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ABSTRACT

Deep networks have recently been shown to be vulnerable to universal perturbations:
there exist very small image-agnostic perturbations that cause most natural images
to be misclassified by such classifiers. In this paper, we provide a quantitative
analysis of the robustness of classifiers to universal perturbations, and draw a formal
link between the robustness to universal perturbations, and the geometry of the
decision boundary. Specifically, we establish theoretical bounds on the robustness
of classifiers under two decision boundary models (flat and curved models). We
show in particular that the robustness of deep networks to universal perturbations
is driven by a key property of their curvature: there exist shared directions along
which the decision boundary of deep networks is systematically positively curved.
Under such conditions, we prove the existence of small universal perturbations.
Our analysis further provides a novel geometric method for computing universal
perturbations, in addition to explaining their properties.

1 INTRODUCTION

Despite the success of deep neural networks in solving complex visual tasks He et al. (2016);
Krizhevsky et al. (2012), these classifiers have recently been shown to be highly vulnerable to
perturbations in the input space. In Moosavi-Dezfooli et al. (2017), state-of-the-art classifiers
are empirically shown to be vulnerable to universal perturbations: there exist very small image-
agnostic perturbations that cause most natural images to be misclassified. The existence of universal
perturbation is further shown in Hendrik Metzen et al. (2017) to extend to other visual tasks, such
as semantic segmentation. Universal perturbations fundamentally differ from the random noise
regime, and exploit essential properties of deep networks to misclassify most natural images with
perturbations of very small magnitude. Why are state-of-the-art classifiers highly vulnerable to these
specific directions in the input space? What do these directions represent? To answer these questions,
we follow a theoretical approach and find the causes of this vulnerability in the geometry of the
decision boundaries induced by deep neural networks. For deep networks, we show that the key to
answering these questions lies in the existence of shared directions (across different datapoints) along
which the decision boundary is highly curved. This establishes fundamental connections between
geometry and robustness to universal perturbations, and thereby reveals new properties of the decision
boundaries induced by deep networks.

∗The first two authors contributed equally to this work.
†Now at Google DeepMind.
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Our aim here is to derive an analysis of the vulnerability to universal perturbations in terms of the
geometric properties of the boundary. To this end, we introduce two decision boundary models: 1)
the locally flat model assumes that the first order linear approximation of the decision boundary holds
locally in the vicinity of the natural images, and 2) the locally curved model provides a second order
local description of the decision boundary, and takes into account the curvature information. We
summarize our contributions as follows:

• Under the locally flat decision boundary model, we show that classifiers are vulnerable
to universal directions as long as the normals to the decision boundaries in the vicinity of
natural images are correlated (i.e., they approximately span a low dimensional space). This
result formalizes and proves some of the empirical observations made in Moosavi-Dezfooli
et al. (2017).
• Under the locally curved decision boundary model, the robustness to universal perturbations

is instead driven by the curvature of the decision boundary; we show that the existence
of shared directions along which the decision boundary is positively1 curved implies the
existence of very small universal perturbations.
• We show that state-of-the-art deep nets remarkably satisfy the assumption of our theorem

derived for the locally curved model: there actually exist shared directions along which the
decision boundary of deep neural networks are positively curved. Our theoretical result
consequently captures the large vulnerability of state-of-the-art deep networks to universal
perturbations.
• We finally show that the developed theoretical framework provides a novel (geometric)

method for computing universal perturbations, and further explains some of the properties
observed in Moosavi-Dezfooli et al. (2017) (e.g., diversity, transferability) regarding the
robustness to universal perturbations.

2 DEFINITIONS AND NOTATIONS

Consider an L-class classifier f : Rd → RL. Given a datapoint x ∈ Rd, we define the estimated
label k̂(x) = argmaxk fk(x), where fk(x) is the kth component of f(x) that corresponds to the kth

class. We define by µ a distribution over natural images in Rd. The main focus of this paper is to
analyze the robustness of classifiers to universal (image-agnostic) noise. Specifically, we define v

to be a universal noise vector if k̂(x + v) 6= k̂(x) for “most” x ∼ µ. Formally, a perturbation v is
(ξ, δ)-universal, if the following two constraints are satisfied:

‖v‖2 ≤ ξ,
P
(
k̂(x + v) 6= k̂(x)

)
≥ 1− δ.

This perturbation image v is coined “universal”, as it represents a fixed image-agnostic perturba-
tion that causes label change for a large fraction of images sampled from the data distribution µ.
In Moosavi-Dezfooli et al. (2017), state-of-the-art classifiers have been shown to be surprisingly
vulnerable to this simple perturbation regime.

It should be noted that universal perturbations are different from adversarial perturbations Szegedy
et al. (2014); Biggio et al. (2013), which are datapoint-specific perturbations that are sought to fool a
specific image. An adversarial perturbation is a solution to the following optimization problem

r(x) = arg min
r∈Rd

‖r‖2 subject to k̂(x + r) 6= k̂(x), (1)

which corresponds to the smallest additive perturbation that is necessary to change the label of the
classifier k̂ for x. From a geometric perspective, r(x) quantifies the distance from x to the decision
boundary (see Fig. 1a). In addition, due to the optimality conditions of Eq. (1), r(x) is orthogonal to
the decision boundary at x + r(x), as illustrated in Fig. 1a.

In the remainder of the paper, we analyze the robustness of classifiers to universal noise, with respect
to the geometry of the decision boundary of the classifier f . Formally, the pairwise decision boundary,

1Throughout the paper, the sign of the curvature is chosen according to the normal vector, and the data point
x, as illustrated in Fig. 3

2



Published as a conference paper at ICLR 2018

(a) Local geometry of the decision boundary.
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Figure 1

when restricting the classifier to class i and j is defined by B = {z ∈ Rd : fi(z) − fj(z) = 0}
(we omit the dependence of B on i, j for simplicity). The decision boundary of the classifier hence
corresponds to points in the input space that are equally likely to be classified as i or j.

In the following sections, we introduce two models on the decision boundary, and quantify in each
case the robustness of such classifiers to universal perturbations. We then show that the locally curved
model better explains the vulnerability of deep networks to such perturbations.

3 ROBUSTNESS OF CLASSIFIERS WITH FLAT DECISION BOUNDARIES

We start here our analysis by assuming a locally flat decision boundary model, and analyze the
robustness of classifiers to universal perturbations under this decision boundary model. We specifically
study the existence of a universal direction v, such that

k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x), (2)

where v is a vector of sufficiently small norm. It should be noted that a universal direction (as
opposed to a universal vector) is sought in Eq. (2), as this definition is more adapted to the analysis
of classifiers with locally flat decision boundaries. For example, while a binary linear classifier has
a universal direction that fools all the data points, only half of the data points can be fooled with a
universal vector (provided the classes are balanced) (see Fig. 1b). We therefore consider this slightly
modified definition in the remainder of this section.

We start our analysis by introducing our local decision boundary model. For x ∈ Rd, note that
x + r(x) belongs to the decision boundary and r(x) is normal to the decision boundary at x + r(x)
(see Fig. 1a). A linear approximation of the decision boundary of the classifier at x + r(x) is
therefore given by x + {v : r(x)Tv = ‖r(x)‖22}. Under this approximation, the vector r(x) hence
captures the local geometry of the decision boundary in the vicinity of datapoint x. We assume a
local decision boundary model in the vicinity of datapoints x ∼ µ, where the local classification
region of x occurs in the halfspace r(x)Tv ≤ ‖r(x)‖22. Equivalently, we assume that outside of this
half-space, the classifier outputs a different label than k̂(x). However, since we are analyzing the
robustness to universal directions (and not vectors), we consider the following condition, given by

Ls(x, ρ) : ∀v ∈ B(ρ), |r(x)Tv| ≥ ‖r(x)‖22 =⇒ k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x). (3)

where B(ρ) is a ball of radius ρ centered at 0. An illustration of this decision boundary model is
provided in Fig. 2a. It should be noted that linear classifiers satisfy this decision boundary model,
as their decision boundaries are globally flat. This local decision boundary model is however more
general, as we do not assume that the decision boundary is linear, but rather that the classification
region in the vicinity of x is included in x + {v : |r(x)Tv| ≤ ‖r(x)‖22}. Moreover, it should be
noted that the model being assumed here is on the decision boundary of the classifier, and not an
assumption on the classification function f .2 Fig. 2a provides an example of nonlinear decision
boundary that satisfies this model.

2The decision boundary B is the zero level set of the functions fi − fj . f can be a highly nonlinear function
of the inputs, even when the zero-level set B is locally flat in the vicinity of datapoints.
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In all the theoretical results of this paper, we assume that ‖r(x)‖2 = 1, for all x ∼ µ, for simplicity
of the exposition. The results can be extended in a straightforward way to the case where ‖r(x)‖2
takes different values for points sampled from µ. The following result shows that classifiers following
the locally flat decision boundary model are not robust to small universal perturbations, provided
the normals to the decision boundary (in the vicinity of datapoints) approximately belong to a low
dimensional subspace of dimension m� d.

Theorem 1. Let ξ ≥ 0, δ ≥ 0. Let S be an m dimensional subspace such that‖PSr(x)‖2 ≥
1− ξ for almost all x ∼ µ,, where PS is the projection operator on the subspace. Assume moreover
that Ls (x, ρ) holds for almost all x ∼ µ, with ρ =

√
em

δ(1−ξ) . Then, there exists a universal noise

vector v, such that ‖v‖2 ≤ ρ and P
x∼µ

(
k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x)

)
≥ 1− δ.

The proof can be found in supplementary material, and relies on the construction of a universal
perturbation through randomly sampling from S . The vulnerability of classifiers to universal perturba-
tions can be attributed to the shared geometric properties of the classifier’s decision boundary in the
vicinity of different data points. In the above theorem, this shared geometric property across different
data points is expressed in terms of the normal vectors r(x). The main assumption of the above
theorem is specifically that normal vectors r(x) to the decision boundary in the neighborhood of
data points approximately live in a subspace S of low dimension m < d. Under this assumption, the
above result shows the existence of universal perturbations of `2 norm of order

√
m. When m� d,

Theorem 1 hence shows that very small (compared to random noise, which scales as
√
d Fawzi et al.

(2016)) universal perturbations misclassifying most data points can be found.

Remark 1. Theorem 1 can be readily applied to assess the robustness of multiclass linear classifiers
to universal perturbations. In fact, when f(x) = WTx, with W = [w1, . . . ,wL], the normal vectors
are equal to wi − wj , for 1 ≤ i, j ≤ L, i 6= j. These normal vectors exactly span a subspace of
dimension L− 1. Hence, by applying the result with ξ = 0, and m = L− 1, we obtain that linear
classifiers are vulnerable to universal noise, with magnitude proportional to

√
L− 1. In typical

problems, we have L� d, which leads to very small universal directions.

Remark 2. Theorem 1 provides a partial expalanation to the vulnerability of deep networks, provided
a locally flat decision boundary is assumed. Evidence in favor of this assumption was given through
visualization of randomly chosen cross-sections in Warde-Farley et al. (2016); Fawzi et al. (2016). In
addition, normal vectors to the decision boundary of deep nets (near data points) have been observed
to approximately span a subspace S of sufficiently small dimension in Moosavi-Dezfooli et al. (2017).
However, unlike linear classifiers, the dimensionality of this subspace m is typically larger than the
the number of classes L, leading to large upper bounds on the norm of the universal noise, under
the flat decision boundary model. This simplified model of the decision boundary hence fails to
exhaustively explain the large vulnerability of state-of-the-art deep neural networks to universal
perturbations.

We show in the next section that the second order information of the decision boundary contains
crucial information (curvature) that captures the high vulnerability to universal perturbations.

4 ROBUSTNESS OF CLASSIFIERS WITH CURVED DECISION BOUNDARIES

We now consider a model of the decision boundary in the vicinity of the data points that allows to
leverage the curvature of nonlinear classifiers. Under this decision boundary model, we study the
existence of universal perturbations satisfying k̂(x + v) 6= k̂(x) for most x ∼ µ.3

We start by establishing an informal link between curvature of the decision boundary and robustness
to universal perturbations, that will be made clear later in this section. As illustrated in Fig. 3, the
norm of the required perturbation to change the label of the classifier along a specific direction v is
smaller if the decision boundary is positively curved, than if the decision boundary is flat (or with
negative curvature). It therefore appears from Fig. 3 that the existence of universal perturbations
(when the decision boundary is curved) can be attributed to the existence of common directions where

3Unlike for classifiers with locally flat decision boundaries, we now consider the problem of finding a
universal vector (as opposed to universal direction) that fools most of the data points. This corresponds to the
notion of universal perturbations first highlighted in Moosavi-Dezfooli et al. (2017).
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(b) Curved decision boundary model Q(x, ρ).

Figure 2: Illustration of the decision boundary models considered in this paper. (a): For the flat
decision boundary model, the set {v : |r(x)Tv| ≤ ‖r(x)‖22} is illustrated (stripe). Note that for v
taken outside the stripe (i.e., in the grayed area), we have k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x) in
the ρ neighborhood. (b): For the curved decision boundary model, the any vector v chosen in the
grayed area is classified differently from k̂(x).
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Figure 3: Link between robustness and curvature of the decision boundary. When the decision
boundary is positively curved (left), small universal perturbations are more likely to fool the classifier.

the decision boundary is positively curved for many data points. In the remaining of this section, we
formally prove the existence of universal perturbations, when there exists common positively curved
directions of the decision boundary.

Recalling the definitions of Sec. 2, a quadratic approximation of the decision boundary at z =
x+r(x) gives x+{v : (v−r(x))THz(v−r(x))+αxr(x)T (v−r(x)) = 0}, whereHz denotes
the Hessian of F at z, and αx = ‖∇F (z)‖2

‖r(x)‖2 , with F = fi − fj . In this model, the second order
information (encoded in the Hessian matrix Hz) captures the curvature of the decision boundary.
We assume a local decision boundary model in the vicinity of datapoints x ∼ µ, where the local
classification region of x is bounded by a quadratic form. Formally, we assume that there exists
ρ > 0 where the following condition holds for almost all x ∼ µ:

Q(x, ρ) : ∀v ∈ B(ρ), (v − r(x))THz(v − r(x)) + αxr(x)T (v − r(x)) ≤ 0 =⇒ k̂(x + v) 6= k̂(x).

An illustration of this quadratic decision boundary model is shown in Fig. 2b. The following result
shows the existence of universal perturbations, provided a subspace S exists where the decision
boundary has positive curvature along most directions of S:
Theorem 2. Let κ > 0, δ > 0 and m ∈ N. Assume that the quadratic decision boundary model

Q (x, ρ) holds for almost all x ∼ µ, with ρ =
√

2 log(2/δ)
m κ−1 + κ−1/2. Let S be a m dimensional

subspace such that

P
v∼S

(
∀u ∈ R2, α−1x uTHr(x),v

z u ≥ κ‖u‖22
)
≥ 1− β for almost all x ∼ µ,

where Hr(x),v
z = ΠTHzΠ with Π an orthonormal basis of span(r(x),v), and S denotes the

unit sphere in S. Then, there is a universal perturbation vector v such that ‖v‖2 ≤ ρ and

P
x∼µ

(
k̂(x + v) 6= k̂(x)

)
≥ 1− δ − β.

The above theorem quantifies the robustness of classifiers to universal perturbations in terms of the
curvature κ of the decision boundary, along normal sections spanned by r(x), and vectors v ∈ S (see
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Figure 4: Left: Normal section U of the decision boundary, along the plane spanned by the normal
vector r(x) and v. Right: Geometric interpretation of the assumption in Theorem 2. Theorem 2
assumes that the decision boundary along normal sections (r(x),v) is locally (in a ρ neighborhood)
located inside a disk of radius 1/κ. Note the difference with respect to traditional notions of curvature,
which express the curvature in terms of the osculating circle at x + r(x). The assumption we use
here is more “global”.

Fig. 4 (left) for an illustration of a normal section). Fig. 4 (right) provides a geometric illustration
of the assumption of Theorem 2. Provided a subspace S exists where the curvature of the decision
boundary in the vicinity of datapoints x is positive (along directions in S), Theorem 2 shows that
universal perturbations can be found with a norm of approximately κ−1

√
m

+ κ−1/2. Hence, when the
curvature κ is sufficiently large, the existence of small universal perturbations is guaranteed with
Theorem 2.4

Remark 1. We stress that Theorem 2 does not assume that the decision boundary is curved in
the direction of all vectors in Rd, but we rather assume the existence of a subspace S where the
decision boundary is positively curved (in the vicinity of natural images x) along most directions in S .
Moreover, it should be noted that, unlike Theorem 1, where the normals to the decision boundary are
assumed to belong to a low dimensional subspace, no assumption is imposed on the normal vectors.
Instead, we assume the existence of a subspace S leading to positive curvature, for points on the
decision boundary in the vicinity of natural images.

Remark 2. Theorem 2 does not only predict the vulnerability of classifiers, but it also provides a
constructive way to find such universal perturbations. In fact, random vectors sampled from the
subspace S are predicted to be universal perturbations (see supp. material for more details). In
Section 5, we will show that this new construction works remarkably well for deep networks, as
predicted by our analysis.

5 EXPERIMENTAL RESULTS: UNIVERSAL PERTURBATIONS FOR DEEP NETS

We first evaluate the validity of the assumption of Theorem 2 for deep neural networks, that is the
existence of a low dimensional subspace where the decision boundary is positively curved along
most directions sampled from the subspace. To construct the subspace, we find the directions that
lead to large positive curvature in the vicinity of a given set of training points {x1, . . . ,xn}. We
recall that principal directions v1, . . . ,vd−1 at a point z on the decision boundary correspond to the
eigenvectors (with nonzero eigenvalue) of the matrix Ht

z , given by Ht
z = PHzP , where P denotes

the projection operator on the tangent to the decision boundary at z, and Hz denotes the Hessian of
the decision boundary function evaluated at z Lee (2009). Common directions with large average
curvature at zi = xi + r(xi) (where r(xi) is the minimal perturbation defined in Eq. (1)) hence
correspond to the eigenvectors of the average Hessian matrix H = n−1

∑n
i=1H

t
zi

. We therefore
set our subspace, Sc, to be the span of the first m eigenvectors of H , and show that the subspace
constructed in this way satisfies the assumption of Theorem 2. To determine whether the decision
boundary is positively curved in most directions of Sc (for unseen datapoints from the validation set),
we compute the average curvature across random directions in Sc for points on the decision boundary,

4Theorem 2 should not be seen as a generalization of Theorem 1, as the models are distinct. In fact, while
the latter shows the existence of universal directions, the former bounds the existence of universal perturbations.
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Figure 5: Visualization of normal cross-sections of the decision boundary, for CIFAR-10 (Left:
LeNet, Right: ResNet-18). Top: Normal cross-sections along (r(x),v), where v is the universal
perturbation computed using the algorithm in Moosavi-Dezfooli et al. (2017). Bottom: Normal
cross-sections along (r(x),v), where v is a random vector uniformly sampled from the unit sphere
in Rd.

i.e. z = x + r(x); the average curvature is formally given by

κS(x) = E
v∼S

(
(Pv)THz(Pv)

‖Pv‖22

)
,

where S denotes the unit sphere in Sc. In Fig. 7 (a), the average of κS(x) across points sampled from
the validation set is shown (as well as the standard deviation) in function of the subspace dimension
m, for a LeNet architecture LeCun et al. (1998) trained on the CIFAR-10 dataset.5 Observe that when
the dimension of the subspace is sufficiently small, the average curvature is strongly oriented towards
positive curvature, which empirically shows the existence of this subspace Sc where the decision
boundary is positively curved for most data points in the validation set. This empirical evidence
hence suggests that the assumption of Theorem 2 is satisfied, and that universal perturbations hence
represent random vectors sampled from this subspace Sc.
To show this strong link between the vulnerability of universal perturbations and the positive cur-
vature of the decision boundary, we now visualize normal sections of the decision boundary of
deep networks trained on ImageNet (CaffeNet (Jia et al., 2014) and ResNet-152 (He et al., 2016))
and CIFAR-10 (LeNet (LeCun et al., 1998) and ResNet-18 (He et al., 2016)) in the direction of
their respective universal perturbations.6 Specifically, we visualize normal sections of the decision
boundary in the plane (r(x),v), where v is a universal perturbation computed using the universal
perturbations algorithm of Moosavi-Dezfooli et al. (2017). The visualizations are shown in Fig. 5
and 6. Interestingly, the universal perturbations belong to highly positively curved directions of
the decision boundary, despite the absence of any geometric constraint in the algorithm to compute
universal perturbations. To fool most data points, universal perturbations hence naturally seek com-
mon directions of the embedding space, where the decision boundary is positively curved. These
directions lead to very small universal perturbations, as highlighted by our analysis in Theorem 2.
It should be noted that such highly curved directions of the decision boundary are rare, as random
normal sections are comparatively flat (see Fig. 5 and 6, second row). This is due to the fact that
most principal curvatures are approximately zero, for points sampled on the decision boundary in the
vicinity of data points.

Recall that Theorem 2 suggests a novel procedure to generate universal perturbations; in fact, random
perturbations from Sc are predicted to be universal perturbations. To assess the validity of this
result, Fig. 7 (b) illustrates the fooling rate of the universal perturbations (for the LeNet network on
CIFAR-10) sampled uniformly at random from the unit sphere in subspace Sc, and scaled to have
a fixed norm (1/5th of the norm of the random noise required to fool most data points). We assess
the quality of such perturbation by further indicating in Fig. 7 (b) the fooling rate of the universal

5The LeNet architecture we used has two convolutional layers (filters of size 5) followed by three fully
connected layers. We used SGD for training, with a step size 0.01 and a momentum term of 0.9 and weight
decay of 10−4. The accuracy of the network on the test set is 78.4%.

6For the networks on ImageNet, we used the Caffe pre-trained models https://github.com/BVLC/
caffe/wiki/Model-Zoo. The ResNet-18 architecture was trained on the CIFAR-10 task with stochastic
gradient descent with momentum and weight decay regularization. It achieves an accuracy on the test of 94.18%.
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Figure 6: Visualization of normal cross-sections of the decision boundary, for ImageNet (Left:
ResNet-152, and Right: CaffeNet) Top: Normal cross-sections along (r(x),v), where v is the
universal perturbation computed using the algorithm in Moosavi-Dezfooli et al. (2017). Bottom:
Normal cross-sections along (r(x),v), where v is a random vector uniformly sampled from the unit
sphere in Rd.
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Figure 7: (a) Average curvature κS , averaged over 1000 validation datapoints, as a function of
the subspace dimension. (b) Fooling rate of universal perturbations (on an unseen validation set)
computed using random perturbations in 1) Sc: the subspace of positively curved directions, and 2)
Sf : the subspace collecting normal vectors r(x). The dotted line corresponds to the fooling rate
using the algorithm in Moosavi-Dezfooli et al. (2017). Sf corresponds to the largest singular vectors
corresponding to the matrix gathering the normal vectors r(x) in the training set (similar to the
approach in Moosavi-Dezfooli et al. (2017)).

perturbation computed using the original algorithm in Moosavi-Dezfooli et al. (2017). Observe that
random perturbations sampled from Sc (with m small) provide very powerful universal perturbations,
fooling nearly 85% of data points from the validation set. This rate is comparable to that of the
algorithm in Moosavi-Dezfooli et al. (2017), while using much less training points (only n = 100,
while at least 2, 000 training points are required by Moosavi-Dezfooli et al. (2017)). The very large
fooling rates achieved with such a simple procedure (random generation in Sc) confirms that the
curvature is the governing factor that controls the robustness of classifiers to universal perturbations,
as analyzed in Section 4. In fact, such high fooling rates cannot be achieved by only using the model
of Section 3 (neglecting the curvature information), as illustrated in Fig. 7 (b). Specifically, by
generating random perturbations from the subspace Sf collecting normal vectors r(x) (which is
the procedure that is suggested by Theorem 1 to compute universal perturbations, without taking
into account second order information), the best universal perturbation achieves a fooling rate of
65%, which is significantly worse than if the curvature is used to craft the perturbation. We further
perform in Appendix C the same experiment on other architectures (VGG-16 and ResNet-18) to
verify the consistency of the results across networks. It can be seen that, similarly to Fig. 7 (b), the
proposed approach of generating universal perturbations through random sampling from the subspace
Sc achieves high fooling rates (comparable to the algorithm in Moosavi-Dezfooli et al. (2017), and
significantly higher than by using Sf ).
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Fig 8 illustrates a universal perturbation for ImageNet, corresponding to the maximally curved shared
direction (or in other words, the maximum eigenvalue of H computed using n = 200 random
samples).7 The CaffeNet architecture is used, and Fig. 8 also represents sample perturbed images
that fool the classifier. Just like the universal perturbation in Moosavi-Dezfooli et al. (2017), the
perturbations are not very perceptible, and lead to misclassification of most unseen images in the
validation set. For this example on ImageNet, the fooling rate of this perturbation is 67.2% on the
validation set. This is significantly larger than the fooling rate of the perturbation computed using Sf
only (38%), but lower than that of the original algorithm (85.4%) proposed in (Moosavi-Dezfooli
et al., 2017). We hypothesize that this gap for ImageNet is partially due to the small number of
samples, which was made due to computational restrictions.

Figure 8: Left column: Universal perturbation computed through random sampling from Sc. Second
column to end: All images are (incorrectly) classified as “bubble”. The CaffeNet architecture is used.
Similarly to Moosavi-Dezfooli et al. (2017), the perturbation is constrained to have `2 norm of 2, 000.
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The existence of this subspace Sc (and that universal perturbations are
random vectors in Sc) further explains the high diversity of universal
perturbations. Fig. 9 illustrates different universal perturbations for
CIFAR-10 computed by sampling random directions from Sc. The diver-
sity of such perturbations justifies why re-training with perturbed images
(as in Moosavi-Dezfooli et al. (2017)) does not significantly improve
the robustness of such networks, as other directions in Sc can still lead
to universal perturbations, even if the network becomes robust to some
directions. Finally, it is interesting to note that this subspace Sc is likely
to be shared not only across datapoints, but also different networks (to
some extent). To support this claim, Fig. 10 shows the cosine of the
principal angles between subspaces SLeNet

c and SNiN
c , computed for LeNet

and NiN Lin et al. (2014) models. Note that the first principal angles
between the two subspaces are very small, leading to shared directions
between the two subspaces. A similar observation is made for networks
trained on ImageNet in the supp. material. The sharing of Sc across
different networks explains the transferability of universal perturbations
observed in Moosavi-Dezfooli et al. (2017).

6 DISCUSSION AND RELATED WORK

In this paper, we analyzed the robustness of classifiers to universal perturbations, under two decision
boundary models: Locally flat and curved. We showed that the first are not robust to universal direc-
tions, provided the normal vectors in the vicinity of natural images are correlated. While this model
explains the vulnerability for e.g., linear classifiers, this model discards the curvature information,
which is essential to fully analyze the robustness of deep nets to universal perturbations. The second,
classifiers with curved decision boundaries, are instead not robust to universal perturbations, provided
the existence of a shared subspace along which the decision boundary is positively curved (for most

7We used m = 1 in this experiment as the matrix H is prohibitively large for ImageNet.

Figure 9: Diversity of universal perturbations randomly sampled from the subspace Sc. The normal-
ized inner product between two perturbations is less than 0.1.
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directions). We empirically verify this assumption for deep nets. Our analysis hence explains the
existence of universal perturbations, and further provides a purely geometric approach for computing
such perturbations, in addition to explaining properties of perturbations, such as their diversity.

Other authors have focused on the analysis of the robustness properties of SVM classifiers (e.g., Xu
et al. (2009)) and new approaches for constructing robust classifiers (based on robust optimization)
Caramanis et al. (2012); Lanckriet et al. (2003). More recently, some have assessed the robustness of
deep neural networks to different regimes such as adversarial perturbations Szegedy et al. (2014);
Biggio et al. (2013), random noise Fawzi et al. (2016), and occlusions Sharif et al. (2016); Evtimov
et al. (2017). The robustness of classifiers to adversarial perturbations has been specifically studied in
Szegedy et al. (2014); Goodfellow et al. (2015); Moosavi-Dezfooli et al. (2016); Carlini & Wagner
(2017); Baluja & Fischer (2017), followed by works to improve the robustness Madry et al. (2017);
Gu & Rigazio (2014); Papernot et al. (2015); Cisse et al. (2017), and attempts at explaining the
phenomenon in Goodfellow et al. (2015); Fawzi et al. (2015); Tabacof & Valle (2016); Tanay &
Griffin (2016). This paper however differs from these previous works as we study universal (image-
agnostic) perturbations that can fool every image in a dataset, as opposed to image-specific adversarial
perturbations that are not universal across datapoints (as shown in Moosavi-Dezfooli et al. (2017)).
Moreover, explanations that hinge on the output of a deep network being well approximated by a
linear function of the inputs f(x) = Wx + b are inconclusive, as the assumption is violated even
for relatively small networks. We show here that it is precisely the large curvature of the decision
boundary that causes vulnerability to universal perturbations. Our bounds indeed show an increasing
vulnerability with respect to the curvature of the decision boundary, and represent up to our knowledge
the first quantitative result showing tight links between robustness and curvature. In addition, we show
empirically that the first-order approximation of the decision boundary is not sufficient to explain the
high vulnerability to universal perturbations (Fig. 7 (b)). Recent works have further proposed new
methods for computing universal perturbations Mopuri et al. (2017); Khrulkov & Oseledets (2017);
instead, we focus here on an analysis of the phenomenon of vulnerability to universal perturbations,
while also providing a constructive approach to compute universal perturbations leveraging our
curvature analysis. Finally, it should be noted that recent works have studied properties of deep
networks from a geometric perspective (such as their expressivity Poole et al. (2016); Montufar et al.
(2014)); our focus is different in this paper as we analyze the robustness with the geometry of the
decision boundary.

Our analysis hence shows that to construct classifiers that are robust to universal perturbations, it
is key to suppress this subspace of shared positive directions, which can possibly be done through
regularization of the objective function. This will be the subject of future works.

A PROOF OF THEOREM 1

We first start by recalling a result from Fawzi et al. (2016), which is based on Dasgupta & Gupta
(2003).

Lemma 1. Let v be a random vector uniformly drawn from the unit sphere Sd−1, and Pm be the
projection matrix onto the first m coordinates. Then,

P
(
β1(δ,m)

m

d
≤ ‖Pmv‖22 ≤ β2(δ,m)

m

d

)
≥ 1− 2δ, (4)

with β1(δ,m) = max((1/e)δ2/m, 1−
√

2(1− δ2/m), and β2(δ,m) = 1 + 2
√

ln(1/δ)
m + 2 ln(1/δ)

m .

We use the above lemma to prove our result, which we recall as follows:

Theorem 1. Let ξ ≥ 0, δ ≥ 0. Let S be an m dimensional subspace such that‖PSr(x)‖2 ≥
1− ξ for almost all x ∼ µ,, where PS is the projection operator on the subspace. Assume moreover
that Ls (x, ρ) holds for almost all x ∼ µ, with ρ =

√
em

δ(1−ξ) . Then, there exists a universal noise

vector v, such that ‖v‖2 ≤ ρ and P
x∼µ

(
k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x)

)
≥ 1− δ.

10
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Proof. Define S to be the unit sphere centered at 0 in the subspace S . Let ρ =
√
em

δ(1−ξ) , and denote by
ρS the sphere scaled by ρ. We have

E
v∼ρS

(
P

x∼µ

(
k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x)

))
= E

x∼µ

(
P

v∼ρS

(
k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x)

))
≥ E

x∼µ

(
P

v∼ρS

(
|r(x)Tv| − ‖r(x)‖22 ≥ 0

))
= E

x∼µ

(
P

v∼ρS

(
|(PSr(x) + PSorthr(x))Tv| − ‖r(x)‖22 ≥ 0

))
,

where PSorth denotes the projection operator on the orthogonal of S . Observe that (PSorthr(x))Tv = 0.
Note moreover that ‖r(x)‖22 = 1 by assumption. Hence, the above expression simplifies to

E
x∼µ

(
P

v∼ρS

(
|(PSr(x))Tv| − 1 ≥ 0

))
= E

x∼µ

(
P

v∼S

(
|(PSr(x))Tv| ≥ ρ−1

))
≥ E

x∼µ

(
P

v∼S

(∣∣∣∣ (PSr(x))T

‖PSr(x)‖2
v

∣∣∣∣ ≥ δ√
em

))
,

where we have used the assumption of the projection of r(x) on the subspace S. Hence, it follows
from Lemma 1 that

E
v∼ρS

(
P

x∼µ

(
k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x)

))
≥ 1− δ.

Hence, there exists a universal vector v of `2 norm ρ such that
P

x∼µ

(
k̂(x + v) 6= k̂(x) or k̂(x− v) 6= k̂(x)

)
≥ 1− δ.

B PROOF OF THEOREM 2

Theorem 2. Let κ > 0, δ > 0 and m ∈ N. Assume that the quadratic decision boundary model

Q (x, ρ) holds for almost all x ∼ µ, with ρ =
√

2 log(2/δ)
m κ−1 + κ−1/2. Let S be a m dimensional

subspace such that

P
v∼S

(
∀u ∈ R2, α−1x uTHr(x),v

z u ≥ κ‖u‖22
)
≥ 1− β for almost all x ∼ µ,

where Hr(x),v
z = ΠTHzΠ with Π an orthonormal basis of span(r(x),v), and S denotes the

unit sphere in S. Then, there is a universal perturbation vector v such that ‖v‖2 ≤ ρ and

P
x∼µ

(
k̂(x + v) 6= k̂(x)

)
≥ 1− δ − β.

Proof. Let x ∼ µ. We have

E
v∼ρS

(
P

x∼µ

(
k̂(x + v) 6= k̂(x)

))
= E

x∼µ

(
P

v∼ρS

(
k̂(x + v) 6= k̂(x)

))
≥ E

x∼µ

(
P

v∼ρS

(
α−1x (v − r)THz(v − r) + rT (v − r) ≥ 0

))
= E

x∼µ

(
P

v∼S

(
α−1x (ρv − r)THz(ρv − r) + rT (ρv − r) ≥ 0

))

11
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Using the assumptions of the theorem, we have

P
v∼S

(
α−1x (ρv − r)THz(ρv − r) + rT (ρv − r) ≤ 0

)
≤ P

v∼S

(
κ‖ρv − r‖22 + rT (ρv − r) ≤ 0

)
+ β

≤ P
v∼S

(
ρ(1− 2κ)vTr + κρ2 + (κ− 1) ≤ 0

)
+ β

≤ P
v∼S

(
ρ(1− 2κ)vTr ≤ −ε

)
+ P

v∼S

(
κρ2 + (κ− 1) ≤ ε

)
+ β,

for ε > 0. The goal is therefore to find ρ such that κρ2 + (κ − 1) ≥ ε, together with
P

v∼S

(
ρ(1− 2κ)vTr ≤ −ε

)
≤ δ. Let ρ2 = ε+1

κ . Using the concentration of measure on the sphere

Matousek (2002), we have

P
v∼S

(
vTr ≤ −ε

ρ(1− 2κ)

)
≤ 2 exp

(
− mε2

2ρ2(1− 2κ)2

)
.

To bound the above probability by δ, we set ε = C ρ√
m

, where C =
√

2 log(2/δ). We therefore
choose ρ such that

ρ2 = κ−1
(
Cρm−1/2 + 1

)
The solution of this second order equation gives

ρ =
Cκ−1m−1/2 +

√
κ−2C2m−1 + 4κ−1

2
≤ Cκ−1m−1/2 + κ−1/2.

Hence, for this choice of ρ, we have by construction

P
v∼S

(
α−1x (ρv − r)THz(ρv − r) + rT (ρv − r) ≤ 0

)
≤ δ + β.

We therefore conclude that E
v∼ρS

(
P

x∼µ

(
k̂(x + v) 6= k̂(x)

))
≥ 1− δ−β. This shows the existence

of a universal noise vector v ∼ ρS such that k̂(x + v) 6= k̂(x) with probability larger than
1− δ − β.

C COMPLEMENTARY EXPERIMENTAL RESULTS

C.1 EXPERIMENT IN FIG 7 (B)

We perform here similar experiment to Fig. 7 (b) on the VGG-16 and ResNet-18 architectures. It
can be seen that, similarly to Fig. 7 (b), the proposed approach of generating universal perturbations
through random sampling from the subspace Sc achieves high fooling rates (comparable to the
algorithm in Moosavi-Dezfooli et al. (2017), and significantly higher than by using Sf ).

C.2 TRANSFERABILITY OF UNIVERSAL PERTURBATIONS

Fig. 13 shows examples of normal cross-sections of the decision boundary across a fixed direction
in Sc, for the VGG-16 architecture (but where Sc is computed for CaffeNet). Note that the decision
boundary across this fixed direction is positively curved for both networks, albeit computing this
subspace for a distinct network. The sharing of Sc across different nets explains the transferability of
universal perturbations observed in Moosavi-Dezfooli et al. (2017).
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