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ABSTRACT

By representing words with probability densities rather than point vectors, proba-
bilistic word embeddings can capture rich and interpretable semantic information
and uncertainty (Vilnis & McCallum, 2014; Athiwaratkun & Wilson, 2017). The
uncertainty information can be particularly meaningful in capturing entailment
relationships – whereby general words such as “entity” correspond to broad dis-
tributions that encompass more specific words such as “animal” or “instrument”.
We introduce methodology to learn such representations effectively from labelled
data. In particular, we propose simple yet effective loss functions and distance
metrics, as well as graph-based schemes to select negative samples to better learn
hierarchical probabilistic representations. Our approach provides state-of-the-art
performance on the WORDNET hypernym relationship prediction task and the
challenging HYPERLEX lexical entailment dataset – while retaining a rich and
interpretable probabilistic representation.

1 INTRODUCTION

Learning feature representations of natural data such as text and images has become increasingly
important for understanding real-world concepts. These representations are useful for many tasks,
ranging from semantic understanding of words and sentences (Mikolov et al., 2013; Kiros et al.,
2015), image caption generation (Vinyals et al., 2015), textual entailment prediction (Rocktäschel
et al., 2015), to language communication with robots (Bisk et al., 2016).

Meaningful representations of text and images capture visual-semantic information, such as hier-
archical structure where certain entities are abstractions of others. For instance, an image caption
“A dog and a frisbee” is an abstraction of many images with possible lower-level details such as
a dog jumping to catch a frisbee or a dog sitting with a frisbee (Figure 1a). A general word such
as “object” is also an abstraction of more specific words such as “house” or “pool”. Recent work
by Vendrov et al. (2015) proposes learning such asymmetric relationships with order embeddings –
vector representations of non-negative coordinates with partial order structure. These embeddings are
shown to be effective for word hypernym classification, image-caption ranking and textual entailment
(Vendrov et al., 2015).

Another recent line of work involves using probability distributions as rich feature representations that
can capture the semantics and uncertainties of concepts such as Gaussian word embeddings (Vilnis &
McCallum, 2014), or extract multiple meanings via multimodal densities (Athiwaratkun & Wilson,
2017). Probability distributions are also natural at capturing orders and are suitable for tasks that
involve hierarchical structures. An abstract entity such as “animal” that can represent specific entities
such as “insect”, “dog”, “bird” corresponds to a broad distribution, encapsulating the distributions for
these specific entities. For example, in Figure 1c, the distribution for “insect” is more concentrated
than for “animal”, with a high density occupying a small volume in space.

Such entailment patterns can be observed from density word embeddings through unsupervised
training based on word contexts (Vilnis & McCallum, 2014; Athiwaratkun & Wilson, 2017). In the
unsupervised settings, density embeddings are learned via maximizing the similarity scores between
nearby words. The density encapsulation behavior arises due to the word occurrence pattern that a
general word can often substitute more specific words; for instance, the word “tea” in a sentence
“I like iced tea” can be substituted by “beverages”, yielding another natural sentence “I like iced
beverages”. Therefore, the probability density of a general concept such as “beverages” tends to have
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a larger variance than specific ones such as “tea”, reflecting higher uncertainty in meanings since a
general word can be used in many contexts. However, the information from word occurrences alone is
not sufficient to train meaningful embeddings of some concepts. For instance, it is fairly common to
observe sentences “Look at the cat”, or “Look at the dog”, but not “Look at the mammal”. Therefore,
due to the way we typically express natural language, it is unlikely that the word “mammal” would
be learned as a distribution that encompasses both “cat” and “dog”, since “mammal” rarely occurs in
similar contexts.

Rather than relying on the information from word occurrences, one can do supervised training of
density embeddings on hierarchical data. In this paper, we propose new training methodology to
enable effective supervised probabilistic embeddings. Despite providing rich and intuitive word
representations, with a natural ability to represent order relationships, probabilistic embeddings have
only been considered in a small number of pioneering works such as (Vilnis & McCallum, 2014),
and these works are almost exclusively focused on unsupervised embeddings. Probabilistic Gaussian
embeddings trained directly on labeled data have been briefly considered but perform surprisingly
poorly compared to other competing models (Vendrov et al., 2015; Vulić et al., 2016).

Our work reaches a very different conclusion: probabilistic Gaussian embeddings can be highly
effective at capturing ordering and are suitable for modeling hierarchical structures, and can even
achieve state-of-the-art results on hypernym prediction and graded lexical entailment tasks, so long
as one uses the right training procedures.

In particular, the following are our contributions.

(a) We adopt a new form of loss function.

(b) We introduce the notion of soft probabilistic encapsulation orders and a thresholded divergence-
based penalty function, which do not over-penalize words with a sufficient degree of encapsula-
tion.

(c) We introduce a new graph-based scheme to select negative samples to contrast the true relationship
pairs during training. This approach incorporates hierarchy information to the negative samples
that help facilitate training and has added benefits over the hierarchy-agnostic sampling schemes
previously used in literature.

(d) We also demonstrate that initializing the right variance scale is highly important for modeling
hierarchical data via distributions, allowing the model to exhibit meaningful encapsulation orders.

The outline of our paper is as follows. In Section 2, we introduce the background for Gaussian
embeddings (Vilnis & McCallum, 2014) and vector order embeddings (Vendrov et al., 2015). We
describe our training methodology in Section 3, where we introduce the notion of soft encapsulation
orders (Section 3.2) and explore different divergence measures such as the expected likelihood kernel,
KL divergence, and a family of Rényi alpha divergences (Section 3.3). We describe the experiment
details in Section 4 and offer a qualitative evaluation of the model in Section 4.3, where we show
the visualization of the density encapsulation behavior. We show quantitative results on WORDNET
Hypernym prediction task in Section 4.2 and a graded entailment dataset HYPERLEX in Section 4.4.

In addition, we conduct experiments to show that our proposed changes to learn Gaussian embeddings
contribute to the increased performance in the Section A.2.3 ([a] effects of our loss function), Section
A.2.1 ([b] effects of soft encapsulation), Section 4.4 ([c] effects of negative sample selection) and
Section A.2.2 ([d] effects of initial variance scale). We will make the training and evaluation code
publicly available upon publication.

2 BACKGROUND AND RELATED WORK

2.1 GAUSSIAN EMBEDDINGS

Vilnis & McCallum (2014) was the first to propose using probability densities as word embeddings.
In particular, each word is modeled as a Gaussian distribution, where the mean vector represents the
semantics and the covariance describes the uncertainty or nuances in the meanings. These embeddings
are trained on a natural text corpus by maximizing the similarity between words that are in the same
local context of sentences. Given a word w with a true context word cp and a randomly sampled
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Figure 1: (a) Captions and images in the visual-semantic hierarchy. (b) Vector order embedding
(Vendrov et al., 2015) where specific entities have higher coordinate values. (c) Density order
embedding where specific entities correspond to concentrated distributions encapsulated in broader
distributions of general entities.

word cn (negative context), Gaussian embeddings are learned by minimizing the rank objective in
Equation 1, which pushes the similarity of the true context pair E(w, cp) above that of the negative
context pair E(w, cn) by a margin m.

Lm(w, cp, cn) = max(0,m− E(w, cp) + E(w, cn)) (1)

The similarity score E(u, v) for words u, v can be either E(u, v) = −KL(fu, fv) or E(u, v) =
〈fu, fu〉2 where fu, fv are the distributions of words u and v, respectively. The Gaussian word
embeddings contain rich semantic information and performs competitively in many word similarity
benchmarks.

The true context word pairs (w, cp) are obtained from natural sentences in text corpus such as
Wikipedia. In some cases, specific words can be replaced by a general word in similar context. For
instance, “I love cats” or “I love dogs” can be replaced with “I love animals”. Therefore, the trained
word embeddings exhibit lexical entailment patterns where specific words such as dog and cat are
concentrated distributions that are encompassed by a more dispersed distribution of animal, a word
that cat and dog entail. The broad distribution of a general word agrees with the distributional
informativeness hypothesis proposed by Santus et al. (2014) which says that generic words occur in
more general contexts than specific ones.

However, some word entailment pairs have weak density encapsulation pattern due to the nature
of word diction. For instance, even though “dog” and “cat” both entail “mammal”, it is rarely the
case that we observe a sentence “I have a mammal” as opposed to “I have a cat” in a natural corpus;
therefore, after training density word embeddings on word occurrences, encapsulation of some true
entailment instances do not occur.

2.2 PARTIAL ORDERS AND VECTOR ORDER EMBEDDINGS

We describe partial order and the concept of order embeddings proposed by Vendrov et al. (2015),
which is highly related to our model.

A partial order over a set of points X is a binary relation � such that for a, b, c ∈ X , the following
properties hold: (1) a � a (reflexivity); (2) if a � b and b � a then a = b (antisymmetry); and (3) if
a � b and b � c then a � c (transitivity). An example of a partially ordered set is a set of nodes in a
tree where a � b means a is a child node of b. This concept has applications in natural data such as
lexical entailment. For words a and b, a � b means that every instance of a is an instance of b, or we
can say that a entails b. We also say that (a, b) has a hypernym relationship where a is a hyponym of
b and b is a hypernym of a. This relationship is asymmetric since a � b does not necessarily imply
(b � a). For instance, aircraft � vehicle but it is not true that vehicle � aircraft.

An order-embedding is a function f : (X,�X) → (Y,�Y ) where a �X b if and only if f(a) �Y
f(b). Vendrov et al. (2015) proposes to learn the embedding f on Y = RN+ where all coordinates are
non-negative. Under RN+ , there exists a partial order relation called the reversed product order on RN+ :
x � y if and only if ∀i, xi ≥ yi. That is, a point x entails y if and only if all the coordinate values of
x is higher than y’s. The origin represents the most general entity at the top of the order hierarchy and
the points further away from the origin become more specific. Figure 1b demonstrates the vector order
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embeddings on RN+ . We can see that since insect� animal and animal� organism, we can
infer directly from the embedding that insect � organism (orange line, diagonal line). To learn
the embeddings, Vendrov et al. (2015) proposes a penalty function E(x, y) = ||max(0, y − x)||2 for
a pair x � y which has the property that it is positive if and only if the order is violated.

3 METHODOLOGY

In Section 3.1, we describe the partial orders that can be induced by density encapsulation. Section
3.2 describes our training approach that softens the notion of strict encapsulation with a viable penalty
function.

3.1 STRICT ENCAPSULATION PARTIAL ORDERS

A partial order on probability densities can be obtained by the notion of encapsulation. That is, a
density f is more specific than a density g if f is encompassed in g. The degree of encapsulation can
vary, which gives rise to multiple order relations. We define an order relation �η for η ≥ 0 where η
indicates the degree of encapsulation required for one distribution to entail another. More precisely,
for distributions f and g,

f �η g ⇔ {x : f(x) > η} ⊆ {x : g(x) > η}. (2)

Note that {x : f(x) > η} is a set where the density f is greater than the threshold η. The relation in
Equation 2 says that f entails g if and only if the set of g contains that of f . In Figure 2, we depict
two Gaussian distributions with different mean vectors and covariance matrices. Figure 2 (left) shows
the density values of distributions f (narrow, blue) and g (broad, orange) and different threshold
levels. Figure 2 (right) shows that different η’s give rise to different partial orders. For instance, we
observe that neither f �η1 g nor g �η1 f but f �η3 g.

⌘1

⌘2

⌘3

⌘1

⌘2

⌘3

Figure 2: Strict encapsulation orders induced by different η values.

3.2 SOFT ENCAPSULATION ORDERS

A plausible penalty function for the order relation f �η g is a set measure on {x : f(x) > η} − {x :
g(x) > η}. However, this is difficult to calculate for most distributions, including Gaussians. Instead,
we use simple penalty functions based on asymmetric divergence measures between probability
densities. Divergence measures D(·||·) have a property that D(f ||g) = 0 if and only if f = g. Using
D(·||·) to represent order violation is undesirable since the penalty should be 0 if f 6= g but f � g.
Therefore, we propose using a thresholded divergence

dγ(f, g) = max(0, D(f ||g)− γ),

which can be zero if f is properly encapsulated in g. We discuss the effectiveness of using divergence
thresholds in Section A.2.1.

We note that by using dγ(·, ·) as a violation penalty, we no longer have the strict partial order. In
particular, the notion of transitivity in a partial order is not guaranteed. For instance, if f � g and
g � h, our density order embeddings would yield dγ(f, g) = 0 and dγ(g, h) = 0. However, it is not
necessarily the case that dγ(f, h) = 0 since D(f ||h) can be greater than γ. This is not a drawback
since high value of D(f ||h) reflects that the hypernym relationship is not “direct”, requiring many
edges from f to h in the hierarchy. The extent of encapsulation contains useful entailment information,
as demonstrated in Section 4.4 where our model scores highly correlate with the annotated scores of
a challenging lexical entailment dataset and achieves state-of-the-art result.
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Another property, antisymmetry, does not strictly hold since if dγ(f, g) = 0 and dγ(g, f) = 0 does
not imply f = g. However, in this situation, it is necessary that f and g overlap significantly if γ is
small. Due to the fact that the dγ(·, ·) does not strictly induce a partial order, we refer to this model
as soft density order embeddings or simply density order embeddings.

3.3 DIVERGENCE MEASURES

3.3.1 ASYMMETRIC DIVERGENCE

Kullback-Leibler (KL) Divergence The KL divergence is an asymmetric measure of the difference
between probability distributions. For distributions f and g, KL(g||f) ≡

∫
g(x) log g(x)

f(x) dx imposes
a high penalty when there is a region of points x such that the density f(x) is low but g(x) is high. An
example of such a region is the area on the left of f in Figure 2. This measure penalizes the situation
where f is a concentrated distribution relative to g; that is, if the distribution f is encompassed by g,
then the KL yields high penalty. For d-dimensional Gaussians f = Nd(µf ,Σf ) and g = Nd(µg,Σg),

2DKL(f ||g) = log(det(Σg)/det(Σf ))− d+ tr(Σ−1g Σf ) + (µf − µg)TΣ−1g (µf − µg) (3)

Rényi α-Divergence is a general family of divergence with varying scale of zero-forcing penalty
(Renyi, 1961). Equation 4 describes the general form of the α-divergence for α 6= 0, 1 (Liese &
Vajda, 1987). We note that for α → 0 or 1, we recover the KL divergence and the reverse KL
divergence; that is, limα→1Dα(f ||g) = KL(f ||g) and limα→0Dα(f ||g) = KL(g||f) (Pardo, 2006).
The α-divergences are asymmetric for all α’s, except for α = 1/2.

Dα(f ||g) =
1

α(α− 1)
log

(∫
f(x)α

g(x)α−1
dx

)
(4)

For two multivariate Gaussians f and g, we can write the Rényi divergence as (Pardo, 2006):

2Dα(f ||g) = − 1

α(α− 1)
log

det (αΣg + (1− α)Σf )(
det (Σf )

1−α · det (Σg)
α
)+(µf−µg)T (αΣg+(1−α)Σf )−1(µf−µg).

(5)
The parameter α controls the degree of zero forcing where minimizing Dα(f ||g) for high α results
in f being more concentrated to the region of g with high density. For low α, f tends to be mass-
covering, encompassing regions of g including the low density regions. Recent work by Li & Turner
(2016) demonstrates that different applications can require different degrees of zero-forcing penalty.

3.3.2 SYMMETRIC DIVERGENCE

Expected Likelihood Kernel The expected likelihood kernel (ELK) (Jebara et al., 2004) is a sym-
metric measure of affinity, define as K(f, g) = 〈f, g〉H. For two Gaussians f and g,

2 log〈f, g〉H = − log det(Σf + Σg)− d log(2π)− (µf − µg)T (Σf + Σg)
−1(µf − µg) (6)

Since this kernel is a similarity score, we use its negative as our penalty. That is, DELK(f ||g) =
−2 log〈f, g〉H. Intuitively, the asymmetric measures should be more successful at training density
order embeddings. However, a symmetric measure can result in the encapsulation order as well since
a general entity often has to minimize the penalty with many specific elements and consequently ends
up having a broad distribution to lower the average loss. The expected likelihood kernel is used to
train Gaussian and Gaussian Mixture word embeddings on a large text corpus (Vilnis & McCallum,
2014; Athiwaratkun & Wilson, 2017) where the model performs well on the word entailment dataset
(Baroni et al., 2012).

3.4 LOSS FUNCTION

To learn our density embeddings, we use a loss function similar to that of Socher et al. (2013) and
Vendrov et al. (2015). Minimizing this function (Equation 7) is equivalent to minimizing the penalty
between a true relationship pair (u, v) where u � v, but pushing the penalty to be above a margin m
for the negative example (u′, v′) where u′ 6� v′:∑

(u,v)∈D

d(u, v) + max{0,m− d(u′, v′)} (7)
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We note that this loss function is different than the rank-margin loss introduced in the original
Gaussian embeddings (Equation 1). Equation 7 aims to reduce the dissimilarity of a true relationship
pair d(u, v) with no constraint, unlike in Equation 1, which becomes zero if d(u, v) is above d(u′, v′)
by margin m.

3.5 SELECTING NEGATIVE SAMPLES

In many embedding models such as WORD2VEC or Gaussian embeddings (Mikolov et al., 2013;
Vilnis & McCallum, 2014), negative samples are often used in the training procedure to contrast
with true samples from the dataset. For flat data such as words in a text corpus, negative samples
are selected randomly from a unigram distribution. We propose new graph-based methods to select
negative samples that are suitable for hierarchical data, as demonstrated by the improved performance
of our density embeddings. In our experiments, we use various combinations of the following
methods.

Method S1: A simple negative sampling procedure used by Vendrov et al. (2015) is to replace a true
hypernym pair (u, v) with either (u, v′) or (u′, v) where u′, v′ are randomly sampled from a uniform
distribution of vertices. Method S2: We use a negative sample (v, u) if (u, v) is a true relationship
pair. The motivation is due to the fact that it is important to make D(v||u) higher than D(u||v)
in order to distinguish the directionality of density encapsulation. Method S3: It is important to
increase the divergence between neighbor entities that do not entail each other. Let A(w) denote
all descendants of w in the training set D, including w itself. We first randomly sample an entity
w ∈ D that has at least 2 descendants and randomly select a descendant u ∈ A(w)− {w}. Then, we
randomly select an entity v ∈ A(w)−A(u) and use the random neighbor pair (v, u) as a negative
sample. Note that we can have u � v, in which case the pair (v, u) is a reverse relationship. Method
S4: Same as S3 except that we sample v ∈ A(w)− A(u)− {w}. This excludes the possibility of
drawing (w, u).

4 EXPERIMENTS

This section describes the training details to learn the hypernym hierarchy on the WORDNET dataset
(Miller, 1995) with the density order embeddings.

4.1 TRAINING DETAILS

We have a similar data setup to the experiment by Vendrov et al. (2015) where we use the transitive
closure of WordNet noun hypernym relationships which contains 82, 115 synsets and 837, 888
hypernym pairs from 84, 427 direct hypernym edges. We obtain the data using the WORDNET API
of NLTK version 3.2.1 (Loper & Bird, 2002).

The validation set contains 4000 true hypernym relationships as well as 4000 false hypernym
relationships where the false hypernym relationships are constructed from the S1 negative sampling
described in Section 3.5. The same process applies for the test set with another set of 4000 true
hypernym relationships and 4000 false hypernym relationships.

We use d-dimensional Gaussian distributions with diagonal covariance matrices. We use d = 50 as
the default dimension and analyze the results using different d’s in Section A.2.4. We initialize the
mean vectors to have a unit norm and normalize the mean vectors in the training graph. We initialize
the diagonal variance components to be all equal to β and optimize on the unconstrained space of
log(Σ). We discuss the important effects of the initial variance scale in Section A.2.2.

We use a minibatch size of 500 true hypernym pairs and use varying number of negative hypernym
pairs, depending on the negative sample combination proposed in Section 3.5. We discuss the results
for many selection strategies in Section 4.4. We also experiment with multiple divergence measures
D(·||·) described in Section 3.3. In our main results, we use D(·||·) = DKL(·||·) unless stated
otherwise. Section A.2.5 discuss the results using the α−divergence family with varying degrees
of zero-forcing parameter α’s. We use the Adam optimizer (Kingma & Ba, 2014) and train our
model for at most 20 epochs. For each energy function, we tune the hyperparameters on grids. The
hyperparameters are the loss margin m, the initial variance scale β, and the energy threshold γ. We
evaluate the results by computing the penalty on the validation set to find the best threshold for binary
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Table 1: Classification accuracy on hypernym relationship test set from WordNet.

Method Test Accuracy (%)

transitive closure 88.2
word2gauss 86.6
word2gauss† 88.6
VOE (symmetric) 84.2
VOE 90.6
DOE (ELK) 92.1
DOE (KL, reversed) 83.2
DOE (KL) 92.3
DOE (KL, d = 2) 89.2

classification, and use this threshold to perform prediction on the test set. Section A.1 describes the
hyperparameters for all our models.

4.2 HYPERNYM PREDICTION

We show the prediction accuracy results on the test set of WORDNET hypernyms in Table 1. We
compare our results with vector order-embeddings (VOE) by Vendrov et al. (2015) where the model
details are explained in Section 2.2. Another important baseline is the transitive closure, which
requires no learning and classifies if a held-out edge is a hypernym relationship by determining if it
is in the union of the training edges. word2gauss and word2gauss† are the Gaussian embeddings
trained using the loss function in Vilnis & McCallum (2014) (Equation 1) where word2gauss
is the result reported by Vendrov et al. (2015) and word2gauss† is the best performance of our
replication (see Section A.2.3 for more details). Our density order embedding (DOE) outperforms the
implementation by Vilnis & McCallum (2014) significantly; this highlights the fact that a different
approach to train Gaussian representations might be required for a different task.

We observe that the symmetric model (ELK) performs quite well for this task despite the fact that
the symmetric metric cannot capture directionality. In particular, ELK can detect pairs of concepts
with no relationships well when they’re far away in the density space. In addition, for pairs that are
related, ELK can detect pairs that overlap significantly in density space. The lack of directionality
has more pronounced effects in the graded lexical entailment task (Section 4.4) where we observe a
high degradation in performance if ELK is used instead of KL.

Our method also outperforms the vector order embeddings (VOE). We also include the results for a 2-
dimensional Gaussian embedding trained for the purpose of visualization (Section 4.3). Surprisingly,
the performance is very strong, beating the transitive closure and other baselines except VOE while
only having 4 parameters: 2 from 2-dimensional µ and another 2 from the diagonal Σ. The results
using a symmetric measure also outperforms the baselines but has a slightly lower accuracy than the
asymmetric model.

Figure 3 offers an explanation as to why our density order embeddings might be easier to learn,
compared to the vector counterpart. In certain cases such as fitting a general concept entity to
the embedding space, we simply need to adjust the distribution of entity to be broad enough to
encompass all other concepts. In the vector counterpart, it might be required to shift many points
further from the origin to accommodate entity to reduce cascading order violations.

physical_entity

entity

physical_entity

entity

physical_entity

physical_entity

physical_entity

entity

physical_entity

entity

physical_entity

physical_entity

Figure 3: (Left) Adding a concept entity to vector order embedding (Right) Adding a concept
entity to density order embedding
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Table 2: KL(column||row). Cells in boldface indicate true WORDNET hypernym relationships
(column � row). Our model predicts a synset pair as a hypernym if the KL less than 1900, where this
value is tuned based on the validation set. Most relationship pairs are correctly predicted except for
the underlined cells.

city location living_thing whole object physical_entity

city 0 1025 4999 4673 23673 4639
location 159 0 4324 4122 26121 5103
living_thing 3623 6798 0 1452 2953 5936
whole 3033 6367 66 0 6439 6682
object 138 80 125 77 0 6618
physical_entity 232 206 193 166 152 0

4.3 QUALITATIVE ANALYSIS

For qualitative analysis, we additionally train a 2-dimensional Gaussian model for visualization. Our
qualitative analysis shows that the encapsulation behavior can be observed in the trained model.
Figure 4 demonstrates the ordering of synsets in the density space. Each ellipse represents a Gaussian
distribution where the center is given by the mean vector µ and the major/minor axes are given by the
diagonal standard deviations

√
Σ, scaled by 300 and 30 for x and y axis for visibility.

Most hypernym relationships exhibit the encapsulation behavior where the hypernym encom-
passes the synset that entails it. For instance, the distribution of whole.n.02 is subsumed
in the distribution of physical_entity.n.01. Note that location.n.01 is not en-
tirely encapsulated by physical_entity.n.01 under this visualization. However, we
can still predict which entity should be the hypernym among the two since the KL diver-
gence of one given another would be drastically different. This is because a large part of
physical_entity.n.01 has considerable density at the locations where location.n.01 has very
low density. This causes KL(physical_entity.n.01 || location.n.01) to be very high (5103)
relative to KL(location.n.01 || physical_entity.n.01) (206). Table 2 shows the KL values for
all pairs where we note that the numbers are from the full model (d = 50).

Another interesting pair is city.n.01 � location.n.01 where we see the two distribu-
tions have very similar contours and the encapsulation is not as distinct. In our full model
d = 50, the distribution of location.n.01 encompasses city.n.01’s, indicated by low
KL(city.n.01||location.n.01) but high KL(location.n.01||city.n.01).

Figure 4 (Right) demonstrates the idea that synsets on the top of the hypernym hierarchy usually
have higher “volume”. A convenient metric that reflects this quantity is log det(Σ) for a Gaussian
distribution with covariance Σ. We can see that the synset, physical_entity.n.01, being the
hypernym of all the synsets shown, has the highest log det(Σ) whereas entities that are more specific
such as object.n.01, whole.n.02 and living_thing have decreasingly lower volume.

physical_entity.n.01

object.n.01

whole.n.02

living_thing.n.01

location.n.01

city.n.01

physical_entity
object
whole

living_thing
location
city

Synset log det(Σ)

physical_entity.n.01 -219.67
object.n.01 -224.00
whole.n.02 -233.39
living_thing.n.01 -238.33
location.n.01 -261.76
city.n.01 -261.89

Figure 4: [best viewed electronically] (Left) Synsets and their hypernym relationships from WordNet.
(Middle) Visualization of our 2-dimensional Gaussian order embedding. (Right) The Gaussian
“volume” (log detΣ) of the 50-dimensional Gaussian model.
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4.4 GRADED LEXICAL ENTAILMENT

HYPERLEX is a lexical entailment dataset which has fine-grained human annotated scores between
concept pairs, capturing varying degrees of entailment (Vulić et al., 2016). Concept pairs in HY-
PERLEX reflect many variants of hypernym relationships, such as no-rel (no lexical relationship),
ant (antonyms), syn (synonyms), cohyp (sharing a hypernym but not a hypernym of each other),
hyp (hypernym), rhyp (reverse hypernym). We use the noun dataset of HYPERLEX for evaluation,
which contains 2,163 pairs.

We evaluate our model by comparing our model scores against the annotated scores. Obtaining a high
correlation on a fine-grained annotated dataset is a much harder task compared to a binary prediction
since performing well requires meaningful model scores in order to reflect nuances in hypernymy. We
use negative divergence as our score for hypernymy scale where large values indicate high degrees of
entailment.

We note that the concepts in our trained models are WORDNET synsets, where each synset corresponds
to a specific meaning of a word. For instance, pop.n.03 has a definition “a sharp explosive sound
as from a gunshot or drawing a cork” whereas pop.n.04 corresponds to “music of general appeal
to teenagers; ...”. For a given pair of words (u, v), we use the score of the synset pair (s′u, s

′
v) that

has the lowest KL divergence among all the pairs Sn × Sv where Su, Sv are sets of synsets for words
u and v, respectively. More precisely, s(u, v) = −minsu∈Su,sv∈Sv

D(su, sv). This pair selection
corresponds to choosing the synset pair that has the highest degree of entailment. This approach has
been used in word embeddings literature to select most related word pairs (Athiwaratkun & Wilson,
2017). For word pairs that are not in the model, we assign the score equal to the median of all scores.
We evaluate our model scores against the human annotated scores using Spearman’s rank correlation.

Table 3 shows HYPERLEX results of our models DOE-A (asymmetric) and DOE-S (symmetric)
as well as other competing models. The model DOE-A which uses KL divergence and negative
sampling approach S1, S2 and S4 outperforms all other existing models, achieving state-of-the-art
performance for the HYPERLEX noun dataset. (See Section A.1 for hyperparameter details) The
model DOE-S which uses expected likelihood kernel attains a lower score of 0.455 compared to the
asymmetric counterpart (DOE-A). This result underscores the importance of asymmetric measures
which can capture relationship directionality.

Brief summary of other competing models are as follow: FR scores are based on concept word
frequency ratio (Weeds et al., 2004). SLQS uses entropy-based measure to quantify entailment
(Santus et al., 2014). Vis-ID calculates scores based on visual generality measures (Kiela et al., 2015).
WN-B calculates the scores based on the shortest path between concepts in WN taxonomy (Miller,
1995). w2g Guassian embeddings trained using the methodology in Vilnis & McCallum (2014).
VOE Vector order embeddings (Vendrov et al., 2015). Euc and Poin calculate scores based on the
Euclidean distance and Poincaré distance of the trained Poincaré embeddings (Nickel & Kiela, 2017).
The models FR and SLQS are based on word occurrences in text corpus, where FR is trained on
the British National Corpus and SLQS is trained on UKWAC, WACKYPEDIA (Bailey & Thompson,
2006; Baroni et al., 2009) and annotated BLESS dataset (Baroni & Lenci, 2011). Other models
Vis-ID, w2g, VOE, Euc, Poin and ours are trained on WordNet, with the exception that Vis-ID also
uses Google image search results for visual data. The reported results of FR, SLQS, Vis-ID, WN-B,
w2g and VOE are from Vulić et al. (2016).

We note that an implementation of Gaussian embeddings model (w2g) reported by Vulić et al. (2016)
does not perform well compared to previous benchmarks such as Vis-ID, FR, SLQS. Our training
approach yields the opposite results and outperforms other highly competitive methods such as
Poincaré embeddings and Hypervec. This underscores the fact that training approach matters a
great deal, even if the concept representation of our work and Vilnis & McCallum (2014)’s are both
Gaussian distributions. In addition, we also observe that the vector order embeddings (VOE) do not
perform well compared to our model. We hypothesize that it is due to the “soft” orders induced by
the divergence penalty that allows our model scores to reflect more closely with hypernymy degrees.

We note another interesting observation that a model trained on a symmetric divergence (ELK) from
Section 4.2 can also achieve a high HYPERLEX correlation of 0.532 if KL is used to calculate the
model scores. This is because the encapsulation behavior can arise even though the training penalty
is symmetric (more explanation in Section 4.2). However, using the symmetric divergence based on
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Table 3: Spearman’s correlation for HYPERLEX nouns.

FR SLQS Vis-ID WN-B w2g VOE Poin HypV DOE-S DOE-A

ρ 0.283 0.229 0.253 0.240 0.192 0.195 0.512 0.540 0.455 0.590

Table 4: Spearman’s correlation for HYPERLEX nouns for different negative sample schemes.

Negative Samples ρ

1×S1 0.527
2×S1 0.529
5×S1 0.518
10×S1 0.517
1×S1 + S2 0.567
2×S1 + S2 0.567
3×S1 + S2 0.584
5×S1 + S2 0.561
10×S1 + S2 0.550

Negative Samples ρ

1×S1 + S2 + S4 0.590
2×S1 + S2 + S4 0.580
5×S1 + S2 + S4 0.582
1×S1 + S2 + S3 0.570
2×S1 + S2 + S3 0.581
S1 + 0.1×S2 +0.9×S3 0.564
S1 + 0.3×S2 +0.7×S3 0.574
S1 + 0.7×S2 +0.3×S3 0.555
S1 + 0.9×S2 +0.1×S3 0.533

ELK results in poor performance on HYPERLEX (0.455), which is expected since it cannot capture
the directionality of hypernymy.

We note that another model LEAR obtains an impressive score of 0.686 (Vulić & Mrkšić, 2014).
However, LEAR use pre-trained word embeddings such as WORD2VEC or GLOVE as a pre-processing
step, leveraging a large vocabulary with rich semantic information. To the best of our knowledge,
our model achieves the highest HYPERLEX Spearman’s correlation among models without using
large-scale pre-trained embeddings.

Table 4 shows the effects of negative sample selection described in Section 3.5. We note again that
S1 is the technique used in literature Socher et al. (2013); Vendrov et al. (2015) and S2, S3, S4 are
the new techniques we proposed. The notation, for instance, k × S1 + S2 corresponds to using k
samples from S1 and 1 sample from S2 per each positive sample. We observe that our new selection
methods offer strong improvement from the range of 0.51− 0.52 (using S1 alone) to 0.55 or above
for most combinations with our new selection schemes.

5 FUTURE WORK

Analogous to recent work by Vulić & Mrkšić (2014) which post-processed word embeddings such as
GLOVE or WORD2VEC, our future work includes using the WordNet hierarchy to impose encapsula-
tion orders when training probabilistic embeddings.

In the future, the distribution approach could also be developed for encoder-decoder based models for
tasks such as caption generation where the encoder represents the data as a distribution, containing
semantic and visual features with uncertainty, and passes this distribution to the decoder which maps
to text or images. Such approaches would be reminiscent of variational autoencoders (Kingma &
Welling, 2013), which take samples from the encoder’s distribution.
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Douwe Kiela, Laura Rimell, Ivan Vulić, and Stephen Clark. Exploiting image generality for lexical entailment
detection. In ACL, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Skip-thought vectors. In NIPS, 2015.

Yingzhen Li and Richard E. Turner. Rényi divergence variational inference. In NIPS, 2016.

Friedrich Liese and Igor Vajda. Convex Statistical Distances. Leipzig : Teubner, 1987.

Edward Loper and Steven Bird. Nltk: The natural language toolkit. In ACL workshop, 2002.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. CoRR, abs/1301.3781, 2013.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11), November 1995.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. NIPS,
2017.

Leandro Pardo. Statistical Inference Based on Divergence Measures, chapter 1, pp. 1–54. Chapman & Hall/CRC,
2006.

Alfred Renyi. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Berkeley, Calif.,
1961.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, and Phil Blunsom. Reasoning
about entailment with neural attention. CoRR, abs/1509.06664, 2015.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine Schulte im Walde. Chasing hypernyms in vector spaces
with entropy. In EACL, 2014.

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning with neural tensor
networks for knowledge base completion. In NIPS, 2013.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of images and language. CoRR,
abs/1511.06361, 2015.

Luke Vilnis and Andrew McCallum. Word representations via gaussian embedding. CoRR, abs/1412.6623,
2014.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption
generator. In CVPR, 2015.
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A SUPPLEMENTARY MATERIALS

A.1 MODEL HYPERPARAMETERS

In Section 4.3, the 2−dimensional Gaussian model is trained with S-1 method where the number of negative
samples is equal to the number of positive samples. The best hyperparameters for d = 2 model is (m,β, γ) =
(100.0, 2× 10−4, 3.0).

In Section 4.2, the best hyperparameters (m,β, γ) for each of our model are as follows: For Gaussian with
KL penalty: (2000.0, 5 × 10−5, 500.0), , Gaussian with reversed KL penalty: (1000.0, 1 × 10−4, 1000.0),
Gaussian with ELK penalty (1000, 1× 10−5, 10).

In Section 4.4, we use the same hyperparameters as in 4.2 with KL penalty, but a different negative sample
combination in order to increase the distinguishability of divergence scores. For each positive sample in the
training set, we use one sample from each of the methods S1, S2, S3. We note that the model from Section 4.2,
using S1 with the KL penalty obtains a Spearman’s correlation of 0.527.

A.2 ANALYSIS OF TRAINING METHODOLOGY

We emphasize that Gaussian embeddings have been used in the literature, both in the unsupervised settings
where word embeddings are trained with local contexts from text corpus, and in supervised settings where
concept embeddings are trained to model annotated data such as WORDNET . The results in supervised settings
such as modeling WORDNET have been reported to compare with competing models but often have inferior
performance (Vendrov et al., 2015; Vulić et al., 2016). Our paper reaches the opposite conclusion, showing that
a different training approach using Gaussian representations can achieve state-of-the-art results.

A.2.1 DIVERGENCE THRESHOLD

Consider a relationship f � g where f is a hyponym of g or g is a hypernym of f . Even though the divergence
D(f ||g) can capture the extent of encapsulation, a density f will have the lowest divergence with respect with
g only if f = g. In addition, if f is a more concentrated distribution that is encompassed by g, D(f ||g) is
minimized when f is at the center of g. However, if there any many hyponyms f1, f2 of g, the hyponyms can
compete to be close to the center, resulting in too much overlapping between f1 and f2 if the random sampling
to penalize negative pairs is not sufficiently strong. The divergence threshold γ is used such that there is no
longer a penalty once the divergence is below a certain level.

We demonstrate empirically that the threshold γ is important for learning meaningful Gaussian distributions. We
fix the hyperparameters m = 2000 and β = 5× 10−5, with S1 negative sampling. Figure 5 shows that there is
an optimal non-zero threshold and yields the best performance for both WORDNET Hypernym prediction and
HYPERLEX Spearman’s correlation. We observe that using γ = 0 is detrimental to the performance, especially
on HYPERLEX results.
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Figure 5: (a) Spearman’s correlation on HYPERLEX versus γ (b) Test Prediction Accuracy versus γ.

A.2.2 INITIAL VARIANCE SCALE

As opposed to the mean vectors that are randomly initialized, we initialize all diagonal covariance elements to
be the same. Even though the variance can adapt during training, we find that different initial scales of variance
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result in drastically different performance. To demonstrate, in Figure 6, we show the best test accuracy and
HYPERLEX Spearman’s correlation for each initial variance scale, with other hyperparameters (margin m and
threshold γ) tuned for each variance. We use S1 + S2 + S4 as a negative sampling method. In general, a low
variance scale β increases the scale of the loss and requires higher margin m and threshold γ. We observe that
the best prediction accuracy is obtained when log(β) ≈ −10 or β = 5× 10−5. The best HYPERLEX results are
obtained when the scales of β are sufficiently low. The intuition is that low β increases the scale of divergence
D(·||·), which increases the ability to capture relationship nuances.
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Figure 6: (a) Spearman’s correlation on HYPERLEX versus log(β) (b) Test Prediction Accuracy
versus log(β).

A.2.3 LOSS FUNCTION

We verify that for this task, our loss function in Equation 7 in superior to Equation 1 originally proposed by
Vilnis & McCallum (2014). We use the exact same setup with new negative sample selections and KL divergence
thresholding and compare the two loss functions. Table 5 verifies our claim.

Table 5: Best results for each loss function for two negative sampling setups: S1 (Left) and S1 + S2
+ S4 (Right)

Test Accuracy HYPERLEX

Eq. 7 0.923 0.527
Eq. 1 0.886 0.524

Test Accuracy HYPERLEX

Eq. 7 0.911 0.590
Eq. 1 0.796 0.489

A.2.4 DIMENSIONALITY

Table 6 shows the results for many dimensionalities for two negative sample strategies: S1 and S1 + S2 + S4 .

Table 6: Best results for each dimension with negative samples S1 (Left) and S1 + S2 + S4 (Right)

d Test Accuracy HYPERLEX

5 0.909 0.437
10 0.919 0.462
20 0.922 0.487
50 0.923 0.527

100 0.924 0.526
200 0.918 0.526

d Test Accuracy HYPERLEX

5 0.901 0.483
10 0.909 0.526
20 0.914 0.545
50 0.911 0.590

100 0.913 0.573
200 0.910 0.568
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A.2.5 α-DIVERGENCES

Table 7 show the results using models trained and evaluated with D(·||·) = Dα(·||·) with negative sampling
approach S1. Interestingly, we found that α→ 1 (KL) offers the best result for both prediction accuracy and
HYPERLEX . It is possible that α = 1 is sufficiently asymmetric enough to distinguish hypernym directionality,
but does not have as sharp penalty as in α > 1, which can help learning.
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Figure 7: (a) Spearman’s correlation on HYPERLEX versus α (b) Test Prediction Accuracy versus α.
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