
Workshop track - ICLR 2018

Node Centralities and Classification Performance
for Characterizing Node Embedding Algorithms

Kento Nozawa1, 2, Masanari Kimura1, Atsunori Kanemura2
1University of Tsukuba, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Japan
{k_nzw,mkimura}@klis.tsukuba.ac.jp, atsu-kan@aist.go.jp

Abstract

Embedding graph nodes into a vector space can allow the use ofmachine learning to
e.g. predict node classes, but the study of node embedding algorithms is immature
compared to the natural language processing field because of a diverse nature of
graphs. We examine the performance of node embedding algorithms with respect
to graph centrality measures that characterize diverse graphs, through systematic
experiments with four node embedding algorithms, four or five graph centralities,
and six datasets. Experimental results give insights into the properties of node
embedding algorithms, which can be a basis for further research on this topic.

1 Introduction

Representation learning for a graph is to assign an embedding vector to each node, so that embeddings
can be used as features for machine learning algorithms (Cai et al., 2018). Given a directed or
undirected graph G = (V, E), a node embedding algorithm finds a mapping from a node v ∈ V to a
dense and lower-dimensional vector h ∈ Rd (d� |V|) called a node embedding. Those embedding
vectors are used as feature vectors for e.g. classifying nodes (Perozzi et al., 2014) and predicting links
(Grover & Leskovec, 2016); in this way, graph processing tasks such as link prediction are converted
to a machine learning problem, often simplifying the entire graph processing procedure.

Many node embedding algorithms have been proposed in the literature, greatly inspired by the
influential work in natural language processing (NLP) by Mikolov et al. (2013a), but there is no
single algorithm that work better than others on various graphs. Existing algorithms are either based
on local information (Tang et al., 2015; Perozzi et al., 2014; Grover & Leskovec, 2016), graphlets
(Lyu et al., 2017), or global information (Lai et al., 2017) such as PageRank (Page et al., 1998).
Graphs have at least two difficulties that do not exist in the NLP context. First, graphs have a large
variety e.g. in the edge directionality or their sizes depending on the domain where the data are
collected. Second, although it is standard in the NLP field to re-use embeddings obtained from one
corpus to other text data (Mikolov et al., 2017), node embeddings cannot be re-used like that because
node identity is not maintained for different graphs (word identity is maintained across texts).

In this paper, we examine node embedding algorithms in their node classification performance and
analyze them with respect to graph centrality measures such as PageRank. Graph centralities have
been employed to characterize various properties of graphs, such as node ranking (Newman, 2010),
but we hypothesize they are also useful to characterize node embedding algorithms. Through our
systematic experiments with four node embedding algorithms, four or five centrality measures, and
six datasets, our findings indicate that an eigenmap-based algorithmworks well for undirected graphs
whereas an algorithm with first-order proximity performs well for directed graphs. Our results can
be a basis for further research and develop on node embedding algorithms.

2 Experiment Settings

Our experiment procedure is as follows. Given a graph dataset, we execute a node embedding
algorithm and obtain embeddings. Using the embeddings as features, we built a node classifier.
Then, for later analysis, we divide nodes into two types: those which classification was correct and

1

Workshop track - ICLR 2018

Table 1: Graph datasets for embedding learning and multi-class classification.

Dataset Edge |V| |E| #Classes
Cora (Sen et al., 2008) Directed 2 708 5 429 7

PubMed (Sen et al., 2008) Directed 19 717 44 335 3
uCora Undirected 2 708 5 278 7

uPubMed Undirected 19 717 44 324 3
BlogCatalog (Zafarani & Liu, 2009) Undirected 10 312 333 983 39

Flickr (Zafarani & Liu, 2009) Undirected 80 513 5 899 882 195

the others. We examine how the distribution of graph centralities are different between the correctly
classified and incorrectly classified nodes. Our source code in Docker is publicly available1.

2.1 Node Embedding Algorithms

We compared the following four node embedding algorithms: Laplacian eigenmaps (Belkin &
Niyogi, 2001), LINE-1st and LINE-2nd (Tang et al., 2015), and node2vec (Grover & Leskovec,
2016), which are popular and frequently used as the baseline when developing new algorithms.

Laplacian eigenmaps (Belkin & Niyogi, 2001) decompose the normalized Laplacian matrix L ∈
R|V|×|V| induced from a graph into a lower-dimensional |V| × d matrix by eigendecomposition to
map a node to a d-dimensional vector (d� |V|). Laplacian eigenmaps have two difficulties: 1) they
can only work on undirected graphs; 2) they become computationally infeasible for large graphs
because of the heavy eigendecomposition.

LINE (Tang et al., 2015) minimizes the Kullback-Leibler divergence between adjacent nodes to learn
embeddings. LINE uses only local information (edge connection) and scales to large graphs. LINE
has two variants. LINE-1st makes two embeddings hu and hv similar if nodes u and v are adjacent.
LINE-2nd makes these embeddings similar when u and v have many common neighborhood nodes.

The node2vec algorithm (Grover & Leskovec, 2016) uses skip-gramwith negative sampling (SGNS),
originally proposed byMikolov et al. (2013a;b) for texts. To apply SGNS to a graph, node2vec trains
skip-gram on node sequences generated by random walks (RWs).

Settings for Node Embedding Algorithms We implemented eigenmaps with scikit-learn 2 and
used the official code of LINE3 and node2vec 4.

The following hyperparameters are selected based on the cross-validation (CV) performance on the
node classification task. The types and ranges of the hyperparameters are as follows. The embedding
dimensionality d is either 128 or 256. Whether to normalize or not to normalize embeddings before
passing them to a classifier. For node2vec , biased RW parameters p, q ∈ {0.25, 0.5, 1, 2, 4}.
We fixed the following hyperparameters based on Tang et al. (2015) and Grover & Leskovec (2016).
For the LINE models, we set the number of negative samples to 5, the initial learning rate ρ to 0.025,
and the number of threads to 16. For node2vec, the number of RWs per node r to 10, the length of
an RW l to 80, the number of negative sampling to 5, and the number of context nodes to 10.

2.2 Centrality Measures

We employed the following centralities: degree (for undirected graphs), in-degree and out-degree (for
directed graphs), PageRank, closeness, and betweenness. Appendix A describes their definitions.

2.3 Datasets

Table 1 shows six graph datasets we use in this paper; they have a variety in the edge directionality
and sizes. Although the original Cora and PubMed datasets are directed, we created their undirected

1https://github.com/nzw0301/iclrw2018
2http://scikit-learn.org/stable/modules/manifold.html#spectral-embedding
3https://github.com/tangjianpku/LINE
4https://github.com/snap-stanford/snap/tree/master/examples/node2vec

2

https://github.com/nzw0301/iclrw2018
http://scikit-learn.org/stable/modules/manifold.html#spectral-embedding
https://github.com/tangjianpku/LINE
https://github.com/snap-stanford/snap/tree/master/examples/node2vec

Workshop track - ICLR 2018

Table 2: Micro F1 scores (averaged over five validation folds) of multi-class classification.

Dataset Edge Eigenmaps LINE-1st LINE-2nd node2vec

Cora Directed — 0.805 ± 0.015 0.545 ± 0.023 0.357 ± 0.005
PubMed Directed — 0.786 ± 0.004 0.618 ± 0.011 0.531 ± 0.008
uCora Undirected 0.861 ± 0.016 0.818 ± 0.010 0.804 ± 0.014 0.837 ± 0.019

uPubMed Undirected 0.818 ± 0.003 0.791 ± 0.006 0.785 ± 0.003 0.814 ± 0.009
BlogCatalog Undirected 0.390 ± 0.012 0.362 ± 0.009 0.354 ± 0.007 0.348 ± 0.008

Flickr Undirected ∗ 0.363 ± 0.002 0.360 ± 0.001 0.328 ± 0.001
* Cannot be computed due to an out-of-memory error on a machine with 128 GB of RAM.

0 2 4 6 8 10
Log cumulative sum of the number of nodes

0

2

4

6

Lo
g

Ou
tD

eg
re

e

LINE-1st
LINE-2nd
node2vec

(a) Cora OutDegree

0 2 4 6 8
Log cumulative sum of the number of nodes

0

1

2

3

4

5

Lo
g

De
gr

ee

Eigenmaps
LINE-1st
LINE-2nd
node2vec

(b) uCora Degree

Figure 1: Power-law plots of graph centrality measures for incorrectly classified nodes.

versions, uCora and uPubMed, by ignoring the edge directions, resulting in fewer edges. Each node
is associated with a class (in Cora and PubMed, seven or three scientific fields, respectively; in
BlogCatalog, 39 blog categories; and in Flickr, 195 interest groups).

2.4 Node Classification

To predict node labels from embeddings, we train one-vs-rest logistic regression classifiers with five-
fold CV. The regularization parameter for logistic regression is sought from C ∈ {0.25, 0.5, 1, 2, 4}
in a nested CV procedure.

3 Results and Discussion

Table 2 shows the performance of node classification from node embeddings. In the directed graphs,
LINE-1st performed the best, clearly outperforming the other two algorithms. In the undirected
graphs, Laplacian eigenmaps obtained the best results almost always, though the difference against
node2vec was negligible for the uPubMed dataset.

Although the eigenmaps method performed well, it was infeasible to the largest dataset, Flickr,
implying the need to make the eigenmaps method scalable. The superior performance of eigenmaps
is partly inconsistent with Grover & Leskovec (2016), who claimed eigenmaps are inferior to
node2vec; the graph is subtle.

We found just ignoring edge directions can improve the classification performance. Although LINE-
1st appears to be the best for the directed graphs, node2vec outperformed it when we regard them
as undirected. This suggests that embeddings for classification can be obtained by just converting
directed to undirected.

Figure 1 shows the power-law plots indicating how the distributions of graph centralities are different
among node embedding algorithms; if the area under a curve is small, then the corresponding algo-
rithm’s performance is high. Since the classification performances were different when classifying
Cora nodes, it was expected the embedding algorithms obtained different embeddings. This can
be justified by Fig. 1a, where the degree centrality behaves differently for different algorithms. For
uCora, the performance gaps among different algorithms were moderate (Table 2), and in fact the
degree centralities were not discrepant (Fig. 1b).

3

Workshop track - ICLR 2018

References
Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding
and Clustering. In NIPS, 2001.

Hongyun Cai, VincentW. Zheng, and Kevin Chen-Chuan Chang. A Comprehensive Survey of Graph
Embedding: Problems, Techniques and Applications. arXiv, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. In KDD,
2016.

Yi-An Lai, Chin-Chi Hsu, Wen-Hao Chen, Mi-Yen Yeh, and Shou-De Lin. PRUNE: Preserving
Proximity and Global Ranking for Network Embedding. In NIPS, 2017.

Tianshu Lyu, Yuan Zhang, and Yan Zhang. Enhancing the Network Embedding Quality with
Structural Similarity. In CIKM, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words
and Phrases and their Compositionality. In NIPS, 2013a.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey Dean. Efficient Estimation of Word Represen-
tations in Vector Space. In ICLR, 2013b.

TomasMikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin. Advances
in Pre-Training Distributed Word Representation. arXiv, 2017.

Mark Newman. Networks: An Introduction. Oxford University Press, Inc., 2010.

Lawrence Page, SergeyBrin, RajeevMotwani, andTerryWinograd. The PageRankCitationRanking:
Bringing Order to theWeb. World Wide Web Internet And Web Information Systems, 54(1999-66):
1–17, 1998.

Tiago P. Peixoto. The Graph-tool Python Library. Figshare, 2014. URL https://graph-tool.
skewed.de/.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning of Social Represen-
tations. In KDD, 2014.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina
Eliassi-Rad. Collective Classification in Network Data. AI Magazine, 29(3):93–106, 2008.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-scale
Information Network Embedding. In WWW, 2015.

Reza Zafarani and Huan Liu. Social Computing Data Repository at ASU, 2009. URL http:
//socialcomputing.asu.edu.

A Node Centrality Measures

Wedescribe the four node centralitymeasures used in this study. In the field of network analysis, node
centralities are used to characterize nodes depending on their relationship to other nodes (Newman,
2010). Given a graph G = (V, E), we denote nodes by u, v, s, t ∈ V .
The degree centrality of u, Degree(u), is the most simple centrality measure and is defined to be
the number of edges incident to u. If G is directed, the in-degree centrality InDegree(u) counts the
number of incoming edges and the out-degree centrality OutDegree(u) is that of outgoing edges.

PageRank (Page et al., 1998) is a centrality measure that is most popularly known as the ranking
metric of web pages. PageRank for u is defined as

PR(u) =
1− α
|V|

+ α
∑

v∈InNeighbors(u)

PR(v)

OutDegree(v)
, (1)

4

https://graph-tool.skewed.de/
https://graph-tool.skewed.de/
http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

Workshop track - ICLR 2018

where α ∈ [0, 1] is a dumping factor, InNeighbors(u) is the set of the nodes that have outgoing
edges to u.

The closeness centrality’s definition is

Closeness(u) =
1∑

v∈V Distance(u→ v)
, (2)

where Distance(u→ v) is the length of the shortest path from u to v.

The betweenness centrality is defined as

Betweenness(u) =
∑
s,t∈V

σ(s→ u→ t)

σ(s→ t)
, (3)

where σ(s → t) means the total number of the shortest paths from s to t. In the similar way,
σ(s→ u→ t) means the total number of the shortest paths from s to t passing through u.

In our experiment, we used graph-tool (Peixoto, 2014) to calculate those centrality measures.

5

	Introduction
	Experiment Settings
	Node Embedding Algorithms
	Centrality Measures
	Datasets
	Node Classification

	Results and Discussion
	Node Centrality Measures

