
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2019

FEED-FORWARD PROPAGATION IN PROBABILISTIC
NEURAL NETWORKS WITH CATEGORICAL AND MAX
LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Probabilistic Neural Networks take into account various sources of stochasticity:
input noise, dropout, stochastic neurons, parameter uncertainties modeled as ran-
dom variables. In this paper we revisit the feed-forward propagation method that
allows one to estimate for each neuron its mean and variance w.r.t. mentioned
sources of stochasticity. In contrast, standard NNs propagate only point estimates,
discarding the uncertainty. Methods propagating also the variance have been pro-
posed by several authors in different context. The presented view attempts to
clarify the assumptions and derivation behind such methods, relate it to classical
NNs and broaden the scope of its applicability. The main technical innovations
are new posterior approximations for argmax and max-related transforms, that al-
lows for applicability in networks with softmax and max-pooling layers as well
as leaky ReLU activations. We evaluate the accuracy of the approximation and
suggest a simple calibration. Applying the method to networks with dropout al-
lows for faster training and gives improved test likelihoods without the need of
sampling.

1 INTRODUCTION

Despite the massive success of Neural Networks (NNs) considered as deterministic predictors, there
are many scenarios where a probabilistic treatment is highly desirable. One of the best known
techniques to improve the generalization is dropout (Srivastava et al., 2014), which introduces mul-
tiplicative Bernoulli noise in the network. At test time, however, it is commonly approximated
by substituting the mean value of the noise variables. Computing the expectation by Monte Carlo
(MC) sampling instead leads to improved test likelihood and accuracy (Srivastava et al., 2014; Gal
& Ghahramani, 2015) but is computationally expensive. A challenging problem in NNs is the sen-
sitivity of the output to the perturbations of the input, in particular random and adversarial perturba-
tions (Moosavi-Dezfooli et al., 2017; Fawzi et al., 2016; Rodner et al., 2016). In Fig. 1 we illustrate
the point that the average of the network output under noisy input differs from propagating the clean
input. It is therefore desirable to estimate the output uncertainty resulting from the uncertainty of
the input. In classification networks, propagating the uncertainty of the input can impact the confi-
dence of the classifier and its robustness as shown by Astudillo & da Silva Neto (2011). Ideally, we
would like that a classifier is not overconfident when making errors, however such high confidences
of wrong predictions are typically observed in NNs. Similarly, when predicting real values (e.g.
optical flow estimation), it is desirable to estimate also confidences of such predictions. Taking into
account uncertainties from input or dropout allows to predict output uncertainties well correlated
with the test error (Kendall & Gal, 2017; Gast & Roth, 2018; Schoenholz et al., 2016). Another im-
portant problem is overfitting. Bayesian learning is a sound way of dealing with a finite training set:
the parameters are considered as random variables and are determined up to an uncertainty implied
by the training data. This uncertainty needs then to be propagated to predictions at the test-time.

The above scenarios motivate considering NNs with different sources of stochasticity as Bayesian
networks, a class of directed probabilistic graphical models. We focus on the inference problem
that consists in estimating the probability of hidden units and the outputs given the network input.
While there exist elaborate inference methods for Bayesian networks (variational, mean field, Gibbs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2019

SoftmaxNN
Input: image 
with noise

class
probabilities

Figure 1: Illustrative example of propagating an input perturbed with Gaussian noise N (0, 0.1)
through a fully trained LeNet. When the same image is perturbed with different samples of noise,
we observe on the output empirical distributions shown as Monte Carlo (MC) histograms. Propa-
gating the clean image results in the estimate denoted AP1 which may be away from the MC mean.
Propagating means and variances results in a posterior Gaussian distribution denoted AP2. For the
final class probabilities we approximate the expected value of the softmax. The methods AP1 and
AP2 are formally defined in § 2. A quantitative evaluation of this experiment is given in § 5.

sampling, etc.), they are computationally demanding and can hardly be applied at the same scale as
state-of-the-art NNs.

Contribution and Related Work We revisit feed-forward propagation methods that perform an
approximate inference analytically by propagating means and variances of neurons through all lay-
ers of a NN, ensuring computational efficiency and differentiability. This type of propagation has
been proposed by several authors under different names: uncertainty propagation (Astudillo &
da Silva Neto, 2011) in a very limited setting with no learning, fast dropout training (Wang & Man-
ning, 2013), probabilistic backpropagation (Hernández-Lobato & Adams, 2015) in the context of
Bayesian learning, assumed density filtering Gast & Roth (2018). Perhaps the most general form is
considered by Wang et al. (2016) and termed natural parameter networks. The local reparametriza-
tion trick (Kingma et al., 2015) can be viewed as application of the variance propagation method
through one layer only and then sampling from the approximate posterior.

In these preceding works, for propagation through softmax, sampling or point-wise estimates were
used while max-pooling was avoided. Ghosh et al. (2016) proposed an analytic approximation
for softmax using two inequalities, but resorted to sampling noting that the approximation was not
accurate. Gast & Roth (2018) introduced Dirichlet posterior to overcome the difficulty with softmax,
however, the softmax is still used in the model internally. Furthermore, typically used expressions
for ReLU activations involve differences of error functions and may be unstable.

We propose a latent variable view of probabilistic NNs that links them closer to their deterministic
counterparts and allows us to develop better approximations. Our technical contribution includes the
development of numerically suitable approximations for propagating means and variances through
“multivariate” activation functions such as softmax for categorical variables and other max-related
non-linearities: max-pooling and leaky ReLU. This makes the whole framework practically opera-
tional and applicable to a wider class of problems.

Experimentally, we verify the accuracy of the proposed propagation in approximating the true poste-
rior and compare it to the standard propagation by NN, which has not been questioned before. This
verification shows that the proposed scheme has better accuracy than standard propagation in all
tested scenarios. We further demonstrate its potential utility in the end-to-end learning with dropout.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2019

2 PROBABILISTIC NNS AND FEED-FORWARD EXPECTATION PROPAGATION

In probabilistic NNs, all units are considered to be random variables. In a typical network, units are
organized by layers. There are l layers of hidden random vectors Xk, k = 1, . . . l and X0 is the
input layer. Each vector Xk has nk components (layer units) denoted Xk

i . The network is modeled
as a conditional Bayesian network (aka belief network, Neal (1992)) defined by the pdf

p(X1,...l |X0) =
∏l
k=1 p(X

k |Xk−1). (1)

We further assume that the conditional distribution p(Xk |Xk−1) factorizes and depends on a lin-
ear combination of the random vector Xk−1, p(Xk |Xk−1) =

∏nk

i=1 p(X
k
i |Aki), where Aki =

(W kXk−1)i are activations. We will denote values of r.v. Xk by xk, so that the event Xk =xk can
be unambiguously denoted just by xk. Notice also that we consider biases of the units implicitly
via an additional input fixed to value one. The posterior distribution of each layer k > 0, given the
observations x0, recurrently expresses as

p(Xk |x0) = EXk−1| x0

[
p(Xk |Xk−1)

]
=

∫
p(Xk |xk−1)p(xk−1 |x0) dxk−1. (2)

The posterior distribution of the last layer, p(X l |x0) is the prediction of the model.

We now explain how the standard NNs with injected noises give rise to the Bayesian networks of
the form (1). Consider a deterministic nonlinear mapping applied to a “noised” activation:

Xk = f(Ak − Zk), (3)

where f : R→ R is applied component-wise and Zki are independent real-valued random variables
with a known distribution (such as the standard normal distribution). From representation (3) we
can recover the conditional cdf of the belief network FXk |Xk−1(u) = E[[f(W kXk−1 − Zk) ≤
u |Xk−1]] and the respective conditional density.

Example 1. Stochastic binary unit (Williams, 1992). Let Y be a binary valued r.v. given by Y =
Θ(A−Z), where Θ is the Heaviside step function and Z is noise with cdf FZ . Then P(Y=1 |A) =
FZ(A). This is easily seen from

P(Y=1 |A) = P(Θ(A− Z) = 1
∣∣ A) = P(Z ≤ A|A

)
= FZ(A). (4)

If, for instance, Z is distributed with standard logistic distribution, then P(Y=1 |A) = S(A), where
S is the logistic sigmoid function S(a) = (1 + e−a)−1.

In general, the expectation (2) is intractable to compute and the resulting posterior can have a com-
binatorial number of modes. However, in many cases of interest it is suitable to approximate the
posterior p(Xk |x0) for a given x0 with a factorized distribution q(Xk) =

∏
i q(X

k
i). We expect

that in many recognition problems, given the input image, the hidden states and the final prediction
are concentrated around some specific values (unlike in generative problems, where the posterior
distributions are typically multi-modal). A similar factorized approximation is made for the activa-
tions. The exact shape of distributions q(Xk

i) and q(Aki) can be chosen appropriately depending on
the unit type: e.g., a Bernoulli distribution for binaryXk

i a Gaussian or Logistic distribution for real-
valued activations Aki . We will rely on the fact that the mean and variance are sufficient statistics for
such approximating distributions. Then, as long as we can calculate these sufficient statistics for the
layer of interest, the exact shape of distributions for the intermediate outputs need not be assumed.

The information-theoretic optimal factorized approximation to the posterior p(Xk |x0), minimizing
the forward KL divergence KL(p(Xk |x0)‖q(Xk)), is given by marginals

∏
i p(X

k
i |x0). Fur-

thermore, in the case when q(Xk
i) is from to the exponential family, the optimal approximation is

given by matching the moments of q(Xk
i) to p(Xk

i |x0). The factorized approximation then can be
computed layer-by-layer, assuming that the preceding layer was already approximated. Substituting
q(Xk−1) for p(Xk−1 |x0) in (2) results in the procedure

q(Xk
i) = Eq(Xk−1)

[
p(Xk

i |Xk−1)
]

=

∫
p(Xk

i |xk−1)
∏
i

q(xk−1i) dxk−1. (5)

Thus we need to propagate the factorized approximation layer-by-layer, by the marginalization up-
date (5) until we get the approximate posterior output q(X l). This method is closely related to the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2019

assumed density filtering (see Minka, 2001), in which, in the context of learning, one chooses a
family of distributions that is easy to work with and “projects” the true posterior onto the family
after each measurement update. Here, the projection takes place after propagating each layer for the
purpose of the inference.

3 PROPAGATION IN BASIC LAYERS

We now consider a single layer at a time and detail how (5) is computed (approximately) for a
layer consisting of a linear mapping A = wTX (scalar output, for clarity) and a non-linear noisy
activation Y = f(A− Z).

Linear Mapping Activation A in a typical deep network is a sum of hundreds of stochastic inputs
X (from the previous layer). This justifies the assumption that A − Z (where Z is a smoothly
distributed injected noise) can be approximated by a uni-modal distribution fully specified by mean
and variance as e.g. normal or logistic distribution1. Knowing the statistics of Z, it is therefore
sufficient to estimate the mean and the variance of the activation A given by

µ′ = E[A] = wTE[X] = wTµ, (6a)

σ′2 =
∑
ij wiwj Cov[X]ij ≈

∑
i w

2
i σ

2
i , (6b)

where µ is the mean and Cov[X] is the covariance matrix ofX . The approximation of the covariance
matrix by its diagonal is implied by the factorization assumption for the activations A.

Nonlinear Coordinate-wise Mappings Let A be a scalar r.v. with statistics µ, σ2 and let Y =

f(A−Z) with independent noiseZ. Assuming that Ã = A−Z is distributed normally or logistically
with statistics µ̃, σ̃2, we can approximate the expectation and variance of Y = f(Ã)

µ′i = Eq(Ã)[f(Ã)], σ′2i = Eq(Ã)[f
2(Ã)]− µ′2i (7)

by analytic expressions for most of the commonly used non-linearities. For binary variables, oc-
curring in networks with Heaviside nonlinearities, the distribution q(Y) is fully described by one
parameter µi = E[Y], and the propagation rule (5) becomes

µ′i = Eq(A)

[
p(Y=1 |Ak)

]
, σ′2i = µ′i(1− µ′i), (8)

where the variance is dependent but will be needed in propagation through other layers.

Example 2. Heaviside Nonlinearity with Noise. Consider the model Y = Θ(A − Z), where Z is
logistic noise. The statistics of Ã = A−Z are given by µ̃ = µ and σ̃2 = σ2+σ2

S , where σ2
S = π2/3

is the variance of Z. Assuming noisy activations Ã to have logistic distribution, we obtain the mean
of Y as:

µ′ = E[Θ(Ã)] = P(Ã ≥ 0) = P
(Ã− µ̃
σ̃/σS

≥ −µ̃
σ̃/σS

)
.
= S

(µ̃

σ̃/σS

)
= S

(µ√
σ2/σ2

S + 1

)
, (9)

where the dotted equality is due to that −(Ã − µ̃)σS

σ̃ has standard logistic distribution and that the
sigmoid function S is its cdf. The variance of Y is expressed as in (8).

Example 3. Rectified Linear Unit (ReLU) Assuming the activation A to be normally distributed,
the mean of Y = max(0, A) expresses as µ′ =

∫∞
−∞max(0, a)p(a)da =

∫∞
0
ap(a)da =

µΦ(µ/σ) + σφ(µ/σ), i.e., expresses analytically using the pdf φ and cdf Φ of the standard nor-
mal distribution. The variance can be expressed as well. These expressions, used by Frey & Hinton
(1999); Hernández-Lobato & Adams (2015) rely on function Φ, which has limited numerical ac-
curacy and may lead to negative output variances. In § 4.4 we propose an approximation for leaky
ReLU, which is numerically stable and is suitable for ReLU as well.

Fig. 2 shows the approximations for propagation through Heaviside, ReLU and leaky ReLU non-
linearities. Note that all expectations over a smoothly distributed A result in smooth propagation
functions regardless the smoothness (or lack thereof) of the original function.

1Note, the prior works assumes that A alone approaches Gaussian, which is a stronger assumption, consid-
ering for example binary input X .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2019

10 5 0 5 10
1.0

0.5

0.0

0.5

1.0

1.5

2.0
Heaviside

′

′ ± 3 ′

6 4 2 0 2 4 6
2

0

2

4

6

8

ReLu
′

′ ± 3 ′

6 4 2 0 2 4 6
2

0

2

4

6

8

LReLU(0.1)
′

′ ± 3 ′

Figure 2: Propagation for the Heaviside function: Y = [[A≥0]], ReLU: Y = max(0, A) and leaky
ReLU: Y = max(αA,A). Red: activation function. Black: an exemplary input distribution with
mean µ = 3, variance σ2 = 1 shown with support µ ± 3σ. Dashed blue: the approximate mean
µ′ of the output versus the input mean µ. The variance of the output is shown as blue shaded area
µ′ ± 3σ′.

Summarizing, we can represent the approximate inference in networks with binary and continuous
variables as a feed-forward moment propagation: given the approximate moments of Xk−1 |x0, the
moments of Xk

i |x0 are estimated via (8), (7) ignoring dependencies between Xk−1
j |x0 on each

step (as implied by the factorized approximation).

AP1 and AP2 The standard NN can be viewed as a further simplification of the proposed method:
it makes the same factorization assumption but does not compute variances of the activations (6b)
and propagates only the means. Consequently, a zero variance is assumed in propagation through
non-linearities. In this case the expected values of mappings such as Θ(A) and ReLU(A) are just
these functions evaluated at µ. For injected noise models we obtain smoothed versions: e.g., substi-
tuting σ = 0 in the noisy Heaviside function (9) recovers the standard sigmoid function. We thus
can view standard NNs as making a simpler from of factorized inference in the same Bayesian NN
model. We designate this simplification (in figures and experiments) by AP1 and the method using
variances by AP2 (“AP” stands for approximation).

4 PROPAGATION IN CATEGORICAL AND MAX LAYERS

In this section we present our main technical contribution: propagation rules for argmax, softmax
and max mappings, that are non-linear and multivariate. Similar to how sigmoid function is ob-
tained as the expectation of the Heaviside function with injected noise in Example 2, we observe
that softmax layer is the expectation of argmax with injected noise. It will follow that the stan-
dard NN with softmax layer can be viewed as AP1 approximation of argmax layer with injected
noise. We propose a new approximation for the argmax posterior probability that takes into account
uncertainty (variances) of the activations and enables propagation through argmax and softmax
layers. Next, we observe that the maximum of several variables (used in max-pooling) can be ex-
pressed through argmax. This gives a new one-shot approximation of the expected maximum using
argmax probabilities. Finally, we consider the case of leaky ReLU, which is a maximum of two
correlated variables. The proposed approximations are relatively easy to compute and differentiable,
which facilitates their usage in NNs.

4.1 ARGMAX AND SOFTMAX

The softmax function, most commonly used to model a categorical distribution, ubiquitous in clas-
sification, is defined as p(Y=y|x) = exy/

∑
k e

xk , where y is the class index. We explore the fol-
lowing latent variable representation known in the theory of discrete choice: p(Y=y|x) = E[Y y],
where Y ∈ {0, 1}n is the indicator of the noisy argmax: Y y = [[argmaxk(Xk + Γk) = y]] and Γk
follows the standard Gumbel distribution. Standard NN implements the AP1 approximation of this
latent model: conditioned on X = x, the expectation over latent noises Γ is the softmax(x).

For the AP2 approximation we need to compute the expectation w.r.t. both: X and Γ, or, what is the
same, to compute the expectation of softmax(X) over X . This task is difficult, particularly because

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2019

variances ofXi may differ across components. First, we derive an approximation for the expectation
of argmax indicator without injected noise:

Y y = [[argmax
k

Xk = y]]. (10)

The injected noise case can be treated by simply increasing the variance of each Xi by the variance
of standard Gumbel distribution.

Let Xk , k = 1, . . . , n be independent, with mean µk and variance σ2
k. We need to estimate

E[Y y] = EX [[Xy −Xk ≥ 0 ∀k 6= y]], (11)

The vector U with components Uk = Xy − Xk for k 6= y is from Rn−1 with component means
µ̃k = µy − µk and component variances σ̃2

k = σ2
y + σ2

k. Note the components of U are not
independent.

We approximate the distribution of U by the multivariate logistic distribution defined by Malik &
Abraham (1973). This choice is motivated by the extrapolation of the case with two input variables.
The approximation is made by shifting and rescaling the distribution in order to match the means
and marginal variances. The marginal distributions of standard multivariate logistic distribution are
standard logistic with zero mean and variance σS . Thus the approximation assumes that (Uk −
µ̃k)σS/σ̃k is standard (n−1)-variate logistic with the cdf given by Sn−1(u) = 1

1+
∑

k e
−uk

(Malik
& Abraham, 1973, eq. 2.5). It allows us to evaluate the necessary probability:

q(y) = E[Y y] = P(U ≥ 0) = P
(Uk − µ̃k
σ̃k/σS

≥ −µ̃k
σ̃k/σS

∀k 6= y
)

= Sn−1
(−µ̃k
σ̃k/σS

)
. (12)

Expanding µ̃, σ̃2 and noting that µk − µy = 0 for y = k, we obtain the approximation

q(y) =
(∑

k

exp
{ µk − µy√

(σ2
k + σ2

y)/σ2
S

})−1
. (13)

This approximation has linear memory complexity but requires quadratic time in the number of
inputs, which may be prohibitive for applications in NNs. We can simplify it further as follows. The
expression (13) simplifies when we can approximate

µk − µy√
(σ2
k + σ2

y)/σ2
S

≈ ak − ay (14)

with some choice of ak for all k. In this case we obtain q(y) = (softmax(a))y . We therefore
propose the approximation

q = softmax(a) with ak = µk/

√(
σ2
k +

nσ̄2 − σ2
k

n− 1

)
/σ2

S , (15)

where σ̄2 = 1
n

∑
k σ

2
k is the average variance.

Importantly, the approximation is consistent with the already obtained results for the following spe-
cial cases. In the case of two input variables, for the simplified approximation with ak set as (15)
we have ak = µk/

√
(σ2

1 + σ2
2)/σ2

S , i.e. (14) holds as equality, and we obtain

q(y=1) = softmax(a1, a2)1 =
ea1

ea1 + ea2
=

1

1 + ea2−a1
= S(a2 − a1) = S

(µ̃

σ̃/σS

)
, (16)

which matches the approximation of the Heaviside posterior with input X1 − X2 with mean µ̃
and variance σ̃2. As a consequence expectation of softmax (argmax indicator with injected noise)
matches the expectation of sigmoid (Heaviside function with injected noise) given by (9).

In the case when all variances σ2
k are equal: σk = σ, the approximation (15) results in

q = softmax(
µk√

2σ/σS
). (17)

More specifically, when Xk = µk + Γk, where Γk is standard Gumbel (with variance π2/6 =
σ2
S/2) we obtain that q = softmax(µk), i.e. recover the exact expectation of noisy argmax with

deterministic inputs used by AP1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2019

4.2 MAXIMUM OF TWO VARIABLES

Let us consider the function max(X1, X2), which is important for leaky ReLU and maxOut. In
this case, exact expressions for the moments for the maximum of two Gaussian random variables
X1, X2 are known (Nadarajah & Kotz, 2008). Denoting s = (σ2

1 + σ2
2 − 2 Cov[X1, X2])

1
2 and

a = (µ1−µ2)/s, the mean and variance of max(X1, X2) can be expressed as:

µ′ = µ1Φ(a) + µ2Φ(−a) + sφ(a), (18a)

σ′2 = (σ2
1 + µ2

1)Φ(x) + (σ2
2 + µ2

2)Φ(−a) + (µ1 + µ2)sφ(a)− µ′2. (18b)

These expressions involving the normal cdf Φ, will not be used directly. We simplify them in the
case of leaky ReLU and use as a reference for maximum of multiple variables. The variance can be
further expressed as

σ′2 = σ2
1Φ(a) + σ2

2Φ(−a) + s2(a2Φ(a) + aφ(a)− (aΦ(a) + φ(a))2). (19)

We observe that the function of one variable a2Φ(a) +aφ(a)− (aΦ(a) +φ(a))2 is always negative,
quickly vanishes with |a| increasing and is above −0.16. By neglecting it, we obtain a rather tight
upper bound σ′2 ≤ σ2

1Φ(a)+σ2
2(1−Φ(a)). Note that Φ(a), which serves as interpolating coefficient

between σ2
1 and σ2

2 , is precisely the probability of the event X1 > X2. This suggests the idea of
estimating mean and variance of max from the argmax probabilities in the multivariate case.

4.3 MAXIMUM OF SEVERAL VARIABLES

Let Xk , k = 1, . . . , n be independent, with mean µk and variance σ2
k. The moments of the maxi-

mum Y = maxkXk, assuming the distributions of Xk are known, can be computed by integration
with the CDF of Y (Ross, 2010) given by FY (y) = P(Xk ≤ y ∀k) =

∏
k FXk

(y). However, this
requires numerical 1D integration. We seek a simpler approximation. One option is to compose the
maximum of n > 2 variables hierarchically using maximum of two variables § 4.2 and assume that
the intermediate results are distributed normally.

We propose a new non-trivial one-shot approximations for the mean and variance assuming that
the argmax probabilities qk = P(Xk ≥ Xj ∀j) are already estimated. The derivation of these
approximations and proofs of their accuracy are given in § A.

Proposition 1. AssumingXk are logistic (µk, σ
2
k), the mean of Y = maxkXk can be approximated

(upper bounded) by

µ′ ≈
∑
k

qkµ̂k, where µ̂k = µk +
σk
qkσS

H(qk), (20)

where H(qk) is the entropy of the Bernoulli distribution with probabilities qk. The variance of Y
can be approximated as

σ′2 ≈
∑
k

σ2
kS(a+ bS−1(qk)) +

∑
k

qk(µ̂k − µ′)2, (21)

where a = −1.33751 and b = 0.886763 are coefficients originating from a Taylor expansion.

Notice the similarity to the expressions (18a) and (19) (identifying q1, q2 with argmax probabilities
Φ(a) ,Φ(−a), resp.). Also notice that the entropy is non-negative, and thus increases µ′ when the
argmax is ambiguous, as expected in the extreme value theory.

4.4 LEAKY RELU

LReLU is a popular max-related function defined as: Y = max(αX,X). We use the exact ex-
pressions for the case of two correlated normal variables (18a) and (19). Assume that α < 1, let
X2 = αX1 and denote µ = µ1 and σ2 = σ2

1 . Then µ2 = αµ, σ2
2 = α2σ2 and Cov[X1, X2] =

Cov[X1, αX1] = ασ2. We have s = σ(1 − α) and a = (µ1 − µ2)/s = µ(1 − α)/s = µ/σ. The
mean µ′ expresses as

µ′ = µ(α+ (1− α)Φ(a)) + σ(1− α)φ(a). (22)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2019

The variance σ′2 expresses as

σ2
(

Φ(a) + α2(1− Φ(a)) + (1− α)2
(
a2Φ(a) + aφ(a)− (aΦ(a) + φ(a))2

))
(23)

= σ2(α2 + 2α(1− α)Φ(a) + (1− α)2R(a)), (24)

whereR(a) = aφ(a)+(a2+1)Φ(a)−(aΦ(a)+φ(a))2 is a sigmoid-shape function of one variable.
In practice we approximate σ′2 with the simpler function

σ′2 ≈ σ2(α2 + (1− α2)S(a/t)), (25)

where t = 0.3758 is set by fitting the approximation. The approximation is shown in Fig. 2.

5 EXPERIMENTS

In the experiments we evaluate the accuracy of the proposed approximation and compare it to the
standard propagation. We also test the method in the end-to-end learning and show that with a
simple calibration it achieves better test likelihoods than the state-of-the-art. Full details of the
implementation, training protocols, used datasets and networks are given in § B. The running time
of AP2 is 2×more for a forward pass and 2-3×more for a forward-backward pass than that of AP1.

5.1 APPROXIMATION ACCURACY

We conduct two experiments: how well the proposed method approximates the real posterior of
neurons, w.r.t. noise in the network input and w.r.t. dropout. The first case (illustrated in Fig. 1) is
studied on the LeNet5 model of Lecun et al. (2001), a 5-layer net with max pooling detailed in § B.4,
trained on MNIST dataset using standard methods. We set LReLU activations with α = 0.01 to test
the proposed approximations. We estimate the ground truth statistics µ∗, σ∗ of all neurons by the
Monte Carlo (MC) method: drawing 1000 samples of noise per input image and collecting sample-
based statistics for each neuron. Then we apply AP1 to compute µ1 and AP2 to compute µ2 and σ2
for each unit from the clean input and known noise variance σ0. The error measure of the means
εµ is the average |µ − µ∗| relative to the average σ∗. The averages are taken over all units in the
layer and over input images. The error of the standard deviation εσ is the geometric mean of σ/σ∗,
representing the error as a factor from the true value (e.g., 1.0 is exact, 0.9 is under-estimating and
1.1 is over-estimating). Table 1 shows average errors per layer and points the main observation:
that AP2 is more accurate than AP1 but both methods suffer from the factorization assumption. The
variance computed by AP2 provides a good estimate and the estimated categorical distribution by
propagating the variance through softmax is much closer to the MC estimate.

Next, we study a widely used ALL-CNN network § B.4 by Springenberg et al. (2015) trained with
standard dropout on CIFAR-10. Bernoulli dropout noise with dropout rate 0.2 is applied after each
activation. The accuracies of estimated statistics w.r.t. dropout noises are shown in Table 2. Here,
each layer receives uncertainty propagated from preceding layers, but also new noises are mixed-in
in each layer, which works in favor of the factorization assumption. The results are shown in Ta-
ble 2. Observe that GT noise variance σ∗ changes significantly across layers, up to 1-2 orders and
AP2 gives a useful estimate. Furthermore, having estimated the average factors suggests a simple
calibration.

Calibration We divide the variance in the last layer by the average factor σ/σ∗ estimated on the
validation set. With this method, denoted AP2 calibrated, we get significantly better test likelihoods
in the end-to-end learning experiment.

5.2 ANALYTIC NORMALIZATION

The AP2 method can be used to approximate neuron statistics w.r.t. the input chosen at random from
the training dataset as was proposed by Shekhovtsov & Flach (2018). Instead of propagating sample
instances, the method takes the dataset statistics (µ0, (σ0)2) and propagates them once through all
network layers, averaging over spatial dimensions. The obtained neuron mean and variance are then
used to normalize the output the same way as in batch normalization (Ioffe & Szegedy, 2015). This
normalization leads to a better conditioned initialization and training and is batch-independent. We

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2019

Con
v

LReL
U

M
ax

Poo
l

Con
v

LReL
U

M
ax

Poo
l

FC LReL
U

FC LReL
U

FC Soft
max

Noisy input N (0, 10−4)
σ∗ 0.03 0.02 0.02 0.06 0.03 0.03 0.09 0.05 0.10 0.05 0.11
εµ1 0.02 0.19 0.37 0.84 0.43 0.52 1.20 0.66 1.16 0.62 1.25 KL 3.5e-4
εµ2 0.02 0.02 0.13 0.29 0.13 0.17 0.37 0.21 0.36 0.20 0.39 KL 3.3e-5
εσ2

1.00 1.05 1.25 1.06 1.06 1.12 1.09 1.10 1.03 1.04 0.96
Noisy input N (0, 0.01)

σ∗ 0.3 0.16 0.20 0.58 0.24 0.27 0.79 0.47 0.86 0.42 0.92
εµ1 0.02 0.24 0.53 1.46 0.58 0.70 1.44 0.85 1.40 0.79 1.57 KL 0.36
εµ2 0.02 0.02 0.21 0.65 0.21 0.31 0.61 0.37 0.67 0.34 0.72 KL 0.05
εσ2

1.00 1.10 1.15 1.17 1.22 1.42 1.37 1.59 1.31 1.47 1.23

Table 1: Accuracy of approximation of mean and variance statistics for each layer in a fully trained
LeNet5 (MNIST) tested with noisy input. Observe the following: MC variance σ∗ is growing
significantly from the input to the output; both AP1 and AP2 have a significant drop of accuracy
at linear (fc and conv) layers, due to factorized approximation assumption; AP2 approximation of
the standard deviation is within a factor close to one, and makes a meaningful estimate, although
degrading with depth; AP2 approximation of the mean is more accurate than AP1; the KL divergence
from the MC class posterior is improved with AP2.

C A C A C A C A C A C A C A C A C P Softmax
σ∗ 0 0.26 0.31 0.46 0.86 0.77 1.1 0.78 1.7 0.97 2.2 1.3 1.5 0.89 2 0.74 16 2.8
εµ1 - 0.01 0.02 0.03 0.07 0.06 0.17 0.09 0.19 0.10 0.25 0.11 0.22 0.11 0.21 0.12 0.17 0.38 KL 0.11
εµ2 - 0.01 0.02 0.01 0.02 0.02 0.05 0.02 0.06 0.03 0.07 0.04 0.08 0.04 0.09 0.04 0.05 0.14 KL 0.04
εσ2 - 1.00 1.00 1.02 0.88 0.89 0.90 0.95 0.84 0.87 0.77 0.77 0.82 0.85 0.88 0.92 0.69 0.45

Table 2: Accuracy of approximation of mean and variance statistics for each layer in All-CNN
(CIFAR-10) trained and tested with dropout. The table shows accuracies after all layers (C-
convolution, A-activation, P-average pooling) and the final KL divergence. A similar effect to
propagating input noise is observed: the MC variance σ∗ grows with depth; a significant drop of
accuracy is observed in conv and pooling layers which exploit the independence assumption.

verify the efficiency of this method for a network that includes the proposed approximations for
LReLU and max pooling layers in § B.5 and use it in the end-to-end learning experiment below.

5.3 END-TO-END LEARNING WITH ANALYTIC DROPOUT

In this experiment we approximate the dropout analytically at training time similar to Wang & Man-
ning (2013) but including the new approximations for LReLU and softmax layers. We compare
training All-CNN network on CIFAR-10 without dropout, with standard dropout (Srivastava et al.,
2014) and analytic (AP2) dropout. All three cases use exactly the same initialization, AP2 nor-
malization as discussed above and the same learning setup. Only the learning rate is optimized
individually per method § B.3. The dropout layers with dropout rate 0.2 are applied after every ac-
tivation and there is no input dropout. Fig. 3 shows the progress of the three methods. The analytic
dropout is efficient as a regularizer (reduces overfitting in the validation likelihood), is non-stochastic
and progresses faster than standard stochastic dropout. While latter slows the training down due to
increased stochasticity of the gradient, the analytic dropout smoothes the loss function and speeds
the training up. This is especially visible on the training loss plot Fig. B.3. Furthermore, analytic
dropout can be applied as the test-time inference method in a network trained with any variant of
dropout. Table 3 shows that AP2, calibrated as proposed above, achieves the best test likelihood,
significantly improving SOTA results for this network. Some additional results are given in § B.7.
Differently from Wang & Manning (2013), we find that when trained with standard dropout, all test
methods achieve approximately the same accuracy and only differ in likelihoods. We believe this is
due to the deep CNN in our case that achieves 100% training accuracy.

We also attempted comparison with other approaches. Gaussian dropout (Srivastava et al., 2014)
performed similarly to standard Bernoulli dropout. Variational dropout Kingma et al. (2015) in
our implementation for convolutional networks has diverged or has not reached the accuracy of
the baseline without dropout (we tried correlated and uncorrelated versions with or without local
reparametrization trick and with different KL divergence factors 1, 0.1, 0.01, 0.001).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2019

Validation Accuracy Validation Loss

0 200 400 600 800 1000 1200
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

AP2 dropout=0.2, lr=0.016
Dropout=0.2, lr=0.013
No dropout, lr=0.011

0 200 400 600 800 1000 1200

100

3 × 10 1

4 × 10 1

6 × 10 1

AP2 dropout=0.2, lr=0.016
Dropout=0.2, lr=0.013
No dropout, lr=0.011

Figure 3: Comparison of analytic AP2 dropout with baselines. All methods use AP2 normalization
during training. Analytic dropout converges to similar values of stochastic dropout and is faster per
iteration. Both methods are efficient in preventing overfitting as seen in the right plot.

SOTA results (Gast & Roth, 2018)
Method NLL Acc.
Dropout MC-30 0.327 90.88
ProbOut 0.37 91.9

Standard dropout
Test method NLL Acc.
AP1 0.434 0.938
AP2 0.311 0.936
AP2 calibrated 0.214 0.937
MC-10 0.264 0.935
MC-100 0.217 0.937
MC-1000 0.210 0.937

Analytic dropout
Test method NLL Acc.
AP1 1.86 0.940
AP2 0.363 0.940
AP2 calibrated 0.194 0.940
MC-10 0.546 0.919
MC-100 0.281 0.925
MC-1000 0.243 0.926

Table 3: Results for All-CNN on CIFAR-10 test set: negative log likelihood (NLL) and accuracy.
Left: state of the art results for this network (Gast & Roth, 2018, table 3). Middle: All-CNN
trained with standard dropout (our learning schedule and analytic normalization) evaluated using
different test-time methods. Observe that “AP2 calibrated” well approximates dropout: the test
likelihood is better than MC-100. Right: All-CNN trained with analytic dropout (same schedule
and normalization). Observe that “AP2 calibrated” achieves the best likelihood and accuracy.

6 CONCLUSION

We have revisited the method for approximate inference in probabilistic neural networks that takes
into account all sources of stochasticity analytically. The latent variable interpretation allows a
transparent interpretation of standard propagation in NNs as the simplest approximation and the
development of variance propagating approximations. We proposed new approximations to LReLU
max and argmax functions. This allows analytic propagation in max pooling layers and softmax
layer.

We measured the quality of the approximation of posterior. The accuracy is improved compared
to standard propagation and is sufficient for several use cases such as estimating statistics over
the dataset (normalization) and dropout training, where we report improved test likelihoods. We
identified that the weak point of the approximation is the factorization assumption. While modeling
correlations is possible (e.g. Rezende & Mohamed, 2015), it is also more expensive and we showed
that a calibration of the cheap methods can give a significant improvement and is a direction for
further research. Except as a final layer, argmax and softmax may occur also inside the network, in
models such as capsules (Sabour et al., 2017) or multiple hypothesis (Ilg et al., 2018), etc. Further
applications of the developed technique may include generative and semi-supervised learning and
Bayesian model estimation.

REFERENCES

Ramn Fernndez Astudillo and Joo Paulo da Silva Neto. Propagation of uncertainty through multi-
layer perceptrons for robust automatic speech recognition. In INTERSPEECH, 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2019

Anirban DasGupta, S.N. Lahiri, and Jordan Stoyanov. Sharp fixed n bounds and asymptotic ex-
pansions for the mean and the median of a Gaussian sample maximum, and applications to the
DonohoJin model. Statistical Methodology, 20:40–62, 2014.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers:
from adversarial to random noise. In NIPS, pp. 1632–1640. 2016.

Brendan J. Frey and Geoffrey E. Hinton. Variational learning in nonlinear Gaussian belief networks.
Neural Comput., 11(1):193–213, January 1999.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli approx-
imate variational inference. arXiv:1506.02158, 2015.

Jochen Gast and Stefan Roth. Lightweight probabilistic deep networks. CoRR, abs/1805.11327,
2018.

Soumya Ghosh, Francesco Maria Delle Fave, and Jonathan S. Yedidia. Assumed density filtering
methods for learning Bayesian neural networks. pp. 1589–1595, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. 2010.

José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In ICML, pp. 1861–1869, 2015.

Eddy Ilg, Ozgun Cicek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, and Thomas
Brox. Uncertainty estimates and multi-hypotheses networks for optical flow. In ECCV, 2018.

Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. CoRR, abs/1702.03275, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, volume 37, pp. 448–456, 2015.

Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer
vision? In NIPS, 2017.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparame-
terization trick. In NIPS, pp. 2575–2583. 2015.

Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Intelligent signal processing, pp. 306–351, 2001.

Henrick J. Malik and Bovas Abraham. Multivariate logistic distributions. The Annals of Statistics,
1(3):588–590, 1973.

Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Uncertainty in
Artificial Intelligence, pp. 362–369, 2001.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In CVPR, July 2017.

Saralees Nadarajah and Samuel Kotz. Exact distribution of the max/min of two Gaussian random
variables. IEEE Trans. VLSI Syst., 16(2):210–212, 2008.

Radford M. Neal. Connectionist learning of belief networks. Artif. Intell., 56(1):71–113, July 1992.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
ICML, pp. 1530–1538, 2015.

Erik Rodner, Marcel Simon, Bob Fisher, and Joachim Denzler. Fine-grained recognition in the noisy
wild: Sensitivity analysis of convolutional neural networks approaches. In BMVC, 2016.

Andrew M. Ross. Computing bounds on the expected maximum of correlated normal variables.
Methodology and Computing in Applied Probability, 12(1):111–138, Mar 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2019

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In NIPS,
pp. 3856–3866. 2017.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. CoRR, abs/1611.01232, 2016.

Alexander Shekhovtsov and Boris Flach. Normalization of neural networks using analytic variance
propagation. In Computer Vision Winter Workshop, pp. 45–53, 2018.

J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all
convolutional net. In ICLR (workshop track), 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15:1929–1958, 2014.

Hao Wang, Xingjian SHI, and Dit-Yan Yeung. Natural-parameter networks: A class of probabilistic
neural networks. In NIPS, pp. 118–126, 2016.

Sida Wang and Christopher Manning. Fast dropout training. In ICML, pp. 118–126, 2013.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, May 1992.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Feed-forward Propagation in Probabilistic Neural
Networks with Categorical and Max Layers

Appendix

A MAXIMUM OF SEVERAL VARIABLES

Approximation of the Mean For each k let Ak ⊂ Ω denote the event that Xk > Xj ∀j, i.e. that
Xk is the maximum of all variables. Let qk = P(Ak) be given. Note that events {Ak}k partition
the probability space. The expected value of the maximum Y = maxkXk can be written as the
following total expectation:

µ′ = E
[
Y
]

=
∑
k

P(Ak)E[Y |Ak] =
∑
k

qkE[Xk |Ak]. (26)

In order to compute each conditional expectation, we approximate the conditional density p(Xk =
xk |Ak), which is the marginal of the joint conditional density p(X = x |Ak), i.e. the distribution
of X restricted to the part of the probability space Ak as illustrated in Fig. A.1. The approximation
is a simpler conditional density p(Xk = xk | Âk) where Âk is chosen in the form Âk = [[Xk ≥ mk]]
and the threshold mk is chosen to satisfy the proportionality:

P(Âk) = P(Ak) = qk, (27)

which implies mk = F−1Xk
(qk). This can be also seen as the approximation of the conditional

probability P(Ak |Xk = r) =
∏
j 6=k FXj

(r), as a function of r, with the indicator [[mk ≤ r]], i.e.
the smooth step function given by the product of sigmoid-like functions FXk

(r) with a sharp step
function.

Assuming Xk is logistic, we find mk = µk + σk/σS log(1−qk
qk

). Then the conditional expectation

µ̂k = E[Xk | Âk] is computed as

µ̂k =
1

qk

∫ ∞
mk

xp(Xk=x)dx =
1

qk

∫ ∞
log(

1−qk
qk

)

(µk + a
σk
σS

)pS(a)da = µk +
1

qk

σk
σS
H(qk), (28)

where pS is the density of the standard Logistic distribution, a = x−µk

σk/σS
is the changed variable

under the integral and H(qk) = −qk log(qk) − (1 − qk) log(1 − qk) is the entropy of a Bernoulli
variable with probability qk. This results in the following interesting formula for the mean:

µ′ ≈
∑
k

qkµk +
∑
k

σk
σS
H(qk). (29)

Assuming Xk is normal, we obtain the approximation

µ′ ≈
∑
k

qkµk +
∑
k

σkφ(Φ−1(qk)). (30)

x2 > x1

x1

x2

Figure A.1: The joint conditional density p(X1 = x1, X2 = x2 |X2 > X1), its marginal den-
sity p(X2 = x2 |X2 > X1) and the approximation p(X2 = x2 |X2 > m2), all up to the same
normalization factor P(X2 > X1).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

0 100 200 300 400 500

n

1

1.5

2

2.5

3

3.5

4

E
xp

ec
te

d
m

ax

X
k
 Logistic with std 1

Our Logistic UB
X

k
 Normal

Best known Normal UB
Our Normal UB

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure A.2: Left: expectation of Y = maxkXk for Xk iid logistic or normal, our estimates
(dashed) versus sampling-based ground truth (solid) and the best known closed form upper bound
for the normal iid case (DasGupta et al., 2014, Theorem 4.1) (dotted). Right: the variance scaling
function f(q) (35) (solid) and its approximation (36) (dashed).

Lemma A.1. The approximation µ̂k is an upper bound on E[Xk|Ak].

Proof. We need to show that E[Xk|Ak] ≤ E[Xk|Âk]. Since P(Ak) = P(Âk), it is sufficient to
prove that ∫

Ak

Xk(ω)dP(ω) ≤
∫
Âk

Xk(ω)dP(ω). (31)

Let us subtract the integral over the common part Ak ∩ Âk. It remains to show∫
Ak\Âk

Xk(ω)dP(ω) ≤
∫
Âk\Ak

Xk(ω)dP(ω). (32)

In the RHS integral we haveXk(ω) ≥ mk since ω ∈ Âk = {ω |Xk(ω) ≥ mk}. In the LHS integral
we haveXk(ω) < mk since ω 6∈ Âk. Notice also that P(Ak\Âk) = P(Âk\Ak). The inequality (32)
follows.

Corollary 1. The approximations of the expected maximum (29), (30) are upper bounds in the
respective cases when Xk are logistic, resp., normal.

Consider the case then all Xk are all iid logistic or normal with µk = 0 and σk = 1. We then have
qk = 1

n . For logistic case µ′ ≈ nH(1
n), which is asymptotically log(n) + 1 − 1

2n + O(1/n2). For
normal case µ′ ≈ nφ(Φ−1(1

n)). This formulas are compared versus true (sampling-based) values in
Fig. A.2.

Approximation of the Variance For the variance we write

σ′2 = E(Y − µ′)2 =
∑
k

qkE((Xk − µ′)2 |Ak) ≈
∑
k

qkE((Xk − µ′)2 | Âk), (33)

where the approximation is due to Âk, and further rewrite the expression as

=
∑
k

qkE(X2
k − 2Xkµ

′ + µ′2 | Âk) (34a)

=
∑
k

qk

(
E(X2

k − µ̂2
k | Âk) + (µ̂k − µ′)2

)
(34b)

=
∑
k

qk(σ̂2
k + (µ̂k − µ′)2) (34c)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

where σ̂2
k = Var[Xk | Âk]. For Xk with logistic density p(x) the variance integral σ̂2

k =
∫∞
mk

(x −
µ̂′)2p(x)dx expresses as2:

σ̂2
k =

1

qk

σ2
k

σ2
S

(
− log2(1− qk)

qk
− 2 Li2(

qk
qk − 1

)
)

=:
1

qk
σ2
kf(qk), (35)

where Li2 is dilogarithm. The function f can be well approximated on [0, 1] with

f̃(q) = S(a+ bS−1(q)), (36)

where a = −1.33751 and b = 0.886763 are obtained from the first order Tailor expansion of
S−1(f(S(t))) at t = 0. This approximation is shown in Fig. A.2 and is in fact an upper bound on
f . We thus obtained a rather simple approximation for the variance

σ′2 ≈
∑
k

σ2
kS(a+ bS−1(qk)) +

∑
k

qk(µ̂k − µ′)2. (37)

B EXPERIMENT DETAILS

In this section we give all details necessary to ensure reproducibility of results.

B.1 IMPLEMENTATION DETAILS

We implemented our inference and learning in the pytorch3 framework. The source code will be
publicly available. The implementation is modular: with each of the standard layers we can do 3
kinds of propagation: AP1: standard propagation in deterministic layers and taking the mean in
stochastic layers (e.g., in dropout we need to multiply by the Bernoulli probability), AP2: proposed
propagation rules with variances and sample: by drawing samples of any encountered stochasticity
(such as sampling from Bernoulli distribution in dropout). The last method is also essential for
computing Monte Carlo (MC) estimates of the statistics we want to approximate. When the training
method is sample, the test method is assumed to be AP1, which matches the standard practice of
dropout training.

In the implementation of AP2 propagation the input and the output of each layer is a pair of mean
and variance. At present we use only higher-level pytorch functions to implement AP2 propagation.
For example, AP2 propagation for convolutional layer is implemented simply as

y . mean = F . conv2d (x . mean , w) + b
y . v a r = F . conv2d (x . var , w∗w)

For numerical stability, it was essential that logsumexp is implemented by subtracting the maximum
value before exponentiation

m, = x . max ()
m = m. d e t a c h () # does n o t i n f l u e n c e g r a d i e n t
y = m + t o r c h . l o g (t o r c h . sum (t o r c h . exp (x − m)))

The feed-forward propagation with AP2 is about 3 times slower than AP1 or sample. The relative
times of a forward-backward computation in our higher-level implementation are as follows:

s t a n d a r d t r a i n i n g 1
BN 1 . 5
i n f e r e n c e =AP2 3
i n f e r e n c e =AP2−norm=AP2 6

Please note that these times hold for unoptimized implementations. In particular, the computational
cost of the AP2 normalization, which propagates single pixel statistics, should be more efficient in
comparison to propagating a batch of input images.

2Computed with the help of Mathematica
3http://pytorch.org

15

http://pytorch.org

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

B.2 DATASETS

We used MNIST4 and CIFAR105 datasets. Both datasets provide a split into training and test sets.
From the training set we split 10 percent (at random) to create a validation set. The validation set is
meant for model selection and monitoring the validation loss and accuracy during learning. The test
sets were currently used only in the stability tests.

B.3 TRAINING

For the optimization we used batch size 32, SGD optimizer with Nesterov Momentum 0.9 (pytorch
default) and the learning rate lr · γk, where k is the epoch number, lr is the initial learning rate, γ
is the decrease factor. In all reported results for CIFAR we used γ such that γ600 = 0.1 and 1200
epochs. This is done in order to make sure we are not so much constrained by the performance
of the optimization and all methods are given sufficient iterations to converge. The initial learning
rate was selected by an automatic numerical search optimizing the training loss in 5 epochs. This
is performed individually per training case to take care for the differences introduced by different
initializations and training methods.

When not said otherwise, parameters of linear and convolutional layers were initialized using py-
torch defaults, i.e., uniformly distributed in [−1/

√
c, 1/

√
c], where c is the number of inputs per

one output.

Standard minor data augmentation was applied to the training and validation sets in CIFAR-10,
consisting in random translations ±2 pixels (with zero padding) and horizontal flipping.

When we train with normalization, it is introduced after each convolutional and fully connected
layer.

B.4 NETWORK SPECIFICATIONS

The LeNet5 architecture Lecun et al. (2001) is:

Conv2d (1 , 6 , ks =5 , s t =2) , A c t i v a t i o n
MaxPooling
Conv2d (6 , 16 , ks =5 , s t =2) , A c t i v a t i o n
MaxPooling
FC(4∗4∗16 , 1 2 0) , A c t i v a t i o n
FC(1 2 0 , 8 4) , A c t i v a t i o n
FC (8 4 , 1 0) , A c t i v a t i o n
LogSoftmax

Convolutional layer parameters list input channels, output channels, kernel size and stride.

The All-CNN network Springenberg et al. (2015) has the following structure of convolutional layers:

k s i z e = [3 , 3 , 3 , 3 , 3 , 3 , 3 , 1 , 1]
s t r i d e = [1 , 1 , 2 , 1 , 1 , 2 , 1 , 1 , 1]
d e p t h = [9 6 , 96 , 96 , 192 , 192 , 192 , 192 , 192 , 10]

each but the last one ending with activation (we used LReLU). The final layers of the network are

Adapt iveAvgPool2d , LogSoftmax

ConvPool-CNN-C model replaces stride-2 convolutions by stride-1 convolutions of the same shape
followed by 2x2 max pooling with stride 2.

B.5 AUXILIARY RESULTS ON NORMALIZATION

We test the analytic normalization method (Shekhovtsov & Flach, 2018) in a network with max
pooling and Leaky ReLU layers. We consider the “ConvPool-CNN-C” model of Springenberg et al.

4http://yann.lecun.com/exdb/mnist/
5https://www.cs.toronto.edu/˜kriz/cifar.html

16

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Con
v3

-9
6

LR
eL

U

Con
v3

-9
6

LR
eL

U

Con
v3

-9
6

LR
eL

U

M
ax

Poo
l

Con
v3

-1
92

LR
eL

U

Con
v3

-1
92

LR
eL

U

Con
v3

-1
92

LR
eL

U

M
ax

Poo
l

Con
v3

-1
92

LR
eL

U

Con
v1

-1
92

LR
eL

U

Con
v1

-1
0

Ave
ra

ge
Poo

l
10-5

10-4

10-3

10-2

10-1

100

standard init
Xavier init
AP2 init
BN init

Figure B.1: Standard deviation of neurons in network layers after different initializations. The
shown values are averages over all units in each layer (spatial and channel dimensions). With stan-
dard random initialization the variances quickly decrease and the network output for the whole
dataset collapses nearly to a single point, complicating the training. Xavier init does not fully re-
solve the problem. Analytic normalization provides standard deviation within a small factor of 1
in all layers, comparable to BN. The zig-zagging effect is observed because the normalization is
performed after linear layers only.

Training loss Validation Accuracy

0 150 300 450 600 750 900 10501200

10 5

10 4

10 3

10 2

10 1

100

0 200 400 600 800 1000 1200
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

init=AP2, lr=0.0098
init=BN, lr=0.011
init=standard, lr=0.038
init=xavier, lr=0.016
norm=AP2, lr=0.0051
norm=BN, lr=0.011

Figure B.2: The effect of initialization/normalization on the progress of training. Observe that the
initialization alone significantly influences the automatically chosen initial learning rate (lr) and the
”trainability” of the network. Using the normalization during the training further improves perfor-
mance for both batch and analytic normalization. BN has an additional regularization effect Ioffe
(2017), the square markers in the left plot show BN training loss using averaged statistics.

(2015) on CIFAR-10 dataset. It’s structure is shown on the x-axis of Fig. B.1. We first apply different
initialization methods and compute variances in each layer over the training dataset. Fig. B.1 shows
that standard initialization with weights distributed uniformly in [−1/

√
nin, 1/

√
nin], where nin is

the number of inputs per single output of a linear mapping results in the whole dataset concentrated
around one output point with standard deviation 10−5. Initialization of Glorot & Bengio (2010),
using statistical arguments, improves this behavior. For the analytic approximation, we take statistics
of the dataset itself (µ0, σ0) and propagate them through the network, ignoring spatial dimensions
of the layers. When normalized by this estimates, the real dataset statistics have variances close
to one and means close to zero, i.e. the normalization is efficient. For comparison, we also show
normalization by the batch statistics with a batch of size 32. Fig. B.2 further demonstrates that
the initialization is crucial for efficient learning, and that keeping track of the normalization during
training and back propagating through it (denoted norm=AP2 in the figure) performs even better and
may be preferable to batch normalization in many scenarios such as recurrent NNs.

B.6 ACCURACY WITH MAX POOLING

Table B.2 shows accuracy of posterior approximation results for ConvPool-CNN-C, discussed above
which includes max pooling layers. The network is trained and evaluated on CIFAR-10 with dropout
the same way as in § 5.1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C A C A C A M C A C A C A M C A C A C P Softmax
σ∗ 0 0.17 0.56 0.40 1.5 0.85 0.95 3.9 2.4 10 5.3 25 7.0 8.9 39 21 43 11 26 4.3
εµ1 - 0.00 0.00 0.03 0.21 0.05 0.21 0.96 0.11 0.43 0.11 0.71 0.09 0.18 0.79 0.14 0.37 0.10 0.26 0.97 KL 0.06
εµ2 - 0.00 0.00 0.01 0.01 0.01 0.09 0.42 0.05 0.22 0.04 0.19 0.03 0.11 0.59 0.07 0.18 0.08 0.19 0.73 KL 0.03
εσ2 - 1.00 1.00 1.02 0.93 0.98 1.08 1.21 1.24 1.00 1.09 0.88 0.99 1.15 1.02 0.97 0.97 1.26 1.00 0.73

Table B.1: Accuracy of approximation of mean and variance statistics for each layer in a fully
trained ConvPool-CNN-C network with dropout. A significant drop of accuracy is observed as well
after max pooling, we believe due to the violation of the independence assumption.

Training Loss

0 150 300 450 600 750 900 1050 1200

10 5

10 4

10 3

10 2

10 1

100 AP2 dropout=0.2, lr=0.016
Dropout=0.2, lr=0.013
No dropout, lr=0.011

Figure B.3: Training loss corresponding to Fig. 3. While stochastic dropout slows the training
down due to increased stochasticity of the gradient, the analytic dropout smoothes the loss function
and speeds the training up.

Validation Accuracy Validation Loss

0 200 400 600 800 1000 1200
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95
AP2 dropout=0.2, lr=0.043
Dropout=0.2, lr=0.02
No dropout, lr=0.019

0 200 400 600 800 1000 1200

100

3 × 10 1

4 × 10 1

6 × 10 1

AP2 dropout=0.2, lr=0.043
Dropout=0.2, lr=0.02
No dropout, lr=0.019

Figure B.4: Comparison of analytic AP2 dropout with baselines. All methods use the same initial-
ization using AP2 statistics and no normalization. Analytic dropout improves over training with no
dropout and is faster than sampling dropout but starts slightly overfitting soon.

B.7 AUXILIARY RESULTS ON ANALYTIC DROPOUT

Fig. B.4 shows training results, when we use AP2 method only to initialize the network, but switch
off the normalization during the training. In this setting we see that AP2 approximate dropout
has a significant regularization effect (validation loss) and improves in accuracy over the baseline
without dropout. It also performs faster than stochastic dropout, but achieves worse final accuracy
in this case. This shows that other regularizer, namely the normalization used in § 5.3 are important
as well. Table B.2 confirms that “AP2 calibrated” keeps the good test-time performance for the
network trained with stochastic dropout (the best performing network in Fig. B.4).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Standard dropout
Method NLL Acc.
AP1 0.487 0.923
AP2 0.293 0.923
AP2 calibrated 0.244 0.923
MC-10 0.312 0.922
MC-100 0.256 0.924
MC-1000 0.244 0.924

Table B.2: Different test-time propagation methods for a model with dropout. We show test neg-
ative log likelihood (NLL) with AP2 and MC posterior estimates for network trained with standard
dropout and using AP2 (analytic) dropout. In both cases AP2 results in improved posterior esti-
mates. ”AP2 calibrated” rescales the variance in the last layer by the average factor σ/σ∗ (see § 5.1)
estimated on the validation set.

19

	Introduction
	Probabilistic NNs and Feed-forward Expectation Propagation
	Propagation in Basic Layers
	Propagation in Categorical and Max Layers
	Argmax and Softmax
	Maximum of Two Variables
	Maximum of Several Variables
	Leaky ReLU

	Experiments
	Approximation Accuracy
	Analytic Normalization
	End-to-end learning with Analytic Dropout

	Conclusion
	Maximum of Several Variables
	Experiment Details
	Implementation Details
	Datasets
	Training
	Network specifications
	Auxiliary Results on Normalization
	Accuracy with Max pooling
	Auxiliary Results on Analytic Dropout

