

:::
Our

:::::::
design

:::
of

::::
this

::::::::::
experiment

::::::::
followed

::::
the

:::::
rapid

::::::
visual

:::::::::::::
categorization

:::::::::
paradigm

:::::
used

::
in

:::::::::::::::::::
Eberhardt et al. (2016)

::::
where

:::::::
stimuli

:::
are

::::::
flashed

::::
and

::::::::
responses

:::
are

::::::
forced

::
to
:::

be
:::::
rapid

::::::
(under

:::
550

:::
ms;

::::
see

::::::::
Appendix

:::
for

::::::::
details).

::::
We

::::::::
recruited

::::
120

::::::::::
participants

:::::
from

::::::::
Amazon

::::::::::
Mechanical

:::::
Turk

:
(www.mturk.com

:
),
:::::
each

::
of

:::::
whom

::::::
viewed

::::::
images

::::
that

::::
were

:::::::
masked

::
to

:::::
reveal

:
a
:::::::::
randomly

::::::
selected

::::::
amount

:::
of

::::
their

:::::
most

:::::::::
important

:::::
visual

::::::::
features.

::::::::::::
Participants

::::
were

:::::::::
organized

::::
into

::::
two

::::::
groups

:::::::
(N = 60

::::::::::
participants

:::
in

:::::
each):

::::
one

::::::
which

::::::
viewed

:::::::
images

::::
that

::::
were

:::::::
masked

:::::::::
according

:::::::
ClickMe

:::::
maps,

:::
and

:::
the

:::::
other

::::::
viewed

::::::
images

::::
that

::::
were

:::::::
masked

::::::::
according

::
to

:::::::::
bottom-up

:::::::
saliency.

:

:::
We

:::::
tested

:::::::::
participant responses on 40 target (animal) and 40 distractor (non-animal) images gathered

from the Salicon (Jiang et al., 2015) subset of the Microsoft COCO 2014 (Lin et al., 2014) because
it includes “bottom-up ” attention

::::::
saliency

:
maps derived from human observers(see section 1.1).

Images were presented to human participants either intact or with a phase scrambled perceptual mask
which selectively exposed their most important visual features according to attention maps derived
from either ClickMe or Salicon. These maps were first processed

::::::::
Attention

::::
maps

:::::
from

::::
both

:::::::
resources

::::
were

:::::::::::
preprocessed

:::
so

:::
that

:::::
there

::::
was

::::::
spatial

:::::::::
continuity

:::
for

:::
the

:::::
pixels

::::::::
covering

::::
their

:::::::::::
most-to-least

::::::::
important

:::::
visual

:::::::
features.

:::::
This

:::::::
ensured

:::
that

::
a

:::::::
low-level

:::::::::
difference

:::::::
between

::::::::
attention

:::::
maps,

::::
such

::
as

::
the

::::::::
presence

::
of

:::::
many

::::::::::::
discontinuous

:::::::
visually

::::::::
important

:::::::
regions,

:::
did

:::
not

::::
bias

::::::::::
participants’

::::::::
responses

::
in

:::
this

:::::
rapid

:::::::::::
categorization

::::::::::
experiment.

::::::::::::
Preprocessing

::::
was

::::
done

:
with a novel “stochastic” flood-fill

algorithm that relabeled
:::::::
attention

::::
map

:
pixels with a score that combined their distance from the most

important pixel with their labeled importance (see Appendix for details.)This ensured a spatially
continuous expansion from most-to-least important pixel, which let us create

::
).

:::::
Next,

:::
we

::::::
created

versions of each image that revealed between 1% and 100% (at log-scale spaced intervals) of its most
important pixels, and record how introducing additional features from a resource

:
.

::::
This

:::::::::
experiment

::::::::
measured

:::::
how

::::::::
increasing

::::
the

:::::::::
proportion

::
of

::::::::
important

::::::
visual

:::::::
features

::::
from

::::::
either

:::::::
ClickMe

::
or

:::::::
Salicon

::::::::
attention

:::::
maps

:
influenced behavior (see thumbnails in 2A for examples of

images where 100% of ClickMe or Salicon features were revealed).

(A) A representative selection of ILSVRC12 images and their ClickMe maps. The transparency
channel of select images reflect the fraction of ClickMe bubbles for that location across participants.
Image features consistently deemed important for recognition are opaque and unimportant ones
are transparent. Animals are outlined in blue and non-animals in red. (B) Features identified
in “top-down” ClickMe maps are more diagnostic for object recognition than those identified in
“bottom-up” Salicon maps. A rapid visual categorization experiment compared human performance
in detecting animals when features were revealed according to ClickMe maps (blue curve) or Salicon
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ClickMe-masked images (N=60)
Salicon-masked images (N=60)

Percentage of image revealed by feature source

70%

60%

50%

40%H
um

an
 c

at
eg

or
iz

at
io

n 
ac

cu
ra

cy

1% 25% 40% 63% 100% Full

*** *** ***

BA 80%

100% Umbrella

Figure 2:
:::
(A)

:
A

::::::::::::
representative

::::::::
selection

:::
of

::::::::::
ILSVRC12

::::::
images

::::
and

::::
their

::::::::
ClickMe

::::::
maps.

::::
The

::::::::::
transparency

:::::::
channel

:::
of

:::::
select

:::::::
images

:::::
reflect

::::
the

:::::::
fraction

::
of

::::::::
ClickMe

:::::::
bubbles

:::
for

::::
that

:::::::
location

:::::
across

:::::::::::
participants.

:::::::
Image

:::::::
features

::::::::::
consistently

:::::::
deemed

:::::::::
important

:::
for

::::::::::
recognition

::::
are

::::::
opaque

:::
and

::::::::::
unimportant

:::::
ones

:::
are

::::::::::
transparent.

::::::::
Animals

:::
are

:::::::
outlined

:::
in

::::
blue

:::
and

:::::::::::
non-animals

::
in

::::
red.

::::
(B)

:::::::
Features

::::::::
identified

::
in

::::::::::
“top-down”

::::::::
ClickMe

:::::
maps

:::
are

:::::
more

:::::::::
diagnostic

:::
for

::::::
object

:::::::::
recognition

::::
than

::::
those

::::::::
identified

:::
in

::::::::::
“bottom-up”

:::::::
Salicon

:::::
maps.

::
A
:::::

rapid
::::::
visual

:::::::::::
categorization

::::::::::
experiment

::::::::
compared

:::::
human

:::::::::::
performance

::
in

::::::::
detecting

:::::::
animals

:::::
when

:::::::
features

::::
were

::::::::
revealed

::::::::
according

::
to

::::::::
ClickMe

::::
maps

::::
(blue

::::::
curve)

::
or

::::::
Salicon

:::::
maps

:::
(red

::::::
curve).

:::::::::
ClickMe-

:::
and

:::::::::::::
Salicon-masked

:::::
image

:::::::::
exemplars

:::
are

:::::
shown

::
for

:::
the

::::::::
condition

:::
in

:::::
which

:::::
100%

:::
of

::::::::
important

:::::::
features

:::
are

::::::
visible,

::::::::::::
demonstrating

::::
how

:::::::::::
“bottom-up”

:::::::
saliency

::
is

:::
not

::::::::::
necessarily

:::::::
relevant

::
to

:::
the

:::::
task.

::::
For

::::::
clarity,

:::
we

:::::::
omitted

::::
data

::::::::
between

::::::
1-10%

::
of

::::::
features

::::::
visible

:::::
from

::::
this

:::
plot

::::::
where

::::::::
accuracy

::::
was

::::::
chance

:::
for

::::::::::
participants

::
of

::::
both

:::::::
groups.

::::::
Error

:::
bars

:::
are

:::::::
S.E.M.

::::
***:

::
p

::::::
<0.001

:::::::::
(statistical

::::::
testing

::::
with

::::::::::::
randomization

::::
tests

::::::::::::::::
(Edgington, 1964);

:::
see

::::::::
Appendix

:::::::
details).

maps (red curve). ClickMe- and Salicon-masked image exemplars are shown for the condition
in which 100% of important features are visible, demonstrating how “bottom-up” saliency is not
necessarily relevant to the task. For clarity, we omitted data between 1-10% of features visible from
this plot where accuracy was chance for participants of both groups. Error bars are S.E.M. ***: p
<0.001.

We followed the rapid categorization paradigm used in (Eberhardt et al., 2016) where stimuli are
flashed and responses are forced to be rapid (under 550 ms; see Appendix for details). We recruited
120 participants from Amazon Mechanical Turk (). Participants were organized into two groups
(N = 60 participants in each), each of which viewed images that were masked to reveal a randomly
selected amount of the most important visual features from either ClickMe or Salicon maps. Results
are

:::::::::
Experiment

::::::
results

:::
are shown in Fig. 2B: Human observers reached ceiling performance when

40% of the ClickMe features were visible (6% of all image pixels). In contrast, human observers
viewing images masked according to Salicon required as much as 63% of these features to be visible,
and did not reach ceiling performance until the full image was visible (accuracy measured from
different participant groups). These findings validate that visual features measured by ClickMe are
distinct from “bottom-up ” saliency and sufficient for human object recognition.

3 PROPOSED NETWORK ARCHITECTURE

We designed the global-and-local attention (GALA) block as a circuit for learning complex com-
binations of local saliency and global contextual modulations that can

::::::::
optionally

:
be supervised

by ClickMe maps. The rational for the proposed GALA architecture
:::
this

::::::
design,

::
in

::::::::
particular

:::
the

::::::
parallel

::::::::
attention

::::::::
pathways,

:
is grounded in visual neuroscience(see Appendix for a brief overview.

)
:
,
:::::
which

::
is
:::::::
detailed

:::
in

::::::
Related

::::::
Work.

:
Below we sketch the main computational elements of the

architecture. ,
::::
and

:::::::
describe

:::
the

::::::
process

:::
by

:::::
which

::
it

::
is

::::
used

::
to

::::::::
modulate

::::::
activity

::
at
::
a
::::
layer

::
in
::
a
::::
DCN

:::::
model

::::
(see

:::
Fig.

::
3
:::
for

:
a
:::::::::
high-level

:::::::
overview

:::
of

::::::
GALA

:::::::
attention

:::::::::::
transforming

:::
the

:::::
DCN

::::
layer

:::::::
activity

:
U

:::
into

:::
U′

::::
with

:::
the

::::::
derived

:::::::
attention

:::::::
activity

::
A

:
).
:
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3.1 ARCHITECTURE

GALA modulates an input layer
::::::
activity U with a

::
an

:::::::
attention

:
mask A of the same dimension as the

input
:
,
:::::
which

:::::::
captures

::
a

::::::::::
combination

::
of

::::::
global

:::
and

:::::
local

:::::
forms

::
of

:::::::
attention. Here, the spatial height,

width, and number of feature channels are denoted as H, W, and C s.t. U,A ∈ RH×W×C. We begin
with the

:::
We

:::::
begin

:::
by

:::::::::
describing

::::::
global

:::::::
attention

:::
in

:::
the

:::::::
GALA,

::::::
which

::
is

:::::
based

:::
on

:::
the

:
SE module (Hu

et al., 2017), which is denoted Fglobal :
.
::::::

Global
::::::::

attention
::

is
::::::::

denoted
::::::
Fglobal:in our model and

yields the global feature attention vector g
:::::::::::
g ∈ R1×1×C

:
(Fig. 3). This procedure involves two

steps: first, calculating per-channel “summary statistics”; and second, applying transformations a
::::::::
multilayer

:::::::::
perceptron

::::::
(MLP)

::::::::::::
transformation

:
to shrink and then expand the dimensionality of these

statistics. Summary statistics are computed with a global average applied to individual feature
channels

::
the

::::::
vector

:
U = [uk]k=1...C , yielding

:
to
:::::

yield
:

the vector p = (pk)k=1...C .
::::
That

:::
is,

::::::::::::::::::::
pk = 1

WH

W∑
x=1

H∑
y=1

ukxy .
::

This is followed by a
::::::::
two-layer

::::
MLP

:::
to

::::::
shrink

:::
and

:::::
then

::::::
expand

:::
the

::::::::::::
dimensionality

::
of

:::
p,

:::::
along

:::::
with

::
an

::::::::::
intervening

:::::::::::
nonlinearity

:::
for

:::::::
learning

::::::::
complex

:::::::::::
dependencies

:::::::
between

::::::::
channels.

:::
The

:
shrinking operation of

:::
this

:::::
MLP

:::::::::::::::::::::::::::
(“squeeze” from Hu et al., 2017)

:
is

::::::
applied

::
to the vector p by the operator Wshrink ∈ R c

r×C(so-called “squeeze”)
:
,
:::::::
mapping

::
it
:
into a lower

dimensional space,
:
.
::::
This

::
is
:

followed by an expansion operation
:::::::::::::::::::::::::
(“excite” from Hu et al., 2017)

Wexpand ∈ RC× c
r (bias terms are omitted for simplicity) back to the original, higher dimensional

space s.t. g = Wexpand(δ(Wshrink(p))). We set δ to be a rectified linear function (ReLU) and the
dimensionality “reduction ratio” r of the shrinking operation to 4.

As an
::
In addition to the SE/global contextual

:::::::
attention

:
module, we consider a local saliency module

Flocal used to compute
::::
Flocal:::

for
::::::::::

computing the local feature attention vector S (Fig. 3) as S =

Vcollapse ∗ (δ(Vshrink ∗ U)). Here, convolution is denoted with ∗, Vshrink ∈ R1×1×C× c
r , and

Vcollapse ∈ R1×1× c
r×1. This is reminiscent of the local computations performed in computational-

neuroscience models of visual saliency to yield per-channel conspicuity maps that are then combined
into a single saliency map (Itti and Koch, 2001).

Outputs from the local and global pathways are further integrated with Fintegrate ::::::::
integrated

::::
with

::::::::
Fintegrate:to produce the attention volume A ∈ RH×W×C. Because it is often unclear how tasks benefit
from one form of attention vs. another, or whether task performance would benefit from additive vs.
multiplicative combinations, Fintegrate ::::::::

Fintegrate:learns parameters that govern these interactions.
The vector (ac)c∈1..C controls the additive combination of S and g per-channel, while (mc)c∈1..C
does the same for their multiplicative combination. In order to combine attention activities g and S,
they are first tiled to produce G∗,S∗ ∈ RH×W×C . Finally, we calculate the attention activities of
a GALA module as Ah,w,c = ζ

(
ac(G∗h,w,c + S∗h,w,c) +mc(G∗h,w,c · S

∗
h,w,c)

)
, where the activation

function ζ is set to the tanh function, which squashes activities in the range [−1, 1]. In contrast
to other bottom-up attention modules, which use a sigmoidal function to implement a soft form
of excitation and inhibition, our selection of tanh gives a GALA module the additional ability to
dis-inhibit bottom-up feature activations from U and flip the signs of its individual unit responses.
Attention is applied by Fscale :::::

Fscale:as U′ = U� A.

3.2 RESNET-50 IMPLEMENTATION

To validate
::
We

::::::::
validated

:
the GALA approach , we embedded

::
by

:::::::::
embedding

:
it within a ResNet-

50 (He et al., 2016). We identified 6 mid- to high-level feature layers in ResNet-50 to use with GALA
(layers 24, 27, 30, 33, 36, 39; each belonging

:
of
::::::

which
::::::
belong

:
to the same ResNet-50 processing

block).
:
,
::::
since

:::::
these

::::
will

::
in
::::::::

principle
:::::::
encode

:::::
visual

:::::::
features

::::
that

:::
are

:::::::::::
qualitatively

::::::
similar

::
to

:::
the

:::::::::
object-parts

::::::::::
highlighted

::
in

::::::::
ClickMe

::::
maps

::::
(see

::::
Fig.

:::
2A

:::
for

::
an

::::::::
example

::
of

::::
such

::::::
parts). Each GALA

module was applied to the final activity in a dense path of a residual layer
::::::
module in ResNet-50.

::
At

:::
this

:::::
depth

:::
in

:::
the

:::::::
ResNet,

::::::
GALA

:::::::
attention

:::::::
activity

:::::
maps

:::
had

:
a
::::::

height
::::
and

:::::
width

::
of

:::::::
14×14. The

residual layer’s “shortcut” activity maps were added to this GALA-modulated activity to allow the
model to more

::::::
ResNet

::
to

:
flexibly adjust the amount of attention applied to feature activities. Each

attention activity map had a height and width of 14×14. Table 2 in the Appendix shows that the
accuracy of our re-implementations of ResNet-50 (He et al., 2016) and SE-ResNet-50 (Hu et al.,
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Figure 3: The global-and-local (GALA) block
::::::
module learns to combine local saliency and

:::
with

global contextual signals to guide attention towards image regions that are diagnostic for object
recognition. Optional supervision

:::
The

:::::::
diagram

::::
here

::::::
depicts

::
a

::::::
GALA

::::::
applied

::
to

:::
the

:::::::
activity

::::
from

:
a

:::::::::::
convolutional

::::
layer

::
in
::
a
::::
deep

:::::::
network

::::::
model,

::
U.

:::::::::::
Information

::
in

:::
the

:::::::
diagram

::::
flows

:::::
from

:::
left

::
to

:::::
right,

:::
and

::
U

::
is

::::::::
processed

::::
with

:::::::
separate

::::
local

:::::::
(Flocal):::

and
::::::
global

:::::::
(Fglobal)::::::::

operators
::
to

:::::
derive

:::
the

:::::
local-

:::
and

:::::::::::::
global-attention

::::::
activity,

::::::
which

::
is

::::::::
integrated

::::
into

:::
the

:::::::
attention

:::::::
activity

::
A.

::::::::
Attention

::
is

:::::::
applied

::
to

::
the

::::::
original

:::::::
activity,

::
U
:
,
::::
with

:::::::::::
elementwise

::::::::::::
multiplication

:::::::
(Fscale),:::

to
::::
yield

:::
U′.

:::
A

::::::
GALA

:::::::
module

:::
can

::::::::
optionally

:::
be

:::::::::
supervised by ClickMe maps (

::
M

::
in

:::
the

:
yellow box)can drive

:
,
:::::::
through

::
an

::::::::
additional

:::
loss

::::::::::
Lclickmaps,::::::

which
:::::
drives

:
attention to visual features favored by humans

:::
(see

:::::::
Section

:
4
::::

for
::::::
details).The figure depicts the process by which a DCN activity U is modified by GALA attention A
into U′.

2017) trained with randomly initialized weights on ILSVRC12 is on par with published results.
Incorporating our proposed GALA module into the ResNet-50 (GALA-ResNet-50 no ClickMe) offers
a small improvement over the SE-ResNet-50. As we will see in section 4, the benefits of GALA are
much greater on smaller datasets and when we add humans in the loop

:::::::
attention

::::::::::
supervision.

4 CO-TRAINING GALA WITH HUMANS IN THE LOOP
::::::::::
CLICKME

:::::::
MAPS

::
To

::::
this

:::::
point,

::::
we

:::::
have

::::::::
described

::::
the

:::::::
ClickMe

:::::::
dataset,

::::::
which

::::::::
contains

:::::::::::::
human-derived

::::::
feature

:::::::::
importance

:::::
maps

:::
for

::::::::::
ILSVRC12.

::::
We

::::
have

::::
also

:::::::::
introduced

:::
the

:::::::
GALA

::::::
module

:::
for

::::::::
learning

:::::
local-

:::
and

:::::::::::::
global-attention

::::::
during

:::::
object

::::::::::
recognition.

:::
In

:::
this

::::::
section

:::
we

:::::::
describe

:
a
:::::::
method

:::
for

:::::::::
supervising

::::::
GALA

::::
with

:::::::
ClickMe

:::::
maps,

::::
and

:::
the

:::::
affect

:::
this

:::
has

:::
on

:::::
model

:::::::::::
performance

:::
and

:::::::::::::
interpretability.

:

Next, we describe how to
:::
We use ClickMe maps to supervise attention in a GALA module

::::::
GALA

::::::
module

:::::::
attention

:
by introducing an additional loss. Let LC denote the cross-entropy between activity

from model M with input X and class label y, and Rl(X) denote the ClickMe map for this input.
ClickMe maps are resized with bicubic interpolation to be the same height and width as a GALA
module activity Al(X) at layer l ∈ L, the set of layers where the GALA module is applied. We

:::::
denote

::
the

:::::::
resized

:::::::
ClickMe

::::
map

:::
for

:::
this

:::::
input

::
as

::::::
Rl(X).

::::
We reduced the depth of each column in Al(X) to

1 by setting them to their column-wise L2 norm. Units in ClickMe maps
::::::
Rl(X)

::::::::
(ClickMe

:::::
maps)

:
and

Al(X)
::::::
(GALA

:::::::
activity)

:
are transformed to the same range by normalizing each by their L2 norms.

ClickMe map supervision for a GALA module is
:::::
scaled

::
by

::
λ

:::
and

:
combined with cross-entropy into

a global loss:

LT (X, y) = LC(M(X), y) + λ
∑
l∈L

∥∥∥∥∥ Rl(X)

‖Rl(X)‖2
− Al(X)

‖Al(X)‖2

∥∥∥∥∥
2

(1)

7
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top-1 err top-5 err maps
SE-ResNet-50 66.17 42.48 64.36∗∗
ResNet-50 63.68 40.65 43.61
GALA-ResNet-50 no ClickMe 53.90 31.04 64.21∗∗
GALA-ResNet-50 w/ ClickMe 49.29 27.73 88.56∗∗

Table 1: Top-1 and top-5 classification error of networks along with the fraction of human ClickMap
:::::::
ClickMe

::::
map

:
variability explained by their features (maps; 100 corresponds to the average sim-

ilarity between human ClickMe maps). Performance is reported on the test set of ClickMe. ∗∗
denotes p <0.01

::::::::
(statistical

::::::
testing

:::::::
captures

::::
the

:::::::::
proportion

::
of

:::::
image

:::::::
feature

:::::
maps

:::
that

::::::
exceed

:::
the

:::
null

:::::::::::::
inter-participant

:::::::::
reliability

:::::
score;

:::
see

::::::::
Appendix

:::
for

:::::::
details).

This formulation jointly optimizes a model for both object classification and predicting ClickMe
maps from input images .

:::
(the

:::::
latter

:::
loss

::
is
:::::::
referred

::
to

::
in

::::
Fig.

:
3
::
as

:::::::::::
Lclickmaps).

4.1 MODEL EVALUATION

We split up
:::::::
evaluated

::::
our

::::::::
approach

::
for

::::::::::
supervising

::::::
GALA

:::::
with

:::::::
ClickMe

:::::
maps

::
by

::::::::::
partitioning

:
the

ClickMe dataset for model trainingand evaluation, with
:::
into

:::::::
separate

::::
folds

:::
for

::::::::
training,

:::::::::
validation,

:::
and

::::::
testing.

::::
We

:::
set

::::
aside

:
approximately 5% set aside

::
of

:::
the

::::::
dataset for validation (17,841 images

and importance maps), another 5% for testing (17,581 images and importance maps), and the rest for
training (329,036 images and importance maps). Each ClickMe split contained exemplars from all
1,000 ILSVRC12 categories.

:::::::
Training

:::
and

::::::::
validation

:::::
splits

:::
are

::::
used

::
in

:::
the

:::::::
analyses

:::::
below

::
to

:::::::
optimize

::
the

:::::::
GALA

::::::
training

:::::::
routine,

:::::::
whereas

:::
the

:::
test

::::
split

::
is

:::
set

::::
aside

:::
for

:::::::::
evaluating

:::::
model

:::::::::::
performance

:::
and

::::::::::::
interpretability.

:

4.2 TRADE-OFF BETWEEN RECOGNITION PERFORMANCE AND CLICKME MAP PREDICTION

We investigated the trade-off between maximizing object categorization accuracy and predicting
ClickMe maps (i.e., learning a visual representation which is consistent with that of human observers).
We performed a systematic analysis over different values of the hyperparameter λ, which scaled the
magnitude of the ClickMe map loss (Eq. 1), while recording object classification accuracy and the
similarity between ground-truth ClickMe maps and model attention maps (Fig. 7 in Appendix). This
analysis demonstrated that both object categorization and ClickMe map prediction improve when
λ = 6. We use this hyperparameter value to train GALA-ResNet-50 with ClickMe maps in subsequent
experiments.

4.3 MODEL ACCURACY

We
::::::::
compared

::::::
model

:::::::::::
performance

:::
on

:::
the

::::
test

::::
split

::
of

:::
the

::::::::
ClickMe

:::::::
dataset

:::::
(Table

:::
1).

::::::
Here,

:::
we

report classification accuracy and ClickMe map predictions (measured as the fraction of explained
human ClickMe map variability

::::::::
explained

:::
by

::::::
feature

:::::
maps

::
at

:::
the

:::::
model

:::::
layer

::::::
where

::::::
GALA

:::
was

::::::
applied

::::::
(where

::::
100

::
is

:::
the

::::::::
observed

::::::::::::::
inter-participant

::::::::
reliability; see Appendix)by each model on

the test split of the ClickMe dataset (Table 1).
::::::

High
::::::
scores

::
on

:::::::::
explaining

:::::::
human

:::::::
ClickMe

::::
map

::::::::
variability

::::::::
indicates

::::
that

:
a
::::::
model

::::::
selects

::::::
similar

:::::::
features

:::
as

:::::::
humans

:::
for

::::::::::
recognizing

::::::
objects. We

found that the GALA-ResNet-50 was more accurate at object classification than either the ResNet-
50 or the SE-ResNet-50. We also found that all models that incorporated attention were better at
predicting ClickMe maps than a baseline ResNet-50. The most notable gains in performance came
when ClickMe maps were used to supervise GALA-ResNet-50 training, which improved both

:
its

classification performance and the model’s predictions of ClickMe maps
::::::
fraction

::
of

:::::::::
explained

:::::
human

:::::::
ClickMe

::::
map

:::::::::
variability.

We verified the effectiveness of ClickMe maps for co-training GALA with two controls. Our first
control included a GALA network trained ,

::::
one

::
of

:::::
which

::::::
tested

:::
the

:::::::::
importance

::
of

:::::::
detailed

::::::
feature

::::::::
selections

::
in

::::::::
ClickMe

::::
maps

::::
(see

::::
Fig.

:::
2A

:::
for

::::::::
examples

::
of

::::
how

::::
these

:::::
maps

:::::::::
emphasize

::::::
certain

:::::
object

::::
parts

::::
over

:::::::
others),

:::::
while

::::
the

::::
other

::::::
tested

:::::::
whether

::
a
::::::
GALA

:::::::
module

::
is

:::::::::
necessary

:::
for

:
a
::::::

model
::
to

:::::
benefit

:::::
from

::::::::
ClickMe

::::::::::
supervision.

:::
For

::::
our

:::
first

:::::::
control,

:::
we

::::::
trained

::
a
:::::::::::::::
GALA-ResNet-50

:
on coarse

8
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bounding-box annotations
:
of

:::::::
objects (see Appendix for details on how these bounding boxes were

generated). The second control tested if ClickMe maps could directly improve feature learning
in ResNet-50 architectures, without the aid of the GALA module (see Appendix for details on
the training routine). In both cases, we found that the GALA-ResNet-50 trained with ClickMe
maps outperformed the controls (Table 3 in Appendix).

::
In

::::
other

::::::
words,

:::
the

:::::
detail

::
in

::::::::
ClickMe

::::
maps

:::::::
improves

:::::::
GALA

:::::::::::
performance,

:::
and

::::::::
ClickMe

:::::
maps

::::::
applied

:::::::
directly

::
to
::::::

model
::::::
feature

::::::::
encoding

:::
did

:::
not

::::
help

::::::::::::
performance.

As an additional analysis, we tested if ClickMe maps could still improve model performance if they
were only available for a subset of the training set. We trained models on the entire ILSVRC12
training set and provided ClickMe supervision on images for which it was available (test accuracy
was measured on the ILSVRC12 validation set). Here too , the GALA-ResNet-50 with ClickMe map
supervision was more accurate than all other models (Table 4 in Appendix).

4.4 MODEL INTERPRETABILITY

Because GALA-ResNet-50 networks were trained “from scratch” on the ClickMe dataset, we were
able to visualize the features selected by each for object recognition. We did so on a set of 200 images
that was not included in ClickMe training, for which we had multiple participants supply ClickMe
maps. We visualized features by calculating “smoothed” gradient images (Smilkov et al., 2017),
which suppresses visual noise in gradient images. Including ClickMe supervision in GALA-ResNet-
50 training yielded gradient images which highlighted features that were qualitatively more local
and consistent with those identified by human observers (Fig. 4), emphasizing object parts such as
facial features in animals, and the tires and headlights of cars. By contrast, the GALA-ResNet-50
trained without ClickMe maps placed more emphasis on the bodies of animals and cars as well as
their context.

Our ClickMe map loss formulation requires reducing the dimensionality of the GALA attention
volume A to a single channel. We can directly visualize these “reduced attention maps” to see the
image locations GALA modules learn to select (Fig. 4). Strikingly, attention in the GALA-ResNet-50
trained with ClickMe maps, virtually without exception, focuses either on a single important visual
feature of the target object class, or segments the figural object from the background. This effect
persists in the presence of clutter and occlusion (Fig. 4, fourth and last row of GALA w/ ClickMe
maps). In comparison, some object features can be made out in the attention maps of a GALA-
ResNet-50 trained without ClickMe maps, but there is no such localization, and the maps themselves
are far more difficult to interpret.

:::
The

::::::::::::
interpretability

::
of

:::
the

::::::::
attention

::::
used

:::
by

::::
these

::::::
GALA

:::::::
modules

:
is
::::::::

reported
::
in

:::::
Table

:::
1:

:::::::::::::::
GALA-ResNet-50

:::::::
trained

::::
with

::::::::
ClickMe

::::::
selects

:::::
more

::::::
similar

:::::::
features

::
to

:::::
human

:::::::::
observers

::::
than

:::
the

:::::::::::::::
GALA-ResNet-50

:::::::
trained

::::::
without

::::::::
ClickMe

:
(
::::

the
::::::::
respective

:::::::
fraction

::
of

::::::::
explained

:::::::
ClickMe

::::
map

:::::::::
variability

::
is

:::::
88.56

:::
vs.

::::::
64.21,

::
p

::::::
<0.001

::::::::
according

::
to
::

a
::::::::::::
randomization

:::
test

::
on

:::
the

::::::::
difference

:::
in

::::::::
per-image

::::::
scores

:::::::
between

:::
the

:::::::
models,

::
as

::
in

::::::::::::::
Edgington (1964))

Attention in the GALA-ResNet-50 trained with ClickMe supervision also segmented objects when
it was tested on

:::
was

:::::::
capable

::
of

::::::::
selecting

::::::
objects

::
in

:
images from a different dataset than ILSVRC.

Without additional training, the model’s attention localized foreground objects
:::::
object

::::
parts

:
in Mi-

crosoft COCO 2014 (Lin et al., 2014), despite the qualitative differences between this dataset
and ILSVRC (multiple object categories, higher resolution than ILSVRC12).

:
;
:::
see

:::::
Fig.

::
8

::
for

:::::::::
additional

::::::::::
exemplars).

::::
We

:::::::::
quantified

:::
the

:::::::::::::
interpretability

::
of

:::::::::::::::
GALA-ResNet-50

::::::::
attention

:::
on

:
a

:::::
subset

::
of
::::

the
::::::::
Microsoft

:::::::
COCO

:::::
2017

::::::::
detection

::::::::
challenge

:::::::::
validation

:::
set,

::::::
which

:::::::::
contained

:::::
object

::::::::
categories

::::
also

::
in
::::::::::

ILSVRC12
:::::

(over
::::::

2,000
:::::::
images;

:::
see

:::::::::
Appendix

:::
for

:::::::
details).

::::
On

:::::
these

:::::::
images,

::
we

:::::::::
measured

::::::::::::
interpretability

:::
by

:::::::::
calculating

:::
the

::::::::::::::::::::
intersection-over-union

:::::
(IOU)

::
of

:::
an

:::::::
attention

::::
map

::
for

:::
an

:::::
image

::::
with

:::
its

::::::
ground

::::
truth

::::::
object

:::::::::::
segmentation

::::::
masks

::::
from

::::::
COCO

::::::::::::::::
(Zhou et al., 2017).

::::
By

:::
this

::::::
metric,

::::::::
attention

::::
from

:::
the

::::::::::::::::
GALA-ResNet-50

::::::
trained

::::
with

:::::::
ClickMe

::::::::::
supervision

::
is

:::::::::::
significantly

::::
more

:::::::::::
interpretable

::::
than

:::::::
attention

:::::
from

:::
the

:::::
same

:::::
model

:::::::
without

:::::::
ClickMe

::::::::::
supervision

:::::
(0.26

::::
IOU

:::
vs.

::::
0.03

::::
IOU,

::
p

::::::
<0.001

::::::::
according

::
to

::
a

::::::::::::
randomization

:::
test

:::::::
detailed

::
in

:::::::::
Appendix).

:

5 DISCUSSION

We have described a novel global-and-local attention (GALA) module and demonstrated the benefit of
putting humans-in-the-loop

:::::
using

::::::::::
supervision to teach DCNs where to attend. We first described the

9
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Figure 4: A GALA-ResNet-50 trained with ClickMe supervision uses visual features that are more
similar to those used by human observers than a GALA-ResNet-50 trained without such supervision.
(A) ClickMe maps (images were held out from the training set) highlight object parts that are deemed
important by human observers. The difference between normalized smoothed gradient images
(Smilkov et al., 2017) from each network shows relative feature preferences between networks
(Gradient ∆). Image pixels preferred by GALA-ResNet-50 with ClickMe are red, and those preferred
by a GALA-ResNet-50 without ClickMe are blue, depicting the preference for local features of
the former over the latter. The column-wise L2 norm of each network’s GALA modules reveals
highly interpretable object and part-based attention for the ClickMe GALA-ResNet-50 (in red) vs.
less interpretable and more diffuse attention for the vanilla GALA-ResNet-50 (in blue). (B) The
GALA-ResNet-50 with ClickMe map training learns attention from ILSVRC12 that transfers to
Microsoft COCO 2014 (zero-shot

:
;
:::
see

:::
Fig.

::
8

:::
for

::::
more

::::::::
examples). The attention maps, which locate

multiple objects at once, are sampled from the final ResNet layer in which GALA is applied (#39).

collection of the ClickMe dataset aimed at supplementing ImageNet with nearly a half-million human-
derived attention maps. The approach was validated using human psychophysics by demonstrating

10
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the sufficiency of ClickMe features for rapid visual categorization: on average, human observers
were able to reach ceiling accuracy with only 6% of the total pixels made visible derived from
the most selected ClickMe locations. These results indicate that ClickMe.ai may also provide
novel insights into human vision with a measure of feature diagnosticity that goes beyond classic
saliency measures. While a detailed analysis of the ClickMe features falls outside the scope of the
present study, we expect a more systematic analysis that moves beyond identifying what features are
selected to also measure when they are selected (Cichy et al., 2016; Ha and Eck, 2017) will aid our
understanding of the different attention mechanisms responsible for the selection of diagnostic image
features. We release all the ClickMe data, including not only nearly a half-million attention maps, but
also the associated timing of human behavioral decisions, with the hope that it will spur interest from
other researchers.

We also extended the squeeze-and-excitation (SE) module which constituted the building block
of the winning architecture in the ILSVRC17 challenge. We tested

::::::
trained an SE-ResNet-50 with

::
on

::
a reduced amount of training data (∼ 300K samples) and found that the architecture overfits

compared to a standard ResNet-50. We have found that the proposed GALA-ResNet-50, however,
significantly increases accuracy in this regime and cuts down top-5 error by∼ 25% over both ResNet-
50 and SE-ResNet-50. In addition, we described an approach to co-train GALA using ClickMe
supervision and cue the network to attend to image regions that are diagnostic to humans for object
recognition. The routine casts ClickMe map prediction as an auxiliary task that can be combined with
a primary visual categorization task. We found a trade-off between learning visual representations
that are more similar to those used by human observers vs. learning visual representations that are
more optimal for ILSVRC. With the

:::
The

:
proper trade-off , the approach resulted in a model with

visual representations that are more interpretable in addition to exhibiting a robust improvement
in classification accuracy

:::::
better

:::::::::::
classification

:::::::
accuracy

:::
and

:::::
more

:::::::::::
interpretable

:::::
visual

::::::::::::
representations

::::
(both

:::::::::::
qualitatively

:::
and

::::::::
according

:::
to

:::::::::
quantitative

:::::::::::
experiments

::
on

:::
the

::::::::
ClickMe

::::::
dataset

:::
and

::::::::
Microsoft

::::::
COCO

::::::
images).

While recent advancements in DCNs have led to models that perform on par with human observers in
basic visual recognition tasks, there is also growing evidence of qualitative differences in the visual
strategies that they employ (Saleh et al., 2016; Ullman et al., 2016; Eberhardt et al., 2016; Linsley
et al., 2017). It remains an open question whether these discrepancies arise because of mechanistic
differences during visual inference or because of more mundane differences in the way they are
trained. That it is possible to drive a modern DCN towards learning more human-like representations
with proper cuing to diagnostic image regions during training suggests that the observed differences
may reflect different training regimens rather than different inference strategies. In particular, DCNs
lack explicit mechanisms for perceptual grouping and figure-ground segmentation which are known
to play a key role in the development of our visual system (Johnson, 2001; Ostrovsky et al., 2009).
Such processes alleviate the need to learn to discard background clutter through statistical regularities
learned via the presentation of millions of training samples as is the case for DCNs. In the absence of
figure-ground mechanisms, DCNs are compelled to associate foreground objects and their context
as single perceptual units. This leads to DCN representations that are significantly more distributed
compared to those used by humans (Linsley et al., 2017). We hope that this work will catalyze interest
in the development of novel training paradigms that leverage the plethora of visual cues (depth,
motion, etc) available for figure-ground segregation in order to substitute for the human supervision
used here for co-training GALA.
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APPENDIX

ADDITIONAL CLICKME STATISTICS

The game was launched on February 1st, 2017 and closed on September 24th, 2017. Over this period,
25 contests were used to drive traffic to the site by rewarding top-scoring players with gift cards.
Participants were given usernames to track their performance and were allowed to play as many
game rounds as they wanted. More than 90% of these participants played more than one image. The
distribution of number of participants per image is shown in Fig. 5.

Around 5% of the images were skipped by participants because of poor image quality or an incorrect
class label. The CNN correctly recognized object images in about half of the trials that were played
(47% of all images) for which participants received points. In total, we recorded over 35M bubbles,
producing 472,946 ClickMe maps on 196,499 unique images.

ClickMe maps typically highlight local image features, emphasizing certain object parts over others
(Fig. 6). For instance, ClickMe maps for animal categories (top row) are nearly always oriented
towards facial components even when these are not prominent (e.g., snakes). In general, we also found
that ClickMe maps for inanimate objects tended to exhibit a front-oriented bias, with distinguishing
parts such as engines, cockpits, and wheels receiving special attention.

INTER-RATER RELIABILITY OF THE CLICKME MAPS

We first verified that despite the large scale of ClickMe, the collected attention maps displayed strong
regularity and consistency across participants. We calculated the rank-ordered correlation between
ClickMe maps from two randomly selected players for an image. These maps were blurred with
a 49x49 kernel (the square of the bubble radius in the ClickMe game) to facilitate the comparison
and reduce the influence of noise associated with the game interface. Repeating this procedure for
10,000 different images and taking the average of these per-image correlations revealed a strong
average inter-participant reliability of ρ = 0.58 (p <0.001), meaning that the kinds of features
participants bubbled during game play tend to be stereotyped. We report the similarity between a
model’s feature attention maps and humans as a ratio of this value ρmodel

ρhuman
, and refer to this as the

“Fraction of human ClickMe map variability”. We also derived a null inter-participant reliability by
calculating the correlation of ClickMe maps between two randomly selected players on two randomly
selected images. Across 10,000 randomly paired images, the average null correlation was ρr = 0.18,
reinforcing the strength of the observed reliability.

:::::
Below,

:::
we

::::::::
calculate

::
p

:::::
values

:::
for

::::::::::
correlations

:::::::
between

:::::
model

:::::::
features

::::
and

:::::::
ClickMe

:::::
maps

::
as

:::
the

::::::::::
proportion

::
of

::::::::
per-image

::::::::::
correlation

:::::::::
coefficients

:::
that

:::
are

:::
less

::::
than

::::
this

:::::
value.

:

RELIABILITY BETWEEN CLICKME AND CLICKATIONARY MAPS

ClickMe was inspired by the Clicktionary game (Linsley et al., 2017), which has two human partners
play together to identify important visual features. A small set of 10 images from that game
were provided to us by the authors, and also used in ClickMe. A comparison of the reliability
in attention maps for these images between the two games supports an evaluation of the extent
to which ClickMe models the mechanics of Clicktionary. The correlation between ClickMe and
Clicktionary maps for these 10 images was high (ρr = 0.59, p <0.001

:
;
::::::::
statistical

::::::
testing

::::
with

::::::::::::
randomization

::::
tests

:::::::::::::::
(Edgington, 1964)) and on par with the inter-experiment reliability reported for

the Clicktionary game (Linsley et al., 2017). This suggests that ClickMe identifies similar visual
features as Clicktionary, albeit in a much more efficient way, by swapping out one human partner
with a DCN.

OBSERVERS DID NOT ADOPT A DCN-SPECIFIC STRATEGY

Importantly, participants did not adopt strategies to find visual features that were more important
to their DCN partners than to other humans. A sensitivity analysis of this sort is impossible given
the mechanics and statistics of gameplay: (1) Participants on average played fewer rounds than
the number of object categories in ClickMe (380 vs. 1,000). (2) ClickMe participants were not
aware of how their clicked regions were revealed to their DCN partners (Fig. 1). (3) the

:::
The top-200
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Supplementary figure 1. Distribution of participants per ClickMe map
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Figure 5: Distribution of participants per ClickMe map.

most frequent players were just as likely to elicit correct responses from their DCN on the first
half of their game rounds as on the second half, meaning these “expert” participants did not learn
anything about features preferred by DCNs (53.64% vs. 53.61%; t(199) = 0.04, n.s. ).

:::::::
according

::
to

::::::::::::
randomization

::::
test).

:::
(4)

::::::
These

::::
same

:::::::
players

:::
did

:::
not

:::::
show

:::::::
learning

::::::
effects

::::
over

:
a
::::::
shorter

::::::::
timescale

:::::
either:

::::
they

:::::
were

:::
just

::
as

::::::::
accurate

::
on

:::
the

::::
first

:::
ten

::::
trials

:::
as

::::
they

::::
were

:::
on

::::
their

::::::
second

:::
set

::
of

:::
ten

::::
trials

:::::::
(49.30%

:::
vs.

:::::::
52.20%,

:::
n.s.

:::::::::
according

::
to

::::::::::::
randomization

:::::
test). In addition, as we will describe below,

the similarity between ClickMe visual features selected by human participants is significantly greater
than the similarity between human and DCN features. This means that participants were choosing
features that they found important for recognition, and that these features were strongly stereotyped
between players.

PSYCHOPHYSICS METHODS

Stimulus generation We created a “stochastic” flood-fill algorithm which we applied to a phase-
scrambled version of a ClickMe object image to reveal increasingly larger image regions. First,
the image pixel given highest importance by a ClickMe map was identified. Second, the algorithm
expanded this region anisotropically, with a bias towards pixels with higher attention scores. The
revealed region was set to the center of the image to ensure that participants did not have to foveate to
see important image parts and to prevent the spatial layout to affect the results. Separate image sets
were generated by this procedure for ClickMe and Salicon saliency maps. Participants viewed images
masked by one type of map or the other, but never both to prevent memory effects. Participants saw
each unique exemplar only once in a randomly selected masking configuration. The total number of
pixels in the attention maps for a given image was equalized between ClickMe and saliency maps.
Original images were sampled from 4 target and 4 distractor categories: bird, zebra, elephant, and
cat; table, couch, refrigerator, and umbrella.

Psychophysics experiment In each experiment trial, participants viewed a sequence of events
overlaid onto a white background: (i) a fixation cross was first displayed for a variable time
(1,100–1,600ms); (ii) followed by the test stimulus for 400ms; (iii) and an additional 150ms of
response time. In total, participants were given 550ms to view the image and press a button to judge
its category (feedback was provided when response times fell outside this time limit). Participants
were instructed to categorize the object in the image as fast and accurately as possible by pressing
the “s” or “l” key, which were randomly assigned across participants to either the target or distractor
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category. Similar paradigms and timing parameters yielded reliable behavioral measurements of
pre-attentive visual system processes (e.g., Eberhardt et al., 2016). The experiment began with a
brief training phase to familiarize participants with the paradigm. Afterwards, participants were
given feedback on their categorization accuracy at the end of each of the five experimental blocks (16
images per block).

Supplementary figure 2. ClickMe map exemplars
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ClickMe map exemplars.

Experiments were implemented with the psiTurk framework (Gureckis et al., 2016) and custom
javascript functions. Each trial sequence was converted to an HTML5-compatible video format to
provide the fastest reliable presentation time possible in a web browser. Videos were preloaded before
each trial to optimize the reliability of experiment timing within the web browser. A photo-diode
was used to verify stimulus timing was consistently accurate within 10ms across different operating
system, web browser, and display type configurations. Images were sized at 256× 256 pixels, which
is equivalent to a stimulus size between approximately 5o − 11o across a likely range of possible
display and seating setups participants used for the experiment.

:::
Two

::::::::::
participant

::::::
groups

:::::::::
completed

:::
this

::::::::::
experiment:

::::
one

::::::
which

::::::
viewed

::::::
images

:::::
with

::::
parts

:::::::
revealed

::::::::
according

::
to

::::::::
ClickMe

:::::
maps,

::::
and

:::
the

:::::
other

::::
with

:::::
parts

:::::::
revealed

:::::::::
according

::
to

::::
their

:::::::::::::
Salicon-derived

:::::::
salience.

:::::::::
Statistical

:::::
testing

::::::::
between

:::::
group

:::::::::::
performance

::::
with

::::::::::::
randomization

::::
tests

:::::::::::::::
Edgington (1964)

:
,
:::::
which

:::::::::
compared

:::
the

:::::::::::
performance

::::::::
between

::::::::
ClickMe

:::
vs.

:::::::
Salicon

:::::::
groups

::
at

:::::
every

::::::::::
“percentage

::
of

::::::
image

:::::::
revealed

::::
by

::::::
feature

:::::::
source”

::::
bin

:::::::
(x-axis

:::
in

::::
Fig.

::::
2).

::::
A
::::

null
:::::::::::

distribution
:::
of

:::
“no

::::::::
difference

:::::::
between

:::::::
groups”

::
at
::::
that

:::
bin

::::
was

:::::::::
constructed

:::
by

::::::::
randomly

:::::::::
switching

::::::::::
participants’

:::::
group

:::::::::::
memberships

::::
(e.g.,

::
a
:::::::::
participant

::::
who

::::::
viewed

::::::::
ClickMe

::::::
mapped

:::::::
images

:::
was

::::::
called

:
a
:::::::
Salicon

::::::
viewer

:::::::
instead),

:::
and

::::::::::
calculating

:
a
::::
new

::::::::
difference

::
in
::::::::
accuracy

:::::::
between

:::
the

::::
two

::::::
groups.

::::
This

:::::::::
procedure

:::
was

:::::::
repeated

::::::
10,000

:::::
times

:::
for

:::::
every

:::
bin,

::::
and

:::
the

:::::::::
proportion

::
of

:::::
these

::::::::::
randomized

::::::
scores

:::
that

::::::::
exceeded

::
the

::::::
actual

:::::::
observed

:::::::::
difference

::::
was

::::
taken

:::
as

::
the

::
p
:::::
-value.

:

NEUROSCIENCE MOTIVATION FOR THE GALA ARCHITECTURE
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Computational-neuroscience models have posited that there are two main pathways that guide
visual attention (Torralba et al., 2006). Global features are typically used to compute so-called
“summary statistics” by averaging activities from individual feature channels across the entire scene.
These representations are designed to capture the scene layout or “gist”, and are hypothesized to
serve as a representation of contextual information to drive attention (Oliva and Torralba, 2007).
This is most similar to the feature-based attention that is used in most state-of-the-art networks
(Bell et al., 2016; Wang et al., 2017; Hu et al., 2017). In this work, we explore a complementary
form of attention known as visual saliency (Itti and Koch, 2001) derived from local feature
representations.While visual saliency has been extensively studied (Nguyen et al., 2018), this is the
first time,to our knowledge, that this local form of attention has been combined with a global form
of attention in a global-and-local (GALA) network that can learn to integrate them in a complex
nonlinear combination to solve visual recognition tasks.

GALA-RESNET-50 TRAINING

In our experiments, ClickMe maps were blurred with a 49x49 kernel (the square of the bubble
radius in the ClickMe game), before training to aid in convergence. Object image and ClickMe
importance map pairs were passed through the network during training and augmented with identical
random crops, and left-right flips. Models were trained for 100 epochs and weights were selected that
yielded the best validation accuracy. All models were implemented in Tensorflow and were trained
“from scratch” with weights drawn from a scaled normal distribution. We used SGD with Nesterov
momentum (Sutskever et al., 2013) and a piece-wise constant learning rate schedule that decayed by
1/10 after 30, 60, 80, and 90 epochs of training.

17
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Supplementary figure 2. ClickMe map exemplars

Figure 6:
:::::::
ClickMe

::::
map

:::::::::
exemplars.
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Models trained on full versions of ILSVRC12 (Table 2 and Table 4) were trained with Google TPUs
on Google Cloud Virtual Machines. The large amount of TPU VRAM enabled models in these
experiments to be trained with batches of 1,024 images. Bicubic interpolation operations used for
resizing ClickMe maps were replaced with biliear interpolation on the TPUs, since the former is not
supported. Models trained on the ClickMe subset of ILSVRC12 were trained with TITAN X Pascal
GPUs (Table 1 in the main text and Table 3). Because of memory constraints, these models were
trained with batches of 32 images.

:::
See

:
https://github.com/<user>/GALA_ClickMe2

::
for

::
a
::::::::
reference

:::::::::::::
implementation.

:

TRADE-OFF BETWEEN OBJECT RECOGNITION ACCURACY AND CONSISTENCY OF ATTENTION
MAPS WITH HUMANS

We investigated the trade-off between maximizing object categorization accuracy and predicting
ClickMe maps (i.e., learning a visual representation which is consistent with that of human observers).
We performed a systematic analysis over different values of the hyperparameter λ, which scaled the
magnitude of the ClickMe map loss, while recording object classification accuracy the similarity
between ClickMe maps and model attention maps. Attention maps were derived from networks as the
feature column-wise L2 norms of activity from the final layer of GALA or SE attention (Zagoruyko
and Komodakis, 2016). Model attention map similarity with ClickMe maps was measured with
rank-order correlation. At each value of λ that was tested, five models were trained for 100 epochs,
and weights that optimized accuracy on the validation ClickMe dataset were selected (Fig. 7). This
analysis demonstrated that both object categorization and ClickMe map prediction improve when
λ = 6.

To
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Figure 7: Training the GALA-ResNet-50 with ClickMe maps improves object classification per-
formance and drives attention towards features selected by humans. We screened the influence of
ClickMe maps on training by measuring model accuracy after training on a range of values of λ,
which scales the contribution of ClickMe maps on the total model loss. A model optimized only for
object recognition uses features that explain 62.96% of variability in human ClickMe maps, which is
consistent with a ResNet-50 trained without attention (dashed red line). Incorporating ClickMe maps
in the loss yields a large improvement in predicting ClickMe maps (87.62%) as well as classification
accuracy. The fraction of explained ClickMe map variability for each model is plotted as its ratio to
the human inter-rater reliability, and the dotted red line depicts the floor inter-rater reliability (shuffled
null).

GALA-RESNET-50 VALIDATION

We benchmarked GALA-ResNet-50 versus a vanilla ResNet-50 and a ResNet-50 with SE attention
(Hu et al., 2017) on the validation split of the ILSVRC12 challenge dataset (Table 2). These models

2
:::
This

:::::
github

::::
link

:::
will

::
be

::::::
updated

::::
after

:::
the

:::::
review

:::::
period,

::
to
::::::
protect

::::::::
anonymity.
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Reference Ours
top-1 err. top-5 err. top-1 err. top-5 err.

ResNet-50 (He et al., 2016) 24.70 7.80 23.88 6.86
SE-ResNet-50 (Hu et al., 2017) 23.29 6.62 23.26 6.55
GALA-ResNet-50 no ClickMe - - 22.73 6.35

Table 2: ILSVRC12 validation set accuracy for published reference models (Hu et al., 2017) and our
re-implementations. Models were evaluated on 224 × 224 image crops from the original ILSVRC12
encoded into sharded TFRecords (gs://imagenet_data/train).

were trained on the original version of ILSVRC12. Our implementation is consistent with published
references, and we find that the GALA-ResNet-50 outperforms the other models3.

As discussed in the main text, the GALA-ResNet-50 excelled on the ClickMe subset of ILSVRC12
(Table 3). The GALA-ResNet-50 was more accurate and better able to predict human attention
maps than either the SE-ResNet-50 or the ResNet-50. This model’s performance was improved
dramatically when it was co-trained with ClickMe maps, which cut down top-5 error by ∼ 25% over
both ResNet-50 and SE-ResNet-50.

top-1 err top-5 err Maps SE-ResNet-50 66.17 42.48 64.36∗∗ ResNet-50 63.68 40.65 43.61
ResNet-50 w/ ClickMe 61.32 41.42 31.18 GALA-ResNet-50 w/ b. boxes 58.14 35.17 76.42∗∗
GALA-ResNet-50 no ClickMe 53.90 31.04 64.21∗∗ GALA-ResNet-50 w/ ClickMe 49.29 27.73
88.56∗∗ Networks’ classification error and fraction of explained human ClickMe map variability on
224× 224 center crops from the ClickMe test set. The dataset can be downloaded from . ∗∗ denotes
p <0.01.

To understand the effectiveness of ClickMe supervision when it is only available for a subset of
all images in a dataset, we also tested these models on a preparation of the full ILSVRC12 for the
ClickMe game. Once again, the GALA-ResNet-50 trained with ClickMe maps outperformed all
other models in classification performance (Table 4).

top-1 err top-5 err ResNet-50 28.60 9.65 SE-ResNet-50 27.52 8.91 GALA-ResNet-50 no ClickMe
27.28 8.78 GALA-ResNet-50 w/ b. boxes 27.24 8.80 GALA-ResNet-50 w/ ClickMe 26.17 8.12
Networks trained on the full ILSVRC12 training set, with ClickMe supervision on only a subset
of these images (∼16% of all images). This experiment demonstrates that ClickMe maps are not
needed for all training samples to benefit from ClickMe supervision. Network classification error is
reported on 224 × 224 center crops from ILSVRC12 validation4. The dataset can be download at .

GALA-RESNET-50 CONTROLS

Two control experiments evaluated (1) the effectiveness of ClickMe maps for attention supervision,
and (2) whether attention modules were even needed for a model benefit from this form of supervision.

We first measured the importance of fine-grained annotations in ClickMe maps for supervising GALA
attention. To do this, we compared the GALA-ResNet-50 with ClickMe maps to one trained on
“bounding boxes” derived from these maps. Bounding boxes were created by drawing a rectangle over
the ClickMe map that spanned its spatial extent. In practice, these bounding boxes do not necessarily
line up neatly with classical bounding boxes drawn around objects for localization tasks. However, it
still provides useful information about the resolution at which attention supervision is needed. The
GALA-ResNet-50 trained with ClickMe maps outperformed one trained with these bounding boxes
on both the ClickMe subset of ILSVRC12 (Table 3) and our preparation of the ILSVRC12 (Table 4).

3We observed an identical pattern of results and approximately equal performance for both the classic pre-
and more recent “post-activation” flavors of ResNet-50 (He et al., 2016).

4The version of ILSVRC12 used to train these models is a version that we preprocessed to produce
images for . We standardized the height and width of ILSVRC12 for this dataset by following the method
of Eberhardt et al. (2016): Images shorter than 256 pixels in height or width were removed and all remaining
images were cropped to a size then scaled to 256 × 256 pixels. The resulting dataset includes 1,281,167 images
total, 196,499 of which have ClickMe maps.
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::::
top-1

:::
err

: ::::
top-5

:::
err

: :::::
Maps

::::::::::::
SE-ResNet-50

:::::
66.17

:::::
42.48

::::::
64.36∗∗

:

:::::::::
ResNet-50

:::::
63.68

:::::
40.65

:::::
43.61

:::::::::
ResNet-50

::
w/

::::::::
ClickMe

:::::
61.32

:::::
41.42

:::::
31.18

:::::::::::::::
GALA-ResNet-50

::
w/

::
b.
::::::

boxes
:::::
58.14

:::::
35.17

::::::
76.42∗∗

:

:::::::::::::::
GALA-ResNet-50

::
no

::::::::
ClickMe

:::::
53.90

:::::
31.04

::::::
64.21∗∗

:

:::::::::::::::
GALA-ResNet-50

::
w/

::::::::
ClickMe

::::
49.29

::::
27.73

:::::
88.56

:

∗∗
:

Table 3:
::::::::
Networks’

:::::::::::
classification

:::::
error

:::
and

:::::::
fraction

::
of

::::::::
explained

::::::
human

:::::::
ClickMe

::::
map

:::::::::
variability

::
on

:::
224

::
×

::::
224

:::::
center

:::::
crops

::::
from

:::
the

::::::::
ClickMe

:::
test

:::
set.

::::
The

::::::
dataset

:::
can

:::
be

::::::::::
downloaded

::::
from

:
ClickMe.

ai/about.
:::

∗∗
:::::::
denotes

::
p

::::
<0.01

:::::::::
(statistical

::::::
testing

::::::::
captures

:::
the

:::::::::
proportion

::
of
:::::::

feature
:::::
maps

:::
that

::::::
exceed

:::
null

:::::::::::::
inter-participant

:::::::::
reliability,

:::::::
detailed

::
in

:::::::::
Inter-rater

::::::::
reliability

::
of
:::
the

::::::::
ClickMe

::::
maps

:
).

::::
top-1

:::
err

: ::::
top-5

:::
err

:

:::::::::
ResNet-50

:::::
28.60

:::
9.65

:

::::::::::::
SE-ResNet-50

:::::
27.52

:::
8.91

:

:::::::::::::::
GALA-ResNet-50

::
no

::::::::
ClickMe

:::::
27.28

:::
8.78

:

:::::::::::::::
GALA-ResNet-50

::
w/

::
b.
::::::

boxes
:::::
27.24

:::
8.80

:

:::::::::::::::
GALA-ResNet-50

::
w/

::::::::
ClickMe

::::
26.17

::::
8.12

Table 4:
::::::::
Networks

::::::
trained

:::
on

:::
the

:::
full

::::::::::
ILSVRC12

:::::::
training

:::
set,

::::
with

::::::::
ClickMe

:::::::::
supervision

:::
on

::::
only

:
a

:::::
subset

::
of

:::::
these

::::::
images

::::::
(∼16%

::
of

:::
all

:::::::
images).

::::
This

::::::::::
experiment

:::::::::::
demonstrates

:::
that

::::::::
ClickMe

:::::
maps

::
are

:::
not

::::::
needed

::
for

:::
all

::::::
training

:::::::
samples

::
to

::::::
benefit

::::
from

::::::::
ClickMe

::::::::::
supervision.

:::::::
Network

:::::::::::
classification

:::::
error

:
is
:::::::
reported

:::
on

:::
224

::
×
::::
224

:::::
center

:::::
crops

:::::
from

:::::::::
ILSVRC12

:::::::::
validation5

:
.
::::
The

::::::
dataset

:::
can

::
be

:::::::::
download

:
at

ClickMe.ai/about
:
.

We also tested if ClickMe maps can directly supervise feature learning in residual networks. This
involved replacing the ClickMe map attention loss with one that minimized the L2 distance between
ClickMe maps and activity volumes from a ResNet-50 during object classification training (this loss
was applied to the same layers as the attention models above; Table 3, ResNet-50 w/ ClickMe). This
model performed comparably to a normal ResNet-50, but was less accurate than the GALA-ResNet-50
with ClickMe maps.

::::::::::::::
INTERPRETABLE

::::::::::
ATTENTION

:::
We

::::::::
measured

:::
the

::::::::::::
interpretability

::
of
::::::::

attention
:::::
maps

::::::::
employed

:::
by

:::::::::::::::
GALA-ResNet-50

::::::
models

::::::
trained

::::
with

:::::
versus

:::::::
without

:::::::
ClickMe

::::
map

::::::::::
supervision

:::
on

:
a
::::::
subset

::
of

::::::
images

::
in
:::

the
:::::::::

Microsoft
::::::
COCO

:::::
2017

:::::
object

::::::::
detection

::::::::
challenge

::::
that

::::::::
contained

::::::
animal

:::
and

:::::::
vehicle

::::::::
categories

::::
also

:::::::
present

::
in

:::::::::
ILSVRC12

:::::
(2,055

:::::::
images;

:::
this

::::::
criteria

::::
was

::::
used

:::::::
because

::::
these

::::::
models

:::::
were

::::::
trained

::
on

:::::::::::
ILSVRC12).

:::
For

::::
each

::
of

::
the

:::::::
selected

:::::::
images,

:::
we

::::
also

::::::::
collected

::::::
animal

:::
and

:::::::
vehicle

:::::::::::
segmentation

::::::
masks

::::
from

:::
the

:::::::::
challenge.

:::::
Thus,

:::
this

::::::::
amounted

::
to

::
a
::::
large

::::::::::
“zero-shot”

:::
test

::
of

:::
the

:::::::::::::
interpretability

::
of

::::::
GALA

:::::
model

::::::::
attention.

:

::::
Each

::::::
COCO

::::::
image

::::
was

::::::
resized

:::
to

:::::::::
480× 640

::::::
pixels,

::::
and

::::::
passed

:::::::
through

:::
the

:::::::::::::::
GALA-ResNet-50

::::::
trained

::::
with

:::::::
ClickMe

:::
and

:::
the

::::::::::::::::
GALA-ResNet-50

::::::
trained

::::::
without

::::::::
ClickMe.

::::::::
Attention

::::::::
activities

::::
were

:::::::
extracted

:::::
from

:::
the

:::::
final

::::::
GALA

:::::::
module

::
in

::::
each

::::::::
module,

:::
and

:::
as

::::
was

::::::::
described

:::
in

:::
the

:::::
main

::::
text,

::::::::
processed

:::
for

:::::::::::
visualization

::
by

::::::
setting

::::::::
attention

:::::::
columns

::
at
:::::
every

::::::
spatial

:::::::
location

::
to

:::::
their

::
L2::::::

norm,
::::::::::
transforming

::::
the

:::::::::::
H ×W × C

:::::::::::::
(corresponding

::
to

:::::::
volume

::::::
height,

::::::
width,

::::
and

:::::::::
channels)

:::::::
attention

::::::
volume

::
to

:::::::::::
H ×W × 1.

::::::::
Because

:::
of

:::::::::::
subsampling

::
in

:::
the

::::::::::
ResNet-50,

:::
the

::::::
height

::::
and

:::::
width

::
of

:::
the

:::::::
resulting

::::::::
attention

::::
mask

::::
was

:::
less

::::
than

:::
the

:::::
input

:::::::
images.

::::
This

::::
was

::::::::
corrected

::
by

:::::::
resizing

:::::
these

::::
maps

::
to

:::::::::
480× 640

:::::
pixels.

:

:::
We

::::
first

:::::::::
visualized

::::::::
attention

:::::
maps

:::::
from

:::
the

::::::::::::::::
GALA-ResNet-50

:::::::
models

:::
by

:::::
using

:::::
them

:::
as

:::
the

::::::::::
transparency

:::::::
channel

:::
for

::::
their

::::::::::::
corresponding

::::::
COCO

::::::
images

::
(a

:::::::
random

:::::
subset

::
is
:::::::
depicted

::
in
::::

Fig.
:::
8).

:::::
There

:::
are

:::::::
striking

:::::::::
regularities

::
in
::::

the
:::::::
features

:::::::
selected

::
by

:::::::
GALA

:::::::
attention

:::::
when

::
it
::
is

::::::
trained

::::
with

:::::::
ClickMe

:::::
maps:

:::::::::
important

::::::
animal

:::::
parts,

::::
such

::
as

:::::
faces

::::
and

:::
tails

:::
are

:::::::::::
consistently

::::::::::
emphasized;

::
as
:::

are
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::::::
vehicle

::::
parts

::::
like

::::::::::
windshields

::::
and

::::::
wheels

:::::
(Fig.

::
8,

::::::
middle

::::::::
mosaic).

:::
By

::::::::
contrast,

::::::
GALA

:::::::
attention

::::::
trained

::::::
without

::::::::
ClickMe

::::
maps

::
is
:::::
much

:::::
more

:::::::::
distributed

:::
and

::::
less

::::::::::
interpretable

:::
on

::::
these

:::::::
images,

:::
and

::::::::
highlights

:
a
:::::::::::
combination

::
of

::::::::::
background

:::
and

::::::::::
foreground

:::::::
elements

:::::
(Fig.

::
8,
::::::
bottom

::::::::
mosaic).

:::
We

::::::::
quantified

::::::::
attention

::::
map

::::::::::::
interpretability

::::
with

::
an

::::::::
approach

:::::::
inspired

:::
by

:::::::::::::::
Zhou et al. (2017),

:::::
which

:::
was

:::::
used

::
to

:::::::
quantify

::::
the

::::::::::::
interpretability

:::
of

::::
deep

::::::::
network

:::::::::::::
representations.

:::::
For

::::
each

::::::
image,

:::
we

:::::::::
normalized

::::::::
attention

:::::
maps

:::::
from

:::
the

::::
two

::::::
GALA

::::::
models

:::
to

:::
the

:::::
range

:::
of

:::::
[0, 1],

::::
then

::::::::::
thresholded

::::
these

:::::
maps

:::
to

::::
only

:::::::
include

::::::
pixels

::::
with

::
a
:::::
score

:::::::
greater

::::
than

::::
0.5.

:::::::
These

::::::::
attention

:::::
maps

::::
were

:::
next

:::::::::
processed

::
to
:::::

have
:::
the

:::::
same

:::::::
number

:::
of

:::::
these

:::::::::::::
above-threshold

:::::
pixel

:::::::::
locations,

::
to

:::::::
support

:
a

:::
fair

::::::::::
comparison

::
of

::::
the

:::
two

:::::::
models.

:::::::
These

:::::::::::::
above-threshold

:::::
pixel

::::::::
locations

:::::
were

:::::
paired

:::::
with

::
an

::::::
image’s

:::::::
COCO

:::::::::::
segmentation

::::::
masks

::
to

::::::::
calculate

:::
an

:::::::::::::::::::
intersection-over-union

::::::
(IOU)

::::::
score,

:::::
which

::::::::
measured

:::
the

::::::::
likelihood

::::
that

:
a
:::::::
model’s

:::::::
attention

:::::::
selected

::::::
animal

::
or

:::::::
vehicle

::::
parts

::::::
versus

:::::::::
background

::::::::
locations.

::::::::
Applying

:::
this

:::::::::
procedure

::
to

::
all

:::::
2,055

::::::
COCO

::::::
images

:::::::
yielded

::::::::
per-image

::::::
scores

::
in

:::
the

::::
range

::
of

:::::
[0, 1].

::::::::::
Comparing

:::
the

:::::::
average

:::::
score

::
of

:::
the

::::
two

::::::
models

:::::::
revealed

::::
that

::::::::
ClickMe

::::
map

:::::::::
supervision

::::::::::
significantly

::::::::
improves

:::
the

::::::::::::
interpretability

::
of

:::::::::::::::
GALA-ResNet-50

::::::::
attention:

::::::::::::::::
GALA-ResNet-50

:::::
trained

::::
with

:::::::
ClickMe

:::::
map

::::::::::
supervision

:::::::::::::
interpretability

::
is

:::::
0.26,

:::::::
whereas

::::::::::::::::
GALA-ResNet-50

::::::
trained

::::
with

:::::::
ClickMe

::::
map

::::::::::
supervision

::::::::::::
interpretability

::
is
:::::

0.03.
::::::::::::

Furthermore,
:::
the

::::::::
difference

::::::::
between

:::
the

::::
two

:
is

:::::::::
statistically

:::::::::
significant

::::::::
according

:::
to

:
a
::::::::::::
randomization

:::
test

::::::::::::::::
(Edgington, 1964),

::
in

::::::
which

:::
the

:::::::
observed

::::::
average

:::::::::
difference

:
is
:::::::::
compared

::
to

:
a
::::
null

:::::::::
distribution

::
of

:::::::
average

:::::::::
differences

::::::::::
constructed

::
by

:::::::::
randomly

::::::
flipping

:::
the

:::::
signs

::
of

:::
the

::::::::
per-image

:::::::::
difference

::::::
scores

::::
over

::::::
10,000

:::::::
iterations

::
(
:
p

:::::::
<0.001).

:
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Figure 8:
::::::::
Exemplars

::::
from

:::
the

:::::::::
validation

::
set

::
of
:::
the

:::::::::
Microsoft

::::::
COCO

::::
2017

::::::::
detection

::::::::
challenge

:::::
(zoom

::
in

::
for

:::::::
detail).

:::
The

:::
top

:::::
panel

:::::::
depicts

:
a
:::::::
random

:::::::
selection

:::::
from

:
a
::::::
subset

::
of

::::
these

:::::::
images

:::
that

:::::::
depicted

:::::
object

::::::::
categories

::::
also

:::::
found

::
in

::::::::::
ILSVRC12.

:::
In

:::
the

::::::
middle

:::::
panel,

::::
each

::
of

:::::
these

::::::
images

::
is

:::::
shown

::::
with

::
the

:::::::::::
transparency

:::
set

:::
to

:::
the

:::::::
attention

:::::
map

:
it
:::::::

yielded
::
in

::
a
:::::::::::::::
GALA-ResNet-50

:::::::
trained

::::
with

:::::::
ClickMe

:::
map

:::::::::::
supervision.

:::::::
Opaque

::::
parts

:::::::
indicate

:::::::
features

::::
that

:::
this

::::::
GALA

:::::::
attended

:::
to,

::::
and

:::::::::
transparent

::::
parts

::
are

:::::
ones

::::
that

:
it
::::::::

ignored;
::::
this

::::::::::
emphasizes

::::::
animal

::::
parts

::::
like

:::::
faces

:::
and

:::::
tails,

::::
and

::::::
vehicle

:::::
parts

:::
like

::::::
wheels

:::
and

:::::::::::
windshields.

:::
The

::::::
bottom

:::::
panel

::::::
shows

:::
the

::::
same

:::::::::::
visualization

:::::
using

:::::::
attention

:::::
maps

::::
from

:
a
:::::::::::::::
GALA-ResNet-50

:::::::
trained

::::::
without

::::::::
ClickMe

::::
map

:::::::::::
supervision.

:::::
Here,

::::::::
attention

::
is

:::::::::
distributed

:::
and

:::
less

:::::::::::
interpretable.
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