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Abstract

Sequential decision problems for real-world applications of-
ten need to be solved in real-time, requiring algorithms to
perform well with a restricted computational budget. Width-
based lookaheads have shown state-of-the-art performance in
classical planning problems as well as over the Atari games
with tight budgets. In this work we investigate width-based
lookaheads over Stochastic Shortest paths (SSP). We anal-
yse why width-based algorithms perform poorly over SSP
problems, and overcome these pitfalls proposing a method to
estimate costs-to-go. We formalize width-based lookaheads
as an instance of the rollout algorithm, give a definition of
width for SSP problems and explain its sample complexity.
Our experimental results over a variety of SSP benchmarks
show the algorithm to outperform other state-of-the-art rollout
algorithms such as UCT and RTDP.

Keywords: width-based planning, finite-horizon MDPs, roll-
out algorithm, base policies

Introduction
Model-based lookahead algorithms provide the ability to
autonomously solve a large variety of sequential decision
making problems. Lookaheads search for solutions by con-
sidering sequences of actions that can be made from the
current state up to a certain time into the future. For real-
world applications decisions often need to be computed in
real-time, requiring algorithms to perform with a restricted
computational budget. Limiting search in this way can result
in considering states and trajectories which do not provide
useful information. To address this, lookaheads can be aug-
mented with heuristics that estimate costs-to-go to prioritise
states and trajectories, and have been shown to perform well
where computation budgets are restricted (Eyerich, Keller,
and Helmert 2010).

This paper is concerned with Stochastic Shortest Path
(SSP) problems which are often used to compare and evalu-
ate search algorithms. We consider the width-based family
of planning algorithms, first introduced by Lipovetzky and
Geffner (2012), which aim to prioritise the exploration of
novel areas of the state space. Two width-based planners,
Lipovetzky and Geffner’s breadth-first search, IW(1), and
the depth-first search, Rollout-IW(1) (Bandres, Bonet, and
Geffner 2018), are investigated on SSP problems. We first
provide the necessary background for SSP problems and

width-based algorithms, while also formalising width-based
algorithms as instances of the rollout algorithm (Bertsekas
2017). We then show the motive to augment width-based
lookaheads with cost estimates on SSP problems, define the
width of SSP problems and propose a novel width-based al-
gorithm that estimates costs-to-go by simulating a general
base policy. Our experimental study shows that the algorithm
compares favourably to the original Rollout-IW(1) algorithm
and to other state-of-the-art instances of the rollout algorithm.

Optimal Control and Dynamic Programming
We concern ourselves with the problem of decision under
stochastic uncertainty over a finite number of stages, which
we characterise following closely the presentation of Bert-
sekas (2017). We are given a discrete-time dynamic system

xk+1 = fk(xk, uk,wk), k = 0, 1, . . . , N − 1 (1)

where the state xk is an element of a space Sk ⊂ Rd, the
control uk is an element of space Ck ⊂ N, and the random
disturbance wk is an element of a space Dk ⊂ Rm 1. The
control uk is constrained to take values in a given non-empty
subset U(xk) ⊂ Ck, which depends on the current state xk,
so that uk ∈ Uk(xk) for all xk ∈ Sk and k. The random
disturbance wk is characterised by a probability distribution
Pk(·|xk, uk) that may depend explicitly on xk and uk but not
on the values of previous disturbances wk−1, . . . ,w0. We
consider the class of policies, or control laws, corresponding
to the sequence of functions

π = {µ0, . . . , µN+1} (2)

where µk maps states xk into controls uk = µk(xk) and is
such that µk(xk) ∈ U(xk) for all xk ∈ Sk. Such policies
will be called admissible. Given an initial state x0 and admis-
sible policy π, the states xk and disturbances wk are random
variables with distributions defined through the system equa-
tion

xk+1 = fk(xk, µk(xk),wk), k = 0, 1, . . . , N − 1 (3)

1We define states and disturbance as elements of subsets of the
reals to avoid too specific assumptions on the structure of Sk, Uk

and Dk.



Thus, for given functions gf (terminal cost) and g the ex-
pected cost of π starting at x0 is

Jπ(x0) = E

{
gf (xN ) +

N−1∑
k=0

g(xk, µk(xk),wk)

}
(4)

where the expectation is taken over the random variables wk

and xk. An optimal policy π∗ is one that minimises this cost

Jπ∗(x0) = min
π∈Π

Jπ(x0) (5)

where Π is the set of all admissible policies. The optimal
cost J∗(x0) depends on x0 and is equal to Jπ∗(x0). We will
refer to J∗ as the optimal cost or optimal value function that
assigns to each initial state x0 the cost J∗(x0).

Stochastic Shortest Path
We use Bertsekas’ (2017) definition, that formulates Stochas-
tic Shortest Path (SSP) problems as the class of optimal
control problems where we try to minimize

Jπ(x0) = lim
N→∞

Ewk

{N−1∑
k=0

αkg(xk, µk(xk),wk)

}
with α set to 1 and we assume there is a cost-free termination
state t which ensures that Jπ(x0) is finite. Once the system
reaches that state, it remains there at no further cost, that
is, f(t, u,w) = t with probability 1 and g(t, u,w) = 0
for all u ∈ U(t). We note that the optimal control problem
defined at the beginning of this section is a special case where
states are pairs (xk, k) and all pairs (xN , N) are lumped into
termination state t.

In order to guarantee termination with probability 1, we
will assume that there exists an integer m such that there is a
positive probability that t will be reached in m stages or less,
regardless of what π is being used and the initial state x0.
That is, for all admissible policies and i = 1, ..., m it holds

ρπ = max
i
P{xm 6= t | x0 = xi, π} < 1 (6)

A policy π will be proper if the condition above is satisfied
for some m, and improper otherwise.

The Rollout Algorithm
A particularly effective on-line approach to obtain subopti-
mal controls is rollout, where the optimal cost-to-go from
current state xk is approximated by the cost of some subop-
timal policy and a d-step lookahead strategy. The seminal
RTDP (Barto, Bradtke, and Singh 1995) algorithm, is an in-
stance of the rollout strategy where the lookahead is uniform,
d = 1, and controls µ̄(xk) selected at stage k and for state
xk are those that attain the minimum

min
uk∈U(xk)

E

{
gk(xk, uk,wk) + J̃k+1(fk(xk, uk,wk))

}
(7)

where J̃k+1 is an approximation on the optimal cost-to-go
J∗k+1. If the approximation is from below, we will refer to it as
a base heuristic, and can either be problem specific (Eyerich,

Keller, and Helmert 2010), domain independent (Bonet and
Geffner 2003; Yoon, Fern, and Givan 2007) or learnt from
interacting with a simulator (Mnih et al. 2015). Alternatively,
J̃k+1 can be defined as approximating the cost-to-go of a
given suboptimal policy π, referred to as a base policy, where
estimates are obtained via simulation (Rubinstein and Kroese
2017). We will denote the resulting estimate of cost-to-go
as Hk(xk)2. The result of combining the lookahead strategy
and the base policy or heuristic is the rollout policy, π̄ {µ̄0,
µ̄1, . . ., µ̄N−1} with associated cost J̄(xk). Such policies
have the property that for all xk and k

J̄k(xk) ≤ Hk(xk) (8)

when Hk is approximating from above the cost-to-go of a
policy, as shown by Bertsekas (2017) from the DP algorithm
that defines the costs of both the base and the rollout policy.
To compute at time k the rollout control µ̄(xk), we compute
and minimize over the values of the Q-factors of state and
control pairs (xl, ul),

Ql(xl, ul) = E
{
gl(xl, ul,wl) +Ql+1(fl(xl, ul,wl))

}
(9)

for admissible controls ul ∈ U(xl), l = k+ i, with i = 0, ...,
d− 1, and

Ql(xl) = E
{
Hl(xl)

}
(10)

for l = k+d. In this paper we make a number of assumptions
to ensure the viability of lookaheads with d > 1. We will as-
sume that we can simulate the system in Eq. 3 under the base
policy, so we can generate sample system trajectories and
corresponding costs consistent with probabilistic data of the
problem. We further assume that we can reset the simulator
of the system to an arbitrary state. Performing the simulation
and calculating the rollout control still needs to be possible
within the real-time constraints of the application, which is
challenging as the number of Q-factors to estimate and min-
imizations to perform in Equations 9-10 is exponential on
the average number of controls available per stage and d, the
maximum depth of the lookahead. We avoid the blowup of
the size of the lookahead by cutting the recursion in Equa-
tion 9 and replacing the right hand side by that of Equation 10.
As detailed in the next section, we will do this when reaching
states xl that are deemed not to be novel according to the
notion of structural width by Lipovetzky and Geffner (2012).
This results in a selective strategy alternative to the upper con-
fidence bounds (Auer, Cesa-Bianchi, and Fischer 2002) used
in popular instances of Monte-Carlo Tree Search (MCTS)
algorithms like Kocsis and Szepesvari’s (2006) UCT, that
also are instances of the rollout algorithm (Bertsekas 2017).

Width-Based Lookaheads
We instantiate the rollout algorithm with an l-step,
depth-selective lookahead policy using Width-based
Search (Lipovetzky and Geffner 2012). These al-
gorithms both focus the lookahead and have good

2We use the subindex k to emphasize that the result of simulating
a policy depends on the time step.



any-time behaviour. When it comes to prioritisation
of expanding states, width-based methods select first
states with novel valuations of features defined over
the states (Lipovetzky, Ramirez, and Geffner 2015;
Geffner and Geffner 2015). The most basic width-based
search algorithm is IW (1), a plain breadth-first search,
guaranteed to run in linear time and space as it only expands
novel states. A state xl is novel if and only if it encounters
a state variable 3 xi ⊂ R, whose value v ∈ D(xi), where
D(xi) is the domain of variable xi, has not been seen before
in the current search. Note that novel states are independent
of the objective function used, as the estimated cost-to-go
J is not used to define the novelty of the states. IW(1) has
recently been integrated as an instance of a rollout algorithm,
and has been shown to perform well with respect to learning
approaches with almost real-time computation budgets over
the Atari games (Bandres, Bonet, and Geffner 2018).

Depth-First Width-Based Rollout
The breadth-first search strategy underlying IW(1) ensures a
state variable xi is seen for the first time through the shortest
sequence of control steps, i.e. the shortest path assuming
uniform costs g(x, u,w).4 On the other hand, depth-first
rollout algorithms cannot guarantee this property in general.
Rollout IW (RIW) changes the underlying search of IW into
a depth-first rollout. In order to ensure that RIW(1) considers
a state to be novel iff it reaches at least one value of a state
variable xil through a shortest path, we need to adapt the
definition of novelty. Intuitively, we need to define a set of
state features to emulate the property of the breadth-first
search strategy. Let d(xi, v) be the best upper bound known
so far on the shortest path to reach each value v ∈ D(xi) of
a state variable from the root state xk. Initially d(xi, v) =
N for all state variables, where N is the horizon which is
the maximum search depth allowed for the lookahead, thus
denoting no knowledge initially. When a state xl is generated,
d(xi, v) is set to l for all state variables where l < d(xi, v).

Since RIW(1) always starts each new rollout from the
current state xk, in order to prove a state xl to be novel we
have to distinguish between xl being already in the lookahead
tree and xl being new. If xl is new in the tree, to conclude
it is novel, it is sufficient to show that there exists a state
variable xi whose known shortest path value d(xi, v) > l. If
xl is already in the tree, we have to prove the state contains
at least one state variable value xi whose shortest path is l =
d(xi, v), i.e. state xl is still novel and on the shortest path to
xi. Otherwise the rollout is terminated.

In order to ensure the termination of RIW(1), non-novel
states are marked with a solved label. The label is back-
propagated from a state xl+1 to xl if all the admissible control
inputs u ∈ U(xl) yield states xl+1 = fl(xl, u,wl) already
labeled as solved. RIW(1) terminates once the root state is
labeled as solved (Bandres, Bonet, and Geffner 2018). Non-
novel states xl are treated as terminals and their cost-to-go is

3In order to use the notion of novelty, we assume state spaces S
to be stationary.

4This can easily be generalized to non-uniform costs by using
Dijkstra’s algorithm instead.

Figure 1: 3x3 GridWorld problem in which the blue square
is the agent’s initial position and the red squares show two
goal locations. The yellow lines represent two action trajec-
tories the agent can perform from the initial state.

set to 0. This can induce a bias towards non-novel states rather
than true terminal states. In the next section we investigate
how to overcome the ill-behaviour of RIW(1) when a state
xl is non-novel. We discuss the importance of estimating
upper-bounds on the cost-to-go Hl(xl) instead of assigning
termination costs. This turns out to be essential for RIW(1)
over SSPs.

Width-Based Lookaheads on SSPs
Despite the successes of width-based algorithms on a vari-
ety of domains including the Atari-2600 games (Lipovetzky,
Ramirez, and Geffner 2015; Bandres, Bonet, and Geffner
2018), the algorithms, as will be shown, have poor perfor-
mance on SSP problems. We illustrate this with two scenarios.
First, width-based lookaheads prefer trajectories leading to
non-novel states over longer ones that reach a goal. Second,
and specific to depth-first width-based lookaheads, we show
that useful information is ignored. We can demonstrate these
scenarios using a simple SSP problem with uniform and uni-
tary action costs, shown in Figure 1. The task is to navigate
to a goal location using the least number of left, right, up
or down actions. Any action that would result in the agent
moving outside of the grid produces no change in its posi-
tion. The features used by the width-based planners are the
coordinates for the current agent position. Both IW(1) and
RIW(1) algorithms, given a sufficient budget, would result
in the lookahead represented by yellow lines in Figure 1. As
expected, both lookaheads contain the shortest paths to make
each feature of the problem true. For both IW(1) and RIW(1),
we back up the costs found in the lookahead starting from
terminal and non-novel states. In this instance a move down
or left from the agent’s initial state has no effect, thus imme-
diately producing a non-novel state.When backing up values,
down and left have an expected cost of 1, which is less than
the optimal cost of 2 for up, the action that leads to the top
left goal state. This prevents both IW(1) and RIW(1) from
ever achieving the goal, as they keep selecting those useless
actions. Furthermore, if the goal is the top right location in
Figure 1, RIW(1)’s random action selection can generate a
trajectory that reaches the goal. Yet, trajectories leading to the
goal are pruned away, as non-novel states in later considered
trajectories are treated as terminals, again resulting in the
lookahead represented by the yellow lines in Figure 1.



Novelty, Labeling and Width of SSPs
Bandres et al. (2018) introduced the algorithm RIW in the
context of deterministic transition functions. In this section
we discuss its properties in the context of SSPs.

The set of features used to evaluate the novelty of a state is
F = {(v, i, d) | v ∈ D(xi)} where D(xi) is the domain of
variable xi, and d is a possible shortest path distance. Note
that the horizon N is the upper-bound of d. The maximum
number of novel states is O(|F |), as the maximum number
of shortest paths for a feature (v, i, ·) ∈ F is N . That is, in
the worst case we can improve the shortest path for (v, i, ·)
by one control input at a time.

The labeling of nodes ensures the number of rollouts from
the initial state in RIW(1) is at most O(|F | × b), where b =
maxxl

|U(xl)| is the maximum number of applicable control
variables in a state, i.e. maximum branching factor. When
the labeling is applied to stochastic shortest path problems,
the resulting lookahead tree is a relaxation of the original
SSP, as it allows just one possible outcome of a control input.
Alternatively, one can back-propagate the label solved to a
state xl iff 1) all admissible control inputs u ∈ U(xl) have
been applied resulting in states labeled as solved, and 2) the
tree contains all the possible resulting states of each control
input u ∈ U(xl). We refer to this new strategy to back-
propagate labels as λ-labeling. We denote as λ the maximum
number of states that can result from applying u ∈ U(xl−1)
in a state xl. That is, λ = maxx,u,w|f(x, u,w)|. RIW(1)
with λ-labeling will terminate after at most O(|F | × b× λ)
rollouts.

Furthermore, we can reconcile the notion of width over
classical planning problems (Lipovetzky and Geffner 2012)
with SSPs. A terminal state t made of features f ∈ F has
width 1 iff there is a trajectory x0, u0, . . . , un−1,xn for n ≤
N where xn = t, such that for each xj in the trajectory 1)
the prefix x0, u0, . . . , uj−1,xj reaches at least one feature
fj = (v, i, d) ∈ F where all (v, i, d′) ∈ F for d′ < d are
unreachable, i.e., it is a shortest path possible to reach a
value in xi, 2) any shortest path to fj can be extended with a
single control input u into a shortest path for a feature fj+1

complying with property 1) in state xj+1, and 3) the shortest
path for fn is also a shortest path for termination state t.
RIW(1) with the new labeling strategy is guaranteed to reach
all width 1 terminal states t.
Theorem 1. Rollout IW(1) with λ-labeling is guaranteed to
reach every width 1 terminal state t in polynomial time in
the number of features F if λ = 1.
If λ =∞, RIW(1) will not propagate any solved label, and
terminate only when the computational budget is exhausted.

For simplicity, we assumed shortest paths are equivalent to
the shortest sequence of control inputs. To generalize to posi-
tive non-uniform costs, the distance d in the features should
keep track of the cost of a path

∑
i g(xi, ui,wi) instead of

its length, and the horizon be applied to the cost of the path.

Cost-to-go Approximation
The most successful methods for obtaining cost-to-go ap-
proximations have revolved around the idea of running a
number of Monte Carlo simulations of a suboptimal base

policy π (Ginsberg 1999; Coulom 2006). This amounts to
generating a given number of samples for the expression
minimized in Equation 7 starting from the states xl over the
set of admissible controls ul ∈ U(xl) in Equation 10, aver-
aging the observed costs. Three main drawbacks (Bertsekas
2017) follow from this strategy. First, the costs associated
with the generated trajectories may be wildly overestimat-
ing J∗(xl) yet such trajectories can be very rare events for
the given policy. Second, some of the controls ul may be
clearly dominated by the rest, not warranting the same level
of sampling effort. Third, initially promising controls may
turn out to be quite bad later on. MCTS algorithms aim at
combining lookaheads with stochastic simulations of policies
and aim at trading off computational economy with a small
risk of degrading performance. We add two new methods to
the MCTS family, by combining the multi-step, width-based
lookahead strategy discussed in the previous section with
two simulation-based cost-to-go approximations subject to a
computational budget that limits the number of states visited
by both the lookahead and base policy simulation.

Width-based Lookaheads with Random Walks
The first method, which we call RIW-RW, uses as the base
policy a random walk, a stochastic policy that assigns the
same probability to each of the controls u admissible for state
x, and is generally regarded as the default choice when no
domain knowledge is readily available. A rolling horizon H
is set for the rollout algorithm that follows from combining
the RIW(1) lookahead with the simulation of random walks.
The maximal length of the latter is set to H − l, where l
is the depth of the non-novel state. Both simulations and
the unrolling of the lookahead are interrupted if the computa-
tional budget is exhausted. While this can result in trajectories
sometimes falling short from a terminal, it keeps a lid on the
possibility of obtaining extremely long trajectories that eat
into the computational budget allowed and preclude from
further extending the lookahead or sampling other potentially
more useful leaf states xl.

Worst-Case Estimates of Rollout Costs
One of the most striking properties of rollout algorithms
is the cost improvement property in Equation 8, suggesting
that upper bounds on costs-to-go can be used effectively
to approximate the optimal costs J∗. Inspired by this, the
second width-based MCTS method we discuss leverages
the sampling techniques known as stochastic enumeration
(SE) (Rubinstein and Kroese 2017) to obtain an unbiased
estimator for upper bounds on costs-to-go, or in other words,
estimates the maximal costs a stochastic rollout algorithm
with a large depth lookahead can incur.

SE methods are inspired by a classic algorithm by D. E.
Knuth to estimate the maximum search effort by backtrack-
ing search (1975). Knuth’s algorithm estimates the total cost
of a tree T with root u keeping track of two quantities, C
the estimate of the total cost, and D the expectation on the
number of nodes in T at any given level of the tree, and
the number of terminal nodes once the algorithm terminates.
Starting with the root vertex u and D ← 1, the algorithm
proceeds by updating D to be D ← |S(u)|D and choosing



randomly a vertex v from the set of successors S(u) of u.
The estimate C is then updated C ← C + c(u, v)D using
the cost of the edge between vertices u and v. These steps
are then iterated until a vertex v′ is selected s.t. S(v′) = 0.
We observe that Knuth’s C quantity would correspond to the
worst-case cost-to-go J̄(x)k of a rollout algorithm using a
lookahead strategy with d set to the rolling horizon H and
the trivial base heuristic that assigns 0 to every leaf state.
Furthermore, we assume that the algorithm either does not
find any terminals within the limits imposed by the computa-
tional budget assigned, or if it finds one such state, it is too
the very last one being visited. Lookaheads define trees over
states connected by controls, edge costs c(u, v) correspond
directly with realisations of the random variable g(x, u,w)
and the set of successors S(v) of a vertex corresponds with
the set of admissible controls U(x). While Knuth’s algorithm
estimates are an unbiased estimator, the variance of this es-
timator can be exponential on the horizon, as the accuracy
of the estimator lies on the assumption that costs are evenly
distributed throughout the tree (Rubinstein and Kroese 2017).
In the experiments discussed next, we use Knuth’s algorithm
directly to provideHk(xk), adding the stopping conditions to
enforce the computational budget and limiting the length of
trajectories to H − l as above. In comparison with simulating
the random walk policy, the only overhead incurred is keep-
ing up-to-date quantities C and D with two multiplications
and an addition.

Experimental Study
Domains
To evaluate the different methods we use a number of
GridWorld (Sutton and Barto 2018) domains, an instance
of a SSP problem. The goal in GridWorld is to move from
an initial position in a grid to a goal position. In each state
4 actions are available: to move up, down, left or right. Any
action that causes a move outside of the grid results in no
change to the agent’s position. Actions have a cost of 1, with
the exception of actions that result in reaching the goal state,
that have a cost of 0. The complexity of GridWorld can
be scaled through the size of the grid and the location and
number of goals. GridWorld also allows for extensions,
which we use to have domains with a stationary goal, moving
goals, obstacles and partial observability. For each instance
of the GridWorld domain we have a d0 × d1 grid, and
the state is the current location of the agent, x = (a0, a1)
where ai is the agent’s position in dimension i. The transition
function is formalised as

xk+1 = xk + efuk
if xk + efuk

∈ Sk+1 ∧ xk /∈ Tk
(11)

where, ef specifies the change in the agent’s position for
each action, Tk ⊂ Sk is the set of goal states and xk+1 = xk
where the condition in Equation 11 is not met. The cost of a
transition is defined as

gk(xk, uk,wk) = 0 if xk+1 ∈ Tk+1 (12)

otherwise, gk(xk, uk,wk) = 1.
For the stationary goal setting we have a single goal state

which is positioned in the middle of the grid by dividing

Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp Rnd. 29.6± 2.5 13.5± 1.6 7.5± 0.9
UCT Rnd. 29.0± 2.6 17.1± 2.0 13.3± 1.5

RIW
NA 39.1± 2.8 38.1± 2.9 38.4± 2.9

Rnd. 33.7± 2.5 6.9± 0.7 4.7± 0.4

20

1Stp Rnd. 89.6± 3.7 59.8± 5.2 29.6± 3.1
UCT Rnd. 85.2± 4.3 72.7± 5.8 45.7± 4.4

RIW
NA 79.8± 5.5 79.8± 5.5 80.2± 5.5

Rnd. 88.2± 3.9 55.3± 5.2 10.5± 0.9

50

1Stp Rnd. 215.2± 11.5 201.8± 13.5 177.9± 13.5
UCT Rnd. 220.4± 10.8 199.2± 13.5 190.6± 13.9

RIW
NA 200.2± 13.8 200.2± 13.8 200.2± 13.8

Rnd. 223.2± 10.4 199.9± 13.6 145.5± 12.9

Table 1: Average and 95% confidence interval for the cost
on GridWorld with a stationary goal. Costs reported are
from 200 episodes over 10 different initial states (20 episodes
per initial state) of the GridWorld with a square grid with
width and length equal to the dimension (Dim.) value. The
horizon of each problem is 5 times the dimension value.

and rounding d0 and d1 by two. The problem setting with
moving goals, has the set of goal states modified as follows

Tk+1 = {tk + δtk | tk ∈ Tk} if xk /∈ Tk (13)

where δtk gives the relative change of the goal state tk for
the time step k + 1 and Tk+1 = Tk if xk ∈ Tk. We use
T0 = {(0, d1 − 1), (d0 − 1, 0)}, d0 = d1 and

δtk =


(1,−1) if tk = (0, d1 − 1)

(−1, 1) if tk = (d0 − 1, 0)

δtk−1
otherwise

(14)

Resulting in two goals starting at opposite corners of the grid
moving back and forth on the same diagonal. The obstacles
setting, uses the stationary goal, but modifies Sk such that,

Sk = {(s0, s1) | 0 ≤ s0 < d0, 0 ≤ s1 < d1} \O (15)

where O ⊂ N2 and is the set of obstacles, that is grid cells
in which the agent is not allowed.

Having partially observable obstacles in GridWorld pro-
vides an instance of the stochastic Canadian Traveller Prob-
lem (CTP) (Papadimitriou and Yannakakis 1991). The objec-
tive in CTP is to find the shortest path between one location
in a road map to another, however, there is a known probabil-
ity for each road in the map that due to weather conditions
the road is blocked. A road in CTP can only be observed
as being blocked or unblocked by visiting a location con-
nected to it, and once a road status is observed the status
remains unchanged. In terms of the GridWorld problem,
each grid cell has a known probability of being a member of
the obstacle set, O. The agent can only observe cells as being
obstacles or not when it is in a neighbouring cell. Once a grid
cell is observed it is then known that it is either an obstacle
or not for the remaining duration of the episode.

John Langford designed two MDP problems5 described
as Reinforcement Learning (RL) "Acid" intended to be

5https://github.com/JohnLangford/RL_acid



Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp Rnd. 17.9± 2.1 10.1± 1.0 6.8± 0.5
UCT Rnd. 18.9± 2.2 11.0± 1.3 10.2± 1.1

RIW
NA 39.8± 2.7 38.6± 2.8 38.9± 2.8

Rnd. 21.3± 2.3 5.7± 0.5 4.4± 0.3

20

1Stp Rnd. 81.5± 4.2 45.0± 4.4 25.5± 2.8
UCT Rnd. 81.5± 4.3 44.9± 4.7 38.6± 3.7

RIW
NA 83.5± 4.8 82.6± 5.0 82.8± 4.9

Rnd. 83.4± 4.2 39.8± 4.2 10.8± 0.7

50

1Stp Rnd. 230.5± 7.8 195.3± 11.8 141.5± 12.1
UCT Rnd. 232.7± 7.6 196.7± 11.6 175.2± 11.9

RIW
NA 212.9± 11.3 215.9± 10.8 223.5± 9.8

Rnd. 236.2± 6.5 200.4± 11.4 110.6± 11.8

Table 2: Same experimental setting as Table 1 over
GridWorld with a moving goal.

difficult to solve using common RL algorithms, such as Q-
learning. Langford’s two problems allow two actions from
every state. The state space for the problems is Sk = {i | 0 ≤
i < N} where the number of states value,N , allows the com-
plexity of the problem to be controlled. Langford originally
specified the problems as reward-based, here we modify them
to be SSP cost-based problems. Reward shaping is commonly
used to make Reinforcement Learning easier by encouraging
actions, through higher rewards, towards a goal state or states.
The first of Langford’s problems is named Antishaping
and uses reward shaping to encourage actions away from the
goal state. Antishaping has the transition function

xk+1 =

{
xk + 1 if uk = 0 ∧ xk /∈ Tk
xk − 1 if uk = 1 ∧ xk − 1 ≥ 0 ∧ xk /∈ Tk

(16)

otherwise, the state remains unchanged, xk+1 = xk. The
set containing the goal state is Tk = {N − 1}, which can
be achieved by continuously selecting uk = 0. The cost
of each transition in Antishaping is 0.25 divided by N
- xk+1, except when xk+1 = N − 1 where the cost is 0.
The problem becomes a large plateau where longer paths
become more costly at larger rates. The motivation behind
Langford’s second problem, Combolock, is if many actions
lead back to a start state, random exploration is inadequate.
The Combolock problem has the transition function

xk+1 =

{
xk + 1 if uk = solxk

∧ xk /∈ Tk
xk if xk ∈ Tk

(17)

otherwise xk+1 is equal to the initial position of 0. The goal
state is Tk = {N − 1} and solxk

is either 0 or 1 assigned
to state xk which remains constant. For each state x ∈ S,
solx has an equal chance of either being 0 or 1. The cost of
each transition in Combolock is 1 except for the transition
that leads to the terminal state N − 1 where the cost is 0.
While common Reinforcement Learning algorithms such as
Q-Learning methods will struggle to solve these domains, it
is claimed by Langford that the E3 (Kearns and Singh 2002)
family of algorithms, whose exploration do not rely solely
on random policies or reward feedback but on exploring the
maximum number of states, will perform well.

Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp
Man. 38.1± 2.8 39.0± 2.7 38.8± 2.7
Rnd. 43.9± 1.9 35.9± 2.5 25.3± 2.4

UCT
Man. 37.0± 2.9 36.4± 2.9 36.4± 2.9
Rnd. 43.8± 1.9 38.5± 2.5 25.9± 1.9

RIW
Man. 36.4± 2.9 36.4± 2.9 36.4± 2.9
NA 49.8± 0.4 48.8± 1.0 49.3± 0.8

Rnd. 44.9± 1.7 34.5± 2.8 19.3± 2.1

20

1Stp
Man. 76.7± 5.5 77.1± 5.4 76.7± 5.5
Rnd. 97.9± 1.6 88.0± 3.4 62.7± 4.8

UCT
Man. 78.0± 5.4 78.4± 5.3 73.4± 5.7
Rnd. 98.7± 1.2 96.4± 1.9 77.2± 4.2

RIW
Man. 79.7± 4.9 76.7± 5.5 76.7± 5.5
NA 100.0± 0.0 100.0± 0.0 99.6± 0.8

Rnd. 98.5± 1.3 88.0± 3.4 29.3± 3.1

50

1Stp
Man. 194.6± 13.4 191.5± 13.6 196.6± 13.2
Rnd. 249.2± 1.1 244.4± 3.7 216.8± 9.3

UCT
Man. 194.6± 13.4 195.6± 13.3 184.4± 13.9
Rnd. 249.0± 1.9 243.1± 4.3 231.6± 7.9

RIW
Man. 208.6± 10.7 210.6± 11.1 193.5± 13.4
NA 250.0± 0.0 250.0± 0.0 250.0± 0.0

Rnd. 247.9± 2.6 242.9± 4.3 196.1± 11.3

Table 3: Same settings as Table 1 over GridWorld with
fully observable obstacles and a stationary goal.

Methodology
We evaluate the depth-first width-based rollout algorithm,
RIW(1), with and without being augmented using base poli-
cies. λ = 1 is used for the labels back-propagation. We did
not observe statistically significant changes with λ =∞. For
the GridWorld domain we define the features on which
RIW(1) plans over as F = {(a, i, d) | a ∈ D(xi)} where d
is the length of the control input path from the initial state, a
is the agent’s position in the grid in dimension i and D(xi)
is the domain of the agent’s position, a, in dimension i. For
Antishaping and Combolock the feature set will be
F = {(i, d) | i ∈ N)} where i is the state number the agent
is in and N is the number of states of the domain.

Two additional rollout algorithms are also considered, the
one-step rollout algorithm, RTDP (Barto, Bradtke, and Singh
1995) and the multi-step, selective, regret minimisation, roll-
out algorithm Upper Confidence bounds applied to Trees
(UCT) (Kocsis and Szepevari 2006). The exploration param-
eter of UCT is set to 1.0 for all experiments. For all the
methods that use a base policies the maximum depth of a
simulated trajectory is equal to H − l, where l is the depth
at which the simulated trajectory began and H is the horizon
value of the lookahead. Also, a single, as opposed to multiple,
simulated trajectory for the cost-to-go approximation is used,
as initial results indicated it is favourable. We also report
the algorithms using a Manhattan distance heuristic for the
GridWorld domains that use obstacles. Using the Manhat-
tan distance for the GridWorld problems with obstacles
provides a lower bound on the cost-to-go.

Each method on the domains is evaluated at different levels
of complexity by varying the number of states. The methods
are evaluated using different simulator budgets. The simulator
budgets are the maximum simulator calls allowed for the
evaluation at each time step. For each algorithm and domain



Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp
Man. 36.6± 2.9 35.0± 3.0 35.9± 2.9
Rnd. 40.4± 2.1 27.2± 2.5 15.4± 1.6

UCT
Man. 28.4± 2.9 29.5± 3.1 18.5± 2.7
Rnd. 41.5± 2.0 36.1± 2.3 22.2± 2.0

RIW
Man. 28.1± 3.0 28.3± 3.0 26.5± 3.0
NA 49.5± 0.7 49.1± 0.9 49.8± 0.4

Rnd. 43.5± 1.9 23.4± 2.6 11.1± 1.3

20

1Stp
Man. 71.8± 5.8 74.0± 5.7 71.9± 5.8
Rnd. 97.0± 1.7 82.3± 3.9 49.8± 4.6

UCT
Man. 53.8± 5.7 60.9± 6.2 38.0± 5.5
Rnd. 98.0± 1.3 87.4± 4.0 63.0± 4.8

RIW
Man. 53.5± 5.6 44.1± 5.5 44.1± 5.6
NA 100.0± 0.0 99.5± 1.0 99.5± 1.0

Rnd. 97.6± 1.5 79.7± 4.4 20.7± 1.9

Table 4: Same settings as Table 1 over GridWorld with
partially observable obstacles and a stationary goal.

setting we evaluate the performance over 10 different initial
states with 20 episodes per initial state, equalling a total of
200 episodes. The values reported here for each algorithm and
domain setting are the average and 95% confidence interval of
the costs across the 200 episodes. Each episode was run using
a single AMD Opteron 63xx class CPU @ 1.8 GHz, with
an approximate runtime of 0.75 seconds per 1,000 simulator
calls across the different algorithm and domain settings.

Results are also presented for the Atari-2600 game
Skiing, which is a SSP problem. We use the OpenAI
gym’s (Brockman et al. 2016) interface of the Arcade Learn-
ing Environment (ALE) (Bellemare et al. 2013) and use the
slalom game mode of Skiing. In the slalom mode the aim is
to ski down the course as fast as possible while going through
all the gates. Once the finish line is reached, a 5 second time
penalty is applied for each gate that is missed. The reward
values provided by ALE for Skiing is the negative value of
the total time taken plus any time penalties in centiseconds,
which we use as a cost. We use the environment settings as
described by Machado et al. (2018) with a frame skip of 5
and a probability of 0.25 of repeating the previous action sent
to environment instead of the current one, which Machado
et al. call sticky actions. For evaluation we use a simulator
budget of 100 and partial caching as described by Bandres et
al. (2018), in that we cache simulator state-action transitions,
thus assuming determinism, but clear the cached transitions
when executing an action in the environment. However, the
lookahead tree itself is not cleared when executing an action
in the environment as is done for the other domains trialed.
The maximum episode length is capped at 18,000 frames
with a frame skip of 5 this equals 3,600 actions. Using a
simulation based cost-to-go approximation is infeasible with
a simulator budget of 100 and the maximum episode length
of 3,600 actions. Therefore we report the algorithms using
a heuristic cost-to-go estimate, which is the the number of
gates that have either been missed or are still left times the
time penalty of 500 centiseconds. For the RIW(1) algorithms
we use the pixel values from the current gray scaled screen
at full resolution, that is 180 by 210 pixels, as features.

All experiments were run within the OpenAI gym frame-

Number
Alg. Heu.

Simulator Budget
of States 100 500 1000

10

1Stp Rnd. 0.6± 0.1 0.5± 0.1 0.5± 0.1
UCT Rnd. 0.6± 0.1 0.5± 0.1 0.5± 0.1

RIW
NA 0.7± 0.1 0.7± 0.1 0.7± 0.1

Rnd. 0.5± 0.1 0.3± 0.0 0.3± 0.0

50

1Stp Rnd. 1.7± 0.1 1.2± 0.1 1.1± 0.1
UCT Rnd. 1.7± 0.1 1.3± 0.1 1.2± 0.1

RIW
NA 1.1± 0.0 1.1± 0.0 1.1± 0.0

Rnd. 1.7± 0.1 1.3± 0.1 1.1± 0.1

Table 5: Average and 95% confidence interval for the cost on
Antishaping. Costs reported are from 200 episodes over
10 different initial states (20 episodes per initial state). The
horizon of each problem is 4 times the number of states.

work (Brockman et al. 2016) and the code used for the algo-
rithms and domains is available through GitHub 6.

Results
The different H functions reported here are HNA = 0, the
random policy HRnd, and the Manhattan distance HMan. The
algorithms were also evaluated using Knuth’s algorithm with
a different range of rollouts for the cost-to-go estimate, how-
ever, the results are not reported here as they are either sta-
tistically indifferent or dominated by the results using HRnd
with a single rollout. Bertsekas (2017) suggests that MCTS
algorithms should readily benefit from stronger algorithms
to estimate costs-to-go by simulation of stochastic policies.
Our experiments showed that if synergies exist these do not
manifest when using off-the-shelf stochastic estimation tech-
niques like the ones discussed by Rubinstein and Kroese
(2017). Table 1, 2 and 3 report the results of the different
lookahead algorithms on the GridWorld domain variants
with a stationary goal, moving goals and obstacles respec-
tively. For these three domains, results were also collected
for a 100x100 grid, however, the results were omitted from
the tables as the simulator budgets used were not sufficient
to find anything meaningful.

The results on the stationary goal GridWorld domain
shown in Table 1 provide a number of insights about the roll-
out algorithms reported. First, we can see RIW(1) benefits
from using HRnd rather than HNA where the larger simulator
budgets are used. As the simulator budget increases, as could
be expected, so does the performance of all the methods us-
ing HRnd. On the contrary, with HNA RIW(1)’s performance
remains constant across the different budgets. The explana-
tion for this can be found in the motivating example we gave
previously in this paper with the agent preferring the shorter
trajectory of driving into the boundary of the grid. Table 1
also shows that given the largest budget and HRnd, RIW(1)
statistically outperforms the other algorithms on the three
domains of different size.

Table 2 for GridWorld with moving goals has similar
patterns as the stationary goal domain in that RIW(1) with
HRnd dominates performance for the largest budget. Also, the
majority of performances for the smaller budgets, excluding
RIW(1) with HNA, are statistically indifferent.

6https://github.com/miquelramirez/width-lookaheads-python



Number
Alg. Heu.

Simulator Budget
of States 100 500 1000

10

1Stp Rnd. 23.4± 2.5 13.5± 2.1 10.4± 1.7
UCT Rnd. 23.6± 2.5 12.7± 2.0 9.6± 1.6

RIW
NA 27.4± 2.6 27.0± 2.6 27.9± 2.5

Rnd. 22.9± 2.2 3.6± 0.4 3.6± 0.4

50

1Stp Rnd. 200.0± 0.0 196.1± 3.8 191.2± 5.7
UCT Rnd. 199.0± 1.9 196.1± 3.8 190.2± 6.0

RIW
NA 200.0± 0.0 200.0± 0.0 199.0± 1.9

Rnd. 199.0± 1.9 193.1± 5.0 190.2± 6.0

Table 6: Same settings as Table 5 over Combolock.

GridWorld with a stationary goal and obstacles results
displayed in Table 3 continues the trend of results. Using the
largest budget RIW(1) with HRnd outperforms all methods
on the 10x10 and 20x20 domains. For the 50x50 a number
of results are statistically indifferent. For this domain the
algorithms using HMan as the base heuristic are also reported.
While using the largest budget on the 10x10 grid HRnd dom-
inates HMan, for the larger 50x50 we see HMan dominates
HRnd for UCT, and is competitive for the other methods.

For the smallest simulator budget on CTP reported in Ta-
ble 4 using HMan with RIW(1) and UCT are the dominate
methods. For the largest simulator budget RIW(1) usingHRnd
is dominant over all other methods for both sized domains.
We also see that in most cases for the two smaller budgets
HMan dominates the HRnd methods.

Table 5 and 6 show on the smaller 10 state domains
RIW(1) with HRnd is statistically dominant over all other
methods on Antishaping and Combolock for the 500
and 1000 simulator budgets. However, for the more complex
50 state domains, the results of all algorithms using HRnd are
statistically indifferent. It can be observed that using HRnd
with RIW(1) does improve its performance compared with
HNA across all the domain settings with simulator budgets of
500 and 1000, besides Antishaping with 50 states.

For the Skiing Atari-2600 game results in Table 7 HHeu
is the heuristic value based on the number of gates missed and
remaining as described in the previous section. RIW(1) using
HHeu dominates all other methods. Comparing RIW(1) using
HHeu results with those reported by Machado et al. (2018),
it has similar performance to the DQN algorithm (Mnih et
al. 2015) after 100 million frames of training. Since the sim-
ulation budget per action we use here is equivalent to 500
frames, and given that the maximum episode duration spans
3,600 actions, RIW(1) achieves the performance in Table 7
considering only 1.8 million frames.

Related Work
Bertsekas (2017) considers AlphaGo Zero (Silver et al. 2017)
to be state-of-the-art in MCTS algorithms. It combines the
reasoning over confidence intervals first introduced with
UCT (Kocsis and Szepevari 2006) and the classic simulation
of base policies (Ginsberg 1999), adding to both supervised
learning algorithms to obtain, offline, parametric represen-
tations of costs-to-go which are efficient to evaluate. The
resulting algorithm achieves super-human performance at the
game of Go, long considered too hard for AI agents. Rather

Alg. Heu.
Simulator Budget

100
1Stp Heu. 16,524.8± 396.1
UCT Heu. 16,220.5± 310.0

RIW
Heu. 14,222.2± 373.9
NA. 15,854.0± 332.9

Table 7: Average and 95% confidence interval for the cost on
the Atari-2600 Skiing game over 100 episodes.

than using descriptions of game states directly as we do, Al-
phaZero uses a CNN to extract automatically features that
describe spatial relations between game pieces. Like us, Al-
phaZero’s lookahead uses a stochastic policy to select what
paths to expand, but rather than Q-factors, uses estimated
win probabilities to prioritise controls, and simulates the op-
ponent strategy via self-play to generate successor states. Our
simulators are always given and remain unchanged, rather
than being dynamic as is the case for AlphaZero.

Junyent et al. (2019) have recently presented a hybrid
planning and learning approach that integrates Bandres et
al. (2018) rollout, with a deep neural network. Similarly to
AlphaZero, they use it to both guide the search, and also to
extract automatically the set of state features F . Interestingly,
Junyent et al.’s work does not use deep neural networks to
approximate costs-to-go as AlphaZero does. A significant im-
provement in performance over Bandres et al. original rollout
algorithm is reported with policies learnt after 40 million in-
teractions with the simulator, using an overall computational
budget much bigger than the one used by Bandres et al.

Discussion
MCTS approaches typically combine lookaheads and cost-to-
go approximations, along with statistical tests to determine
what are the most promising directions and focus their sam-
pling effort. The width-based methods described in this paper
do so too, but in ways which are, at first sight, orthogonal
to existing strategies. It remains an area of active research
to map out exactly how the width-based methods described
in this paper, and those elsewhere by Junyent et al. (2019)
too, provide alternatives to the limitations of existing MCTS
approaches. Having said this, there is no general theory guid-
ing the design of MCTS algorithms (Bertsekas 2017), and
to avoid generating ad-hoc, problem dependent solutions in-
voluntarily it is important to follow strict protocols that alert
of potential lack of statistical significance in results, while
relying on a diverse set of benchmarks that can be both easily
understood, and highlight limitations of existing state-of-the-
art methods and overcome them.
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