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ABSTRACT

Understanding the groundbreaking performance of Deep Neural Networks is one
of the greatest challenges to the scientific community today. In this work, we
introduce an information theoretic viewpoint on the behavior of deep networks
optimization processes and their generalization abilities. By studying the Infor-
mation Plane, the plane of the mutual information between the input variable and
the desired label, for each hidden layer. Specifically, we show that the training of
the network is characterized by a rapid increase in the mutual information (MI)
between the layers and the target label, followed by a longer decrease in the MI
between the layers and the input variable. Further, we explicitly show that these
two fundamental information-theoretic quantities correspond to the generaliza-
tion error of the network, as a result of introducing a new generalization bound
that is exponential in the representation compression. The analysis focuses on
typical patterns of large-scale problems. For this purpose, we introduce a novel
analytic bound on the mutual information between consecutive layers in the net-
work. An important consequence of our analysis is a super-linear boost in training
time with the number of non-degenerate hidden layers, demonstrating the compu-
tational benefit of the hidden layers.

1 INTRODUCTION

Deep Neural Networks (DNNs) heralded a new era in predictive modeling and machine learning.
Their ability to learn and generalize has set a new bar on performance, compared to state-of-the-art
methods. This improvement is evident across almost every application domain, and especially in
areas that involve complicated dependencies between the input variable and the target label (Le-
Cun et al., 2015). However, despite their great empirical success, there is still no comprehensive
understanding of their optimization process and its relationship to their (remarkable) generalization
abilities.

This work examines DNNs from an information-theoretic viewpoint. For this purpose we utilize
the Information Bottleneck principle (Tishby et al., 1999). The Information Bottleneck (IB) is a
computational framework for extracting the most compact, yet informative, representation of the
input variable (X), with respect to a target label variable (Y ). The IB bound defines the optimal
tradeoff between representation complexity and its predictive power. Specifically, it is achieved by
minimizing the mutual information (MI) between the representation and the input, subject to the
level of MI between the representation and the target label.

Recent results (Shwartz-Ziv & Tishby, 2017), demonstrated that the layers of DNNs tend to con-
verge to the IB optimal bound. The results pointed to a distinction between two phases of the training
process. The first phase is characterized by an increase in the MI with the label (i.e. fitting the train-
ing data), ereas in the second and most important phase, the training error was slowly reduced with
a decrease in mutual information between the layers and the input (i.e. representation compression).
These two phases appear to correspond to fast convergence to a flat minimum (drift) following a
random walk, or diffusion, in the vicinity of the training error’s flat minimum, as reported in other
studies (e.g. (Zhang et al., 2018a)).

These observations raised several interesting questions: (a) what in the SGD optimization causes
these two training phases? (b) how can the diffusion phase improve generalization performance? (c)
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can the representation compression explain the convergence of the layers to the optimal IB bound?
(d) can this diffusion phase explain the benefit of many hidden layers?

In this work we attempt to answer these questions. Specifically, we draw important connections
between recent results inspired by statistical mechanics, and information-theoretic principles. We
show that the layers of a DNN indeed follow the behavior described in Shwartz-Ziv & Tishby (2017).
We claim that the reason can be found in the Stochastic Gradient Decent (SGD) optimization mech-
anism. We show that the first phase of the SGD is characterized by a rapid decrease in the training
error, which corresponds to an increase in the MI with the labels. Then, the SGD behaves like
non-homogeneous Brownian motion in the weights space, in the proximity of a flat error minimum.
This non-homogeneous diffusion corresponds to a decrease in MI between the layers and the input
variable, in “directions” that are irrelevant to the target label.

One of the main challenges in applying information theoretic measures to real-world data is a good
enough estimation of high dimensional joint distributions. This problem has been extensively stud-
ied over the years (e.g. (Paninski, 2003)), and has led the conclusion that there is no “efficient”
solution when the dimension of the problem is large. Recently, a number of studies have focused on
calculating the MI in DNNs using Statistical Mechanics. These methods have generated promising
results in a variety of special cases (Gabrié et al., 2018), which support many of the observations
made by (Shwartz-Ziv & Tishby, 2017).

In this work we provide an analytic bound on the MI between consecutive layers, which is valid
for any non-linearity of the units, and directly demonstrates the compression of the representation
during the diffusion phase. Specifically, we derive a Gaussian bound that only depends on the linear
part of the layers. This bound gives a super linear dependence of the convergence time of the layers,
which it turns enables us to prove the super-linear computational benefit of the hidden layers. The
bound can also allow us to study mutual information values in DNNs in real-world data without
estimating them directly.

1.1 PRELIMINARIES AND NOTATIONS

Let X ∈ X and Y ∈ Y be a pair of random variables of the input patterns and their target label (re-
spectively). Throughout this work, we consider the practical setting where X and Y are continuous
random variables that are represented in a finite precision machine. This means that both X and Y
are practically binned (quantized) into a finite number of discrete values. Alternatively, X,Y may
be considered as continuous random variables that are measured in the presence of an independent
additive small (Gaussian) noise, corresponding to their numerical precision. We use these two inter-
pretations interchangeably, at the limit of infinite precision but these should be only considered the
final stage of our analysis.

We denote the joint probability of X and Y as p(x, y), ereas their corresponding MI is defined
as I(X;Y ) = D [p(y|x)||p(y)] = D [p(x|y)||p(x)] , where D[p||q] denotes the Kullback-Liebler
(KL) divergence between the probability distributions p and q. Let fW (x) denote a DNN, with K
hidden layers, where each layer consists of dk neurons, each with some activation function σk(x),
for k = 1, . . . ,K. We denote the values of the kth layer by the ranom vector Tk. The DNN
mapping between two consecutive layers is defined as Tk = σk (WkTk−1), whereWk is a dk×dk−1

real weight matrix. Note that we consider both the weights, Wk and the layer representations, Tk,
as stochastic entities, because they depend on the stochastic training rule of the network and the
random input pattern (as described in Section 2.1). However, when the network weights are given,
, the weights are fixed realizations of the random training process (i.e. they are ”quenched”). Note
that given the weights, the layers form a Markov chain of successive internal representations of the
input variable X: Y → X → T1 → ...→ TK , and their MI values obey a chain of Data Processing
Inequalities (DPI), as discussed in Shwartz-Ziv & Tishby (2017).

We denote the set of all K layers weight matrices as WK = {W1, . . . ,WK}. Let the training
sample, Sn = {(x1, y1) , . . . , (xn, yn)} be a collection of n independent samples from p(x, y). Let
`WK (xi, yi) be a (differentiable) loss function that measures the discrepancy between a prediction
of the network fWK (xi) and the corresponding true target value yi, for a given set of weights WK .
Then, the empirical error is defined as LWK (Sn) = 1

n

∑n
i=1 `WK (xi, yi) . The corresponding

error gradients (with respect to the weights) are denoted as∇WKLWK (Sn).
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2 DEEP NEURAL NETWORKS

2.1 TRAINING THE NETWORK – THE SGD ALGORITHM

Training a DNN corresponds to the process of setting the values of weights WK from a given set
of samples Sn. This is typically done by minimizing the empirical error, which approximates the
expected loss. The SGD algorithm is a common optimization method for this purpose (Robbins &
Monro, 1951).

Let S(m) be a random set of m samples drawn (uniformly, with replacement) from Sn, where m <
n. We refer to S(m) as a mini-batch of Sn. Define the corresponding empirical error and gradient
of the mini-batch as LWK

(
S(m)

)
= 1

m

∑
{xi,yi}∈S(m) `WK (xi, yi) and ∇WKLWK

(
S(m)

)
=

1
m

∑
{xi,yi}∈S(m) ∇WK `WK (xi, yi) respectively. Then, the SGD algorithm is defined by the update

rule: WK(l) = WK(l − 1)− η∇WK(l−1)LWK(l−1)

(
S(m)

)
, where WK(l) are the weights after l

iterations of the SGD algorithm and η ∈ R+ is the learning rate.

2.2 THE DIFFERENT PHASES OF SGD OPTIMIZATION

The SGD algorithm plays a key role in the astonishing performance of DNNs. As a result, it has
been extensively studied in recent years, especially in the context of flexibility and generalization
(Chee & Toulis, 2017). Here, we examine the SGD as a stochastic process, that can be decomposed
into two separate phases. This idea has been studied in several works (Murata, 1998; Jin et al.,
2017; Hardt et al., 2015). Murata argued that stochastic iterative procedures are initiated at some
starting state and then move through a fast transient phase towards a stationary phase, where the
distribution of the weights becomes time-independent. This may not be the case, however, when the
SGD induces non-isotropic state dependent noise, as argued e.g. by Chaudhari & Soatto (2017).

In contrast, Shwartz-Ziv & Tishby (2017) described the transient phase of the SGD as having two
very distinct dynamic phases. The first is a drift phase, where the means of the error gradients in
every layer are large compared to their batch-to-batch fluctuations. This behaviour is indicative of
small variations in the gradient directions, or high-SNR gradients. In the second part of the transient
phase, which they refer to as diffusion, the gradient means become significantly smaller than their
batch-to-batch fluctuations, or low-SNR gradients. The transition between the two phases occurs
when the training error saturates and weights growth is dominated by the gradient batch-to-batch
fluctuations. Typically, most SGD updates are expended in the diffusion phase before reaching
Murata’s stationary phase. In this work we rigorously argue that this diffusion phase causes the
representation compression; i.e, the observed reduction in I(Tk;X), for most hidden layers.

2.3 DRIFT AND DIFFUSION WITH SGD

It is well known that the discrete time SGD, (2.1), can be considered as an approximation of a
continuous time stochastic gradient flow if the discrete-time iteration parameter l is replaced by a
continuous parameter τ . Li et al. (2015) recently showed that when the mini-batch gradients are
unbiased with bounded variance, the discrete-time SGD is an approximation of a continuous-time
Langevin dynamics,

dWK(τ) = −∇WK(τ)LWK(τ) (Sn) dτ +
√

2β−1C (WK(τ))dB (τ) (1)

where C
(
WK(τ)

)
is the sample covariance matrix of the weights, B(τ) is a standard Brownian

motion (Wiener process) and β is the Langevin temperature constant. The first term in (1) is called
the gradient flow or drift component, and the second term correspond to random diffusion. Although,
this stochastic dynamics holds for the entire SGD training process, the first term dominates the
dynamics during the high SNR gradient phase, whereas the second term becomes dominant when
the gradients are small due to saturation of the training error in the low SNR gradient phase. Hence,
these two SGD phases are referred drift and diffusion.

The mean L2 displacement (MSD) measures the Euclidean distance from a reference position over
time, which is used to characterize a diffusion process. Normal diffusion processes are known to
exhibit a power-law MSD in time, E

[∥∥WK(τ)−WK(0)
∥∥

2

]
∼ γtα, where t is the diffusion time,
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γ is related to the diffusion coefficient, and 0.5 ≥ α > 0 is the diffusion exponent. For a standard
flat space diffusion the MSD increases as the square root of time (α = 1

2 ). Hu et al. (2017) showed
(empirically) that the weights MSD in DNNs trained with SGD indeed behaves asymptotically like
a normal diffusion, where the diffusion coefficient, γ, depends on the batch size and learning rate.
In contrast, Hoffer et al, ((Hoffer et al., 2017)) showed that the weights MSD in DNNs demonstrate
an asymptotically much slower, logarithmic increase, in the weight distance from their initial point.
This type of dynamics is also called “ultra-slow” diffusion.

3 INFORMATION PLANE ANALYSIS

Following Tishby & Zaslavsky (2015); Shwartz-Ziv & Tishby (2017), we study the layer represen-
tation dynamics in the 2-dimensional (I(X;Tk), I(Tk;Y ) plane For any input and target variables,
X,Y , let T , T (X) denote a representation, or an encoding (not necessarily deterministic), of X .
Clearly, T is fully characterized by its encoder, the conditional distribution p(t|x). Similarly, let
p(y|t) denote any - possibly stochastic - decoder of Y from T . Given a joint probability function
p(x, y), the Information Plane is defined the set of all possible pairs I(X;T ) and I(T ;Y ) for any
possible representation, p(T |X).

It is evident that not all points on the plane are feasible (achievable), as there is clearly a tradeoff
between these quantities; the more we compress X (reduce I(X;T )), the less information can be
maintained about the target, I(T ;Y ).

Our analysis is based on the fundamental role of these two MI quantities. We argue (the Information
Plane Theorem) that for large scale (high dimensional X) learning, for almost all (typical) input
patterns, with mild assumptions (ergodic Markovian input patterns): (i) the MI values concentrate
with the input dimension; (ii) the minimal sample complexity for a given generalization gap is
controlled by I(X;T ); and (iii) the accuracy - the generalization error - is governed by I(T ;Y ),
with the Bayes optimal decoder representation.

The theorem states that the sample-size - accuracy trade-off of all large scale representation learning
is characterized by these two MI quantities. For DNNs, this amounts to a dramatic reduction in the
complexity of the analysis of the problem. We discuss these ideas in the following sections and
prove, the connection between the input representation compression, I(T ;X), the generalization
gap (the difference between training and generalization errors), and the minimal sample complexity
(Theorem 1 below).

3.1 LABEL INFORMATION AND GENERALIZATION ERROR

Optimizing the mutual information is by no means new in either supervised and unsupervised learn-
ing (Deco & Obradovic, 2012; Linsker, 1988; Painsky et al., 2016). This is not surprising, as it
can be shown that I(T ;Y ) corresponds to the irreducible error when minimizing the logarithmic
loss (Painsky & Wornell, 2018; Harremoes & Tishby, 2007). Here, we emphasize that I(T ;Y ),
for the optimal decoder of the representation T , governs all reasonable generalization errors (un-
der the mild assumption that label y is not completely deterministic: p(y|x) is in the interior of
the simplex, ∆(Y ), for all typical x ∈ X). First, note that with the Markov chain Y − X − T ,
I(T ;Y ) = I(X;Y )− EX,TD [p(y|x)||p(y|t)]. By using the Pinsker inequality (Cover & Thomas,
2012) the variation distance between the optimal and the representation decoders can be bound by
their KL divergence,

D (p(y|x)||p(y|t)) ≥ 1

2 ln 2

∣∣p(y|x)− p(y|t)
∣∣2
1
. (2)

Hence, by maximizing I(T ;Y ) we minimize the expected variation risk between the representation
decoder p(y|t) and p(y|x). For more similar bounds on the error measures see (Painsky & Wornell,
2018).

3.2 REPRESENTATION COMPRESSION AND SAMPLE COMPLEXITY

The Minimum Description Length (MDL) principle (Rissanen, 1978) suggests that the best repre-
sentation for a given set of data is the one that leads to the minimal code-length needed to represent
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of the data. This idea has inspired the use of I(X;T ) as a regularization term in many learning
problems (e.g. Chigirev & Bialek (2004)). Here, we argue that I(X;T ) plays a much more fun-
damental role; we show that for large scale (high dimensional X) learning and for typical input
patterns, I(X;T ) controls the sample complexity of the problem, given a generalization error gap.
Theorem 1 (Input Compression bound). Let X be a d-dimensional random variable that obeys an
ergodic Markov random field probability distribution, asymptotically in d. Let T , T (X) be a
representation of X and denote by Tm = {(t1, y1), . . . , (tm, ym)} an m-sample vector of T and
Y , generated with m independent samples of xi, with p(y|xi) and p(t|xi). Assume that p(x, y) is
bounded away from 0 and 1 (strictly inside the simplex interior). Then, for large enough d, with
probability 1− δ, the typical expected squared generalization gap satisfies∣∣L (Tm)− ETm [L (Tm)]

∣∣2 ≤ 2I(X;T ) + log 2
δ

2m
. (3)

where the typicality follows the standard Asympthotic Equipartition Property (AEP) (Cover &
Thomas, 2012).

A proof of this Theorem appears given in Appendix A. It is also related to the bound proved in
Shamir et al. (2010), with the typical representation cardinality, |T (X)| ≈ 2I(T ;X). The ergodic
Markovian assumption is common in many large scale learning problems. It means that p(x) ≈∏
i=1:d p(xi|Pa(xi)), where Pa(xi) is a finite set of adjacent ”parents” of xi in the d dimensional

pattern xX̃ .

The consequences of this input-compression bound are quite striking: the generalization error de-
creases exponentially with I(X;T ), once I(T ;X) becomes smaller than log 2n - the query sample-
complexity. Moreover, it means that M bits of representation compression, beyond log2m, are
equivalent to a factor of 2M training examples. The tightest bound on the generalization bound is
obtained for the most compressed representation, or the last hidden layer of the DNN. The input-
compression bound can yield a tighter and more realistic sample complexity than any of the worst-
case PAC bounds with any reasonable estimate of the DNN class dimensionality, as typically the
final hidden layers are compressed to a few bits.

Two important caveats are in order, nevertheless. First, the layer representation in Deep Learning
are learned from the training data; hence, the encoder, the partition of the typical patternsX , and the
effective ”hypothesis class”, depend on the training data. This can lead to considerable over-fitting.
Training with SGD avoids this potential over-fitting because of the way the diffusion phase works.
Second, for low I(T ;Y ) there are exponentially many (in d) random encoders (or soft partitions of
X) with the same value of I(T ;X). This seems to suggest that there is a missing exponential factor
in our estimate of the hypothesis class cardinality. Note, however, that the vast majority (almost all)
of these possible encoders are never encountered during typical SGD optimizations. They act like
a ”dark hypothesis space” which is never observed and does not affect the generalization bound.
Moreover, as I(T ;Y ) increases, the number of such random encoders rapidly collapses all the way
to O(1) when I(T ;Y ) approaches the optimal IB limit, as we show next.

3.3 THE INFORMATION BOTTLENECK LIMIT

As presented above, we are interested in the boundary of the achievable region in the information
plane, or in encoder-decoder pairs that minimize the sample complexity (minimize I(X;T )) and
generalize well (maximize I(T ;Y )).

These optimal encoder-decoder pairs are given precisely by the Information Bottleneck frame-
work (Tishby et al., 1999), which is formulated by the following optimization problem:
minp(t|x) I (X;T ) − βI (T ;Y ) , over all possible encoders-decoders pairs that satisfy the Markov
condition Y −X − T . Here β is a positive Lagrange multiplier associated with the decoder infor-
mation on I(T ;Y ), which also determines the complexity of the representation.

The Information Bottleneck limit defines the set of optimal encoder-decoder pairs, for the joint
distribution p(x, y). Furthermore, it characterizes the achievable region in the Information Plane,
similar to Shannon’s Rate Distortion Theory (RDT) (Cover & Thomas, 2012). By our previous
analysis it also determines the optimal tradeoff between sample complexity and generalization error.
The IB can only be solved analytically in very special cases (e.g., jointly Gaussian X,Y (Chechik
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et al., 2005)). In general, a (locally optimal) solution can be found by iterating the self-consistent
equations, similar to the Arimoto- Blahut algorithm in RDT ((Tishby et al., 1999)). For general dis-
tributions, no efficient algorithm for solving the IB is known, though there are some approximation
schemes (Chalk et al., 2016; Painsky & Tishby, 2017). The self-consistent equations are exactly
satisfied along the IB limit, aka the Information Curve.

4 THE INFORMATION PLANE AND SGD DYNAMICS FOR DNNS

By applying the DPI to the Markov chain of the DNN layers we obtain the following chains:
I(X;T1) ≥ I(X;T2) ≥ · · · ≥ I(X;Tk) ≥ I(X; Ŷ ) and I(X;Y ) ≥ I(T1;Y ) ≥ · · · ≥ I(Tk;Y ) ≥
I(Ŷ ;Y ) where Ŷ is the output of the network. The pairs (I(X;Tk), I(Tk, Y )), for each SGD up-
date, form a unique concentrated Information Path for each layer of a DNN, as demonstrated in
Shwartz-Ziv & Tishby (2017).

For any fixed realization of the weights, the network is - in principle - a deterministic map. This does
not imply that information is not lost between the layers; the inherent finite precision of the layers,
with possible saturation of the nonlinear activation functions σk, can result in non-invariable map-
ping between the layers. Moreover, we argue below that for large networks this mapping becomes
effectively stochastic due to the diffusion phase of the SGD.

On the other hand, the Information Plane layer paths are invariant to invertible transformations of
the representations Tk. Thus the same paths are shared by very different weights and architectures,
and possibly different encoder-decoder pairs. This freedom is drastically reduced when the target
information, I(Tk, Y ), increases and the layers approach the IB limit. Minimizing the training error
(ERM), together with standard uniform convergence arguments clearly increase I(T ;Y ), but what
in the SGD dynamics can lead to the observed representation compression which further improves
generalization? Moreover, can the SGD dynamics push the layer representations all the way to the
IB limit, as claimed in Shwartz-Ziv & Tishby (2017)?

We provide affirmative answers to both questions, using the properties of the drift and diffusion
phases of the SGD dynamics.

4.1 REPRESENTATION COMPRESSION BY DIFFUSION

In this section we quantify the roles of the drift and diffusion SGD phases and their influence on
the MI between consecutive layers. Specifically, we show that the drift phase corresponds to an
increase in information with the target label I(Tk;Y ), whereas the diffusion phase corresponds
to representation compression, or reduction of the I(X;Tk). The representation compression is
accompanied by further improvement in the generalization.

The general idea is as follows: the drift phase increases I(Tk;Y ) as it reduces the cross-entropy
empirical error. On the other hand, the diffusion phase in high dimensional weight space effectively
adds an independent non-uniform random component to the weights, mostly in the directions that
do not influence the loss - i.e, irrelevant directions. This results in a reduction of the SNR of
the irrelevant features of the patterns, which leads to a reduction in I(X;Tk), or representation
compression. We further argue that different layers filter out different irrelevant features, resulting
in their convergence to different locations in the Information Plane.

4.2 THE SGD COMPRESSION MECHANISM

First, DPI implies that I(X;Tk) ≤ I(Tk−1;Tk). We focus on the second term during the diffusion
phase and prove an asymptotic upper bound for I(Tk−1;Tk), which reduces sub-linearly with the
number of SGD updates. For clarity, we describe the case where Tk ∈ Rdk is a vector and Tk+1 ∈ R
is a scalar. The generalization to higher dk+1 is straightforward. We examine the network during the
diffusion phase, after τ iterations of the SGD beyond the drift-diffusion transition. For each layer,
k, the weights matrix, W k(τ) can be decomposed as follows,

W k(τ) = W k? + δW k(τ). (4)

The first term, W k?, denotes the weights at the end of the drift phase (τ0 = 0) and remains constant
with increasing τ . As we assume that the weights converge to a (local, flat) optimum during the
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drift phase, W k? is close to the weights at this local optimum. The second term, δW k(τ), is the
accumulated Brownian motion in τ steps due to the batch-to-batch fluctuations of the gradients near
the optimum. For large τ we know that δW k(τ) ∼ N (0, τC(W k(τ0))) where τ0 is the time of
the beginning of the diffusion phase. Note that at any given τ , we can treat the weights as a fixed
(quenched) realization, wk(τ), of the random Brownian process W k(τ). We can now model the
mapping between the layers Tk and Tk+1 at that time as

Tk+1 = σk

(
w∗TTk + δwk(τ)

T
Tk + Z

)
(5)

where w∗ ∈ Rdk is the SGD’s empirical minimizer, and δw ∈ Rdk is a realization from a Gaussian
vector δw ∼ N (0, Cδw), of the Brownian process discussed in Section 2.3. In addition, we consider
Z ∼ N (0, σ2

z) to be the small Gaussian measurement noise, or quantization, independent of δwk
and Tk. This standard additive noise allows us to treat all the random variables as continuous.

For simplicity we assume that the dk components of Tk have zero mean and are asymptotically
independent for dk →∞, and that limdk→∞ w∗T δw = 0 almost surely.
Proposition 2. Assume that the moments of Tk are finite. Further assume that the components of

w∗ and δw(τ) are in-general-positions, satisfying limdk→∞
∑dk
i=1 w

∗
i

4
/(∑dk

i=1 w
∗
i

2
)2

= 0 and

limdk→∞
∑dk
i=1 δwi

4
/(∑dk

i=1 δwi
2
)2

= 0 almost surely. Then,

1√
σ2
Tk

[
w∗TTk
||w∗||2

δwTTk
||δw||2

]T
D−−−−→

dk→∞
N (0, I) (6)

almost surely, where σ2
Tk

is the variance of the components of Tk.

A proof for this CLT proposition is given in Appendix B.

Proposition 2 shows that under the standard conditions above,w∗TTk and δwTTk are asymptotically
jointly Gaussian and independent, almost surely. We stress that the components of Tk do not have
to be identically distributed to satisfy this property; Proposition 2 may be adjusted for this case
with different normalization factors. Similarily, the i.i.d. assumption on Tk can easily be relaxed to
Markovian ergodic, as we assume the input patterns. It is easy to verify that Proposition 2 can be
extended to the general case where w∗, δw ∈ Rdk×dk+1 , under similar general position conditions,
with almost sure orthogonality of w∗ and δw.

We can now bound the mutual information between Tk+1 and the linear projection of the previous
layer W ∗Tk, during the diffusion phase, for sufficiently high dimensions dk, dk+1, under the above
conditions. Note that in this case, (5) behaves like an additive Gaussian channel where w∗TTk is the
signal and δwTTk + Z is an independent additive Gaussian noise (i.e., independent of signal and
normally distributed). Hence, for sufficiently large dk and dk+1, we can write

I(Tk+1;Tk|w∗) ≤I(Tk+1;w∗TTk|w∗) ≤ I
(
w∗TTk + δwTTk + Z;w∗TTk|w∗

)
= (7)

1

2
log


∣∣∣σ2
Tk
w∗Tw∗ + σ2

Tk
δwT δw + σ2

zI
∣∣∣∣∣∣σ2

Tk
δwT δw + σ2

zI
∣∣∣


almost surely, where the first inequality is due to DPI for the Markov chain Tk − w∗TTk − Tk+1.
Finally, we apply an orthogonal eigenvalue decomposition to this multivariate Gaussian channel (7).
Let δwT δw = QΛQT where QQT = I and Λ is a diagonal matrix whose diagonal elements are the
corresponding eigenvalues, λi, of δwT δw. Then, we have that∣∣∣σ2
Tk
w∗Tw∗ + σ2

Tk
δwT δw + Z

∣∣∣ =σ2
Tk
|Q| · |QTw∗Tw∗Q+ Λ +

σ2
z

σ2
Tk

QTQ| · |QT | = (8)

σ2
Tk
|QTw∗Tw∗Q+ Λ +

σ2
z

σ2
Tk

I| ≤ σ2
Tk

dk+1∏
i=1

(
Aii + λi +

σ2
z

σ2
Tk

)
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where A , QTW ∗TW ∗Q. The last inequality is due to the Hadamard inequality. Plugging (8) into
(7) yields that for sufficiently large dk and dk+1,

I(Tk+1;Tk|w∗) ≤
1

2
log


∏dk+1

i=1

(
Aii + λi +

σ2
z

σ2
Tk

)
∏dk+1

i=1

(
λi +

σ2
z

σ2
Tk

)
 = (9)

1

2

dk+1∑
i=1

log

1 +
Aii

λi +
σ2
z

σ2
Tk

 −−−−→
σ2
z→0

1

2

dk+1∑
i=1

log

(
1 +

Aii
λi

)
.

As previously established, δw is a Brownian motion along the SGD iterations during the diffusion
phase. This process is characterized by a low (and fixed) variance of the informative gradients
(relevant dimensions), whereas the remaining irrelevant directions suffer from increasing variances
as the diffusion proceeds (see, e.g. (Sagun et al., 2017; Zhu et al., 2018; Jastrzebski et al., 2017)).
In other words, we expect the “informative” λi to remain fixed, while the irrelevant consistently
grow as sub-linearly with time. Denote the set of ”informative/relevant” directions as Λ∗ and the
set of ”non-informative” as ΛNI . Then our final limit (9), as the number of SGD steps grows, is
I(Tk+1;Tk|w∗) ≤ 1

2

∑
λ∗
i∈Λ∗ log

(
1 + Aii

λ∗
i

)
.Note that which directions are compressed and which

are preserved depend on the required compression level. This is why different layers converge to
different values of I(Tk;X).

4.3 RELATION TO OTHER WORKS

The above analysis suggests that the SGD compresses during the diffusion phase in many directions
of the gradients. We argue that these directions are the ones in which the variance of the gradients
is increasing (non-informative) whereas the information is preserved in the directions where the
variance of the gradients remain small.

This statement is consistent with recent (independent) works on the statistical properties of gradients
and generalization. Sagun et al. (2017); Zhu et al. (2018); Zhang et al. (2018b) showed that typically,
the covariance matrix of the gradients is highly non-isotropic and that this is crucial for generaliza-
tion by SGD. They suggested that the explanation lies in the proximity of the gradients’ covariance
matrix to the Hessian of the loss approximation. Furthermore, it was argued in Zhang et al. (2018b);
Keskar et al. (2016); Jastrzebski et al. (2017) that SGD tends to converge to flat minima. These
flat minima often correspond to a better generalization. Zhang et al. (2018b) emphasized that SGD
converges to flat minima values characterized by high entropy due to the non-isotropic nature of the
gradients’ covariance and its alignment with the error Hessian at the minima. In other words, all of
the finding above suggest that good generalization performance is typically characterized by non-
isotropic gradients and Hessian, that are in orthogonal directions to the flat minimum of the training
error objective.

5 THE COMPUTATIONAL BENEFIT OF THE HIDDEN LAYERS

Our Gaussian bound on the representation compression, equation 9, allows us to relate the conver-
gence time of the layer representation information, I(Tk;X), to the diffusion exponent α, defined
in section 2.3.

Considering the representation information as a function of the diffusion time τ , in I(X;Tk)(τ),
using (9),

I(X;Tk)(τ) ≤ C +
1

2

∑
λi∈ΛNI

log

(
1 +

Aii
λi(τ)

)
≤ C +

1

2

∑
λi∈ΛNI

(
Aii
λi(τ)

)
(10)

where C depends on the informative information for this layer, but not on τ .

As λi(τ) are the singular values of the weights of a diffusion process they grow as τα where α is
the diffusion exponent. Hence, λi(τ) = λ0

i · τα. Then I(X;Tk)(τ) ≤ C + 1
τα

∑
λi∈ΛNI

(
Aii
λ0
i

)
.
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(a) The change of weights, the SNR of the gradi-
ents, the MI and the Gaussian bound during the
training for one layer. In log-log scale

(b) The transition point of the SNR (Y -axis) ver-
sus the beginning of the information compression
(X-axis), for different mini-batch sizes

Figure 1: MNIST data-set

Inverting this relation, the time to compress the representation Tk by ∆I(X;Tk) = ∆Ik scales

as: τ(∆Ik) ∝
(

−R
∆I(X;T )

) 1
α

, where R = 1
2

∑
λi∈ΛNI

(
Aii
λ0
i

)
. Note that R depends solely on the

problem, f(x) or p(y, x), and not on the architecture. The sketch of the proof for this - one can
expand the function in any orthogonal basis (e.g. Fourier transform). The expansion coefficients
determine both the dimensionality of the relevant/informative dimensions and the total trace of the
irrelevant directions. Since these traces are invariant to the specific function basis, these traces
remain the same when expanding the function in the network functions using the weights.

Now, with K hidden layers, where each layer only needs to compress from the previous (com-
pressed) layer, by ∆Ik and the total compression is ∆IX =

∑
k ∆Ik. Under these assumptions,

even if the layers compress one after the other, the total compression time breaks down into K

smaller steps , as at
(

R∑
k ∆Ik

) 1
α �

∑
k

(
R

∆Ik

) 1
α

if the ∆Ik are similar, we obtain a super-linear

boost in the computational time by a factor K
1
α . Since α ≤ 0.5 this is at least a quadratic boost in

K. For ultra-slow diffusion we obtain an exponential boost (inK) in the convergence time to a good
generalization. This is consistent with the observations reported by Shwartz-Ziv & Tishby (2017).

6 EXPERIMENTS

We now illustrate our results in a series of experiments. We examine several different setups. In the
first experiment, we evaluate the MNIST handwritten digit recognition task LeCun et al. (1990). For
this data set, we use a fully-connected network with 4 hidden layers of width 250− 100− 50− 20,
with an hyperbolic tangent (tanh) activation function. The relative low dimension of the network
and the bounded activation function allow us to empirically measure the MI in the network. The MI
is estimated by binning the neurons’ output into the interval [−1, 1]. The discretized values are then
used to estimate the joint distributions and the corresponding MI, as described by Shwartz-Ziv &
Tishby (2017).

In the second experiment we consider two large-scale data sets, CIFAR-10 and CIFAR-100. Here,
we train a ResNet-32 network, using a standard architecture as described in (He et al., 2016). In
this experiment we do not estimate the MI directly, due to the large scale of the problem. MNIST
dataset- Figure 1a depicts the norms of the weights, the signal-to-noise ratio (the ratio between
the means of the gradients and their standard deviations), the compression rate I(X;T ) and the
Gaussian upper bound on I(X;T ), as defined in (9). As expected, the two distinct phases correspond
to the drift and diffusion phases. Further, these two phases are evident by independently observing
the SNR, the change of the weights ||W (l) − W (0)||, the MI and the upper bound. In the first
phase, the weights grow almost linearly with the iterations, the SNR of the gradients is high, and

9



Under review as a conference paper at ICLR 2019

(a) CIFAR-10 (b) CIFAR-100

Figure 2: Change in the SNR of the gradients and the Gaussian bound on the MI during the training
of the network for one layer on ResNet-32, in log-log scale.

there is almost no change in the MI. Then, after the transition point (that accrued almost at the same
iteration for all the measures above), the weights behave as a diffusion process, and the SNR and the
MI decrease remarkably. In this phase, there is also a clear-cut reduction of the bound.

CIFAR-10 and CIFAR-100 - Next, we validate our theory on large-scale modern networks. Figure
2 shows the SNR of the gradients and the Gaussian bound for one layer in CIFAR-10 and CIFAR-100
on the ResNet-32 network, averaged over 50 runs. Here, we observed similar behavior as reported
in the MNIST experiment. Specifically, there was a clear distinction between the two phases and a
reduction of the MI bound along the diffusion phase. Note that the same behavior was observed in
most of the 32 layers in the network.

Recently there have been several attempts to characterize the correspondence between the diffusion
rate of the SGD and the size of the mini-batch (Hu et al. (2017); Hoffer et al. (2017)). In these
articles, the authors claimed that a larger mini-batch size corresponds to a lower diffusion rate.
Here, we examined the effect of the mini-batch size on the transition phase in the Information Plane.
For each mini-batch size, we found both the starting point of the information compression and the
gradient phase transition (the iteration where the derivative of the SNR is maximal).

Figure 1b illustrates the results. The X-axis is the iteration where the compression started, and the
Y -axis is the iteration where the phase transition in the gradients accrued for different mini-batch
sizes. There was a clear linear trend between the two. This further justifies our suggested model,
since that the two measures are strongly related.

7 DISCUSSION AND CONCLUSIONS

In this work, we examined DNNs using information-theoretic principles. We described the training
process of the network as two separate phases, as has been done elsewhere. In the first phase (drift)
we show that I(Tk;Y ) increases, corresponding to improved generalization with ERM. In the sec-
ond phase (diffusion), the representation information, I(X;Tk) slowly decreases, while I(TK ;Y )
continues to increase. We rigorously prove that the representation compression is a direct conse-
quence of the diffusion phase, independent of the non-linearity of the activation function. We pro-
vide a new Gaussian bound on the representation compression and then relate the diffusion exponent
to the compression time. One key outcome of this analysis is a novel proof of the computational
benefit of the hidden layers, where we show that they boost the overall convergence time of the
network by at least a factor of K2, where K is the number of non-degenerate hidden layers. This
boost can be exponential in the number of hidden layers if the diffusion is ”ultra slow”, as recently
reported.
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APPENDIX A - PROOF OF THEOREM 1

We first first revisit the well-known Probably Approximately Correct (PAC) bound. Let H be a fi-
nite set of hypotheses. Let `h (xi, yi) be a bounded loss function, for every h ∈ H. For example,
`h (xi, yi) = (yi − h(xi))

2 is the squared loss while `h (xi, yi) = −yi log h(xi) is the logarith-
mic loss (which may be treated as bounded, assuming that the underlying distribution is bounded
away from zero and one). Let Lh (Sn) = 1

n

∑n
i=1 `h (xi, yi) be the empirical error. Hoeffding’s

inequality Hoeffding (1963) shows that for every h ∈ H,

P
[∣∣Lh (Sn)− ESn [Lh (Sn)]

∣∣ ≥ ε] ≤ 2 exp
(
−2ε2n

)
. (11)

Then, we can apply the union bound and conclude that

P
[
∃h ∈ H

∣∣∣∣∣∣Lh (Sn)− ESn [Lh (Sn)]
∣∣ ≥ ε] ≤ 2

∣∣H∣∣ exp
(
−2ε2n

)
.

We want to control the above probability with a confidence level of δ. Therefore, we ask that
2
∣∣H∣∣ exp

(
−2ε2n

)
≤ δ. This leads to a PAC bound, which states that for a fixed n and for every

h ∈ H, we have with probability 1− δ that∣∣Lh (Sn)− ESn [Lh (Sn)]
∣∣2 ≤ log

∣∣H∣∣+ log 2
δ

2n
. (12)

Note that under the definitions stated in Section 1.1, we have that |H| ≤ 2X . However, the PAC
bound above also holds for a infinite hypotheses class, where log |H| is replaced with the VC di-
mension of the problem, with several additional constants Vapnik & Chervonenkis (1968); Shelah
(1972); Sauer (1972).

Let us now assume that X is a d-dimensional random vector which follows a Markov random field
structure. As stated above, this means that p(xi) =

∏
i p(xi|Pa(xi)) where Pa(Xi) is a set of

components in the vector X that are adjacent to Xi. Assuming that the Markov random field is
ergodic, we can define a typical set of realizations from X as a set that satisfies the Asymptotic
Equipartition Property (AEP) Cover & Thomas (2012). Therefore, for every ε > 0, the probability
of a sequence drawn from X to be in the typical set Aε is greater than 1 − ε and |Aε| ≤ 2H(X)+ε.
Hence, if we only consider a typical realization of X (as opposed to every possible realization), we
have that asymptotically

∣∣H∣∣ ≤ 2H(X). Finally, let T be a mapping of X . Then, 2H(X|T ) is the
number of typical realizations of X that are mapped to T . This means that the size of the typical
set of T is bounded from above by 2H(X)

/
2H(X|T ) = 2I(X;T ). Plugging this into the PAC bound

above yields that with probability 1− δ, the typical squared generalization error of T ,ε2T satisfies

ε2T ≤
2I(X;T ) + log 2

δ

2n
. (13)

APPENDIX B - PROOF OF PROPOSITION 2

Consider a sequence of i.i.d. random variable, {Xi}di=1 with zero mean and finite moments,
E [Xr

i ] <∞ for every r ≥ 1.

Let {ai}di=1 be a sequence of constants. Denote Yi = aiXi, so that {Yi}di=1 are indepen-
dent with zero mean and Var(Yi) = a2

iE
[
X2
]
. Let S =

∑d
i=1 aiXi =

∑d
i=1 Yi and denote

U2
d =

∑d
i=1 Var(Yi) = E[X2]

∑d
i=1 a

2
i .

The Lyapunov Central Limit Theorem (CLT) Billingsley (2008) states that if there exists some δ > 0
for which

lim
d→∞

1

U2+δ
d

d∑
i=1

E
[
|Yi|2+δ

]
= 0 (14)

then
1

Ud

d∑
i=1

Yi
D−−−→

d→∞
N (0, 1). (15)
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Plugging δ = 2 yields the following sufficient condition,

lim
d→∞

1

U4
d

d∑
i=1

E
[
Y 4
i

]
=

∑d
i=1 a

4
i(∑d

i=1 a
2
i

)2

E[X4]

E2[X2]
= 0 (16)

Let us apply the Lyapunov CLT to our problem. Here, the components of Tk are i.i.d. for sufficiently
large dk, with zero mean and finite rth moments for every r ≥ 1. Further, we assume that the
components of w∗ and δw are points-in-general-locations, satisfying

lim
dk→∞

∑dk
i=1 w

∗
i

4(∑dk
i=1 w

∗
i

2
)2 = 0 and lim

dk→∞

∑dk
i=1 δwi

4(∑dk
i=1 δwi

2
)2 = 0

almost surely. This means that Lyapunov condition (16) is satisfied for both w∗TTk and δwTTk
almost surely, which means that

1√
σ2
Tk
||w∗||2

w∗TTk
D−−−−→

dk→∞
N (0, 1) (17)

and
1√

σ2
Tk
||δw||2

δwTTk
D−−−−→

dk→∞
N (0, 1). (18)

almost surely, where σ2
Tk

is the variance of the components of Tk.

Further, for every pair of constants a and b, the linear combination (aw∗ + bδw)
T
Tk also satisfies

Lyapunov’s condition almost surely, which means thatw∗TTk and δwTTk are asymptotically jointly
Gaussian, with

E
[
w∗TTk

(
δwTTk

)T]
= σ2

Tk
w∗T δw −−−−→

dk→∞
0

almost surely. �
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