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Abstract

We study differentially private (DP) algorithms for smooth stochastic minimax
optimization, with stochastic minimization as a byproduct. The holy grail of these
settings is to guarantee the optimal trade-off between the privacy and the excess
population loss, using an algorithm with a linear time-complexity in the number
of training samples. We provide a general framework for solving differentially
private stochastic minimax optimization (DP-SMO) problems, which enables
the practitioners to bring their own base optimization algorithm and use it as a
black-box to obtain the near-optimal privacy-loss trade-off. Our framework is
inspired from the recently proposed Phased-ERM method [22] for nonsmooth
differentially private stochastic convex optimization (DP-SCO), which exploits
the stability of the empirical risk minimization (ERM) for the privacy guarantee.
The flexibility of our approach enables us to sidestep the requirement that the base
algorithm needs to have bounded sensitivity, and allows the use of sophisticated
variance-reduced accelerated methods to achieve near-linear time-complexity. To
the best of our knowledge, these are the first near-linear time algorithms with
near-optimal guarantees on the population duality gap for smooth DP-SMO, when
the objective is (strongly-)convex–(strongly-)concave. Additionally, based on our
flexible framework, we enrich the family of near-linear time algorithms for smooth
DP-SCO with the near-optimal privacy-loss trade-off.

1 Introduction

Machine learning models are nowadays trained using large corpora of data samples collected from
many different entities, e.g., from users of a large software service [28]. However, it has been
empirically shown that these models can be exploited to reveal private information about these
contributing entities. For example, Carlini et al. [13] attacked the large language model, GPT-2, to
reveal hundreds of verbatim text samples used to train these models. These attacks violate the privacy
of the contributing entities, but naturally they expect that no private information about them can be
revealed through these models. Over the last decade, this expectation was even legislated into laws
such as GDPR in EU [15]. There are many mathematical frameworks formalizing this expectation
of privacy, but the most widely accepted one is that of Differential Privacy (DP) [18]. With high
probability, models satisfying DP cannot be attacked by any adversary to identify that a particular
training sample was used in its training. Hence, DP provides any entity plausible deniability that they
contributed to the training set. However, optimization algorithms for training such models under DP
require careful design choices to ensure privacy while preventing the degradation of convergence
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speed and data efficiency. This has led to the burgeoning field of differentially private optimization
algorithms [6, 7, 22], which considers stochastic convex minimization as the canonical problem.

For differentially private stochastic convex optimization (DP-SCO) with (ε, δ)-DP guarantees, the
optimal excess population risk is Θ(1/(µn)+ d log(1/δ)/(µn2ε2)) for µ-strongly convex objectives,
where n is the number of participants and d is the dimension of the variable. If the objective is
also smooth, this can be achieved with a linear-time (ε, δ)-DP algorithm [22] using O(n) stochastic
gradient evaluations. This analysis critically relies on the concept of algorithmic stability [12], which
measures how much the population loss of an algorithm’s output changes when a single data point
in the input dataset is perturbed. This is also known as sensitivity of an algorithm in DP, which
determines how much noise needs to be added in order to achieve (ε, δ)-DP (see Definition 2). We
will use stability and sensitivity interchangeably when referring to optimization algorithms. As the
sensitivity of stochastic gradient descent (SGD) is known [24], Feldman et al. [22] were able to add
an appropriate amount of noise—tailored to this sensitivity—to an SGD-based algorithm to achieve
optimal risk in linear time. However, such tight analysis of sensitivity is generally intractable for more
complex optimization routines that practitioners might want to use. Further, the stability analysis of
SGD only holds when the smoothness parameter ℓ of the problem is upper-bounded by Õ(µn). In
the first part of the paper, we show that we can achieve similar guarantees using a wider choice of,
potentially more practical, “base” algorithms, without any restrictions on the smoothness parameter.

On another front, many emerging practical machine learning applications are formulated as stochastic
minimax optimization problems, e.g., generative adversarial networks [23], adversarially robust
machine learning [35], and reinforcement learning [16]. Designing DP algorithms for solving these
minimax problems is of paramount importance. For example, private generative adversarial networks
provide a promising new direction to synthetic data generation [47], such as in networked time-series
data [32]. Motivated by such applications, we study the differentially private stochastic minimax
optimization (DP-SMO) problem of the form:

min
x∈X

max
y∈Y

F (x, y) ≜ Eξ[f(x, y; ξ)],

where the objective f(x, y; ξ) is smooth and convex-concave for any random vector ξ, and we are
given access to n i.i.d. samples {ξi}ni=1. In contrast to DP-SCO, where linear-time algorithms have
been proposed to achieve optimal risk guarantees, existing private algorithms [11, 49] for DP-SMO
achieving optimal guarantees have time-complexity which scales super-linearly in the number of
samples n (summarized in Table 1). In the second part of this paper, we close this gap by introducing
a new class of output perturbation-based DP algorithms for both strongly-convex–strongly-concave
and convex-concave settings, which can achieve near-optimal population risk bounds using Õ(n)

stochastic gradient computations, where Õ hides logarithmic factors.

One of the main bottlenecks for (i) using a wider variety of algorithms to solve the DP-SCO problem,
and (ii) solving the DP-SMO problem using linear-time algorithms, is the lack of known stability
results for fast and sophisticated non-private algorithms, such as variance-reduced and accelerated
methods. One can sidestep the algorithm-specific stability requirement by utilizing the stability of
the optimal solution to a strongly-convex and Lipschitz empirical risk minimization (ERM) problem
[42, 51]. Particularly, if the output of an algorithm for such an ERM problem is close enough to its
empirical solution, then the sensitivity of the algorithm is automatically guaranteed. Exploiting this
observation, Feldman et al. [22] proposed the phased-ERM algorithm for nonsmooth DP-SCO, which
solves a series of strongly-convex ERM subproblems to sidestep the stability analysis of SGD for
nonsmooth functions. This algorithm achieves a quadratic time-complexity for nonsmooth DP-SCO.

We observe that when the problem is additionally smooth, or when it allows a smooth minimax
reformulation [37], there exist a plethora of fast algorithms to solve the resulting ERM subproblems.
Combining these algorithms with (phased) output perturbation gives rise to a class of near-optimal
near-linear 1 time-complexity private algorithms for both smooth DP-SCO and DP-SMO problems,
without any additional effort on their stability analysis. Our contributions are summarized below:

• We introduce a flexible framework for solving smooth DP-SMO and smooth DP-SCO problems,
utilizing the (phased) output perturbation mechanism. The black-box framework enables us to bypass
the need to prove algorithm-specific stability and transform off-the-shelf optimization algorithms

1We only claim near-optimality of our rate because of its dependence on the condition number or additional
logarithmic terms. We call an algorithm near-linear time when it is linear-time up to some logarithmic factors.
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Table 1: Among (ε, δ)-DP smooth minimax algorithms that achieve the near-optimal utility bound
on the population strong duality gap for the µ strongly-convex–strongly-concave case and the
population weak duality gap for the convex-concave case, the proposed framework achieves the best
gradient complexity. Here Õ hides logarithmic terms, ℓ is the smoothness parameter, κ = ℓ/µ and
d = max{dx, dy}. Lower-bounds are also summarized in the table.

Settings Lower-bound Algorithm Utility Complexity

SC-SC Ω
�

1
µxn

+ dx log(1/δ)
µxn2ε2

�
Thm. 4.3 O

�
κ2

µn + κ2d log(1/δ)
µn2ε2

�
Õ(n+

√
nκ)

C-C Ω
�

1√
n
+

√
dx log(1/δ)

nε

�

DP-SGDA [49] O
�

1√
n
+

√
d log(1/δ)

nε

�
O(n3/2

√
ε)

NSEG [11] O
�

1√
n
+

√
d log(1/δ)

nε

�
O(n2)

NISPP [11] O
�

1√
n
+

√
d log(1/δ)

nε

�
Õ(n3/2)

Thm. 4.5 Õ
�

1√
n
+

√
d log(1/δ)

nε

�
Õ(n)

into DP algorithms with near-optimal guarantees. This is attractive as there are currently no stability
analyses for accelerated [2, 39] and variance-reduced [26, 39] algorithms for both SMO and SCO.

• Using the framework, we provide the first near-linear time private algorithms for smooth DP-SMO
with near-optimal bound on the population duality gap, under both strongly-convex–strongly-concave
and convex-concave cases (see Table 1). Among other things, this implies that if a (primal) nonsmooth
minimization problem can be reformulated as a smooth convex-concave minimax optimization
problem, then we can solve it in near-linear time instead of the best known super-linear time [4, 30].
In prior work, near-linear time DP algorithms with optimal rates for solving nonsmooth convex
objectives only existed for generalized linear losses [9].

• The framework also enriches the cohort of near-linear time near-optimal private algorithms for
smooth DP-SCO settings, which only contained SGD previously. Moreover, existing optimal DP
algorithms for smooth DP-SCO rely on a stability result of SGD, which only holds for a restricted
range of the smoothness parameter [24]. Such restrictions are avoided in our framework.

Related Works: Differentially private optimization has been an active research field for the past
few years, and early works focused on the empirical problems [6, 46, 50, 44]. In addition to the output
perturbation used in this paper, many existing works applied gradient perturbation to guarantee privacy.
This method adds noise to each iteration of the algorithm and then applies moments accountant [1] or
advanced composition [27] to analyze the overall privacy. Although gradient perturbation does not
need the smoothness or convexity assumptions of the function and works for most iterative algorithms,
it requires larger mini-batches [7] or longer training time [8] if one resorts to the privacy amplification
via subsampling [10] to reduce the DP noise, resulting in super-linear gradient queries in existing
methods [7, 49]. Here we mainly review previous results that achieve the optimal utility bound
O(1/

√
n+

p
d log(1/δ)/(nε)) on the population loss—according to a lower-bound in Bassily et al.

[6]—when solving a d dimensional DP-SCO problem using n samples with (ε, δ)-DP guarantees.

In the smooth convex case, Bassily et al. [7] is the first to derive optimal rates for DP-SCO with
complexity O(n3/2

√
ε) by gradient perturbation and stability of SGD [24]. Feldman et al. [22]

provided two SGD-based linear-time algorithms: one uses privacy amplification by iteration [21] that
only works for contractive updates; the second one uses phased output perturbation and stability of
SGD. In the nonsmooth convex case, Bassily et al. [8] established the stability of SGD for nonsmooth
functions and obtained a quadratic-time algorithm. Feldman et al. [22] leveraged the stability of ERM
solutions [42] and achieved O(n2 log(1/δ)) complexity with phased output perturbation. Based on
this phased framework, Asi et al. [4] and Kulkarni et al. [30] used gradient perturbation and improved
the complexity to O(min{n3/2, n2/

√
d}) and O(min{n5/4d1/8, n3/2/d1/8}) respectively; Asi et al.

[3] introduced a hypothetical linear-time algorithm assuming the existence of a low-biased estimator.
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Moreover, Bassily et al. [9] gave a near-linear time algorithm for nonsmooth convex generalized
linear losses using phased SGD [22] with smoothing techniques [37].

To the best of our knowledge, only few papers studied DP-SMO and all of them used gradient
perturbation to guarantee privacy. Boob and Guzmán [11] analyzed stability of Extragradient [43] and
proximal point methods [41] for smooth convex-concave functions, and their DP versions run with
time O(n2) and Õ(n3/2) respectively. Yang et al. [49] used the stability of SGDA [31] and obtained
DP algorithms with complexity O(n3/2

√
ε) for the smooth convex-concave case and O(n2) for the

nonsmooth case, mirroring the guarantees of SGD for DP-SCO [7, 8]. Kang et al. [29] only focused
on stability and generalization analysis of gradient perturbed SGDA and provided high-probability
results. See Table 1 for a brief comparison.

The idea of using the stability of ERM for smooth convex optimization has also been exploited before.
Attia and Koren [5] developed a black-box framework for smooth convex objectives that produces
uniformly-stable algorithms while maintaining fast convergence rates. Lowy and Razaviyayn [33]
considered DP-SCO by output perturbation but only provided near-linear time near-optimal algorithms
for smooth strongly-convex losses. For smooth convex case, they achieved a sub-optimal rate
O(1/

√
n+ (

p
d log(1/δ)/(nε))2/3) in near-linear time. In the setting of smooth strongly-convex–

(strongly-)concave DP-SMO, they directly utilized its DP-SCO reformulation in the primal function
to obtain the final guarantees. Therefore, their utility bound is simply on the primal risk, which is
weaker than the primal-dual gap considered in this work. The algorithms run in near-linear time
for the strongly-concave case and super-linear time O(n5/2) for the concave case. In contrast, we
provide near-optimal near-linear time algorithms in all aforementioned settings.

Notations: We use ∥·∥ for the Euclidean norm of a vector and |·| for the absolute value or the
cardinality of a set. A function g : Rd → R is L-Lipschitz if |g(x1) − g(x2)| ≤ L∥x1 − x2∥
for x1, x2 in the domain of g. A function h : Rd → R is ℓ-smooth if it is differentiable and
h(x2) ≤ h(x1) + ∇h(x1)

⊤(x2 − x1) + (ℓ/2)∥x1 − x2∥2. A function p : Rd → R is convex if
p(αx1 + (1 − α)x2) ≤ αp(x1) + (1 − α)p(x2) for all α ∈ [0, 1], and p is µ-strongly convex if
p(x) − (µ/2)∥x∥2 is convex with µ > 0. A function q : Rd → R is concave if −q is convex and
µ-strongly concave if −q is µ-strongly convex. For a vector x ∈ Rd, the notation x +N (0,σ2Id)
means x+ z for a random vector z ∼ N (0,σ2Id) sampled from the Gaussian distribution.

2 Preliminaries

We first provide some background on differential privacy and stochastic minimax optimization.

2.1 Differential Privacy

Differential Privacy (DP), introduced in Dwork et al. [18], measures privacy leakage of an algorithm.

Definition 1. For two datasets S = {ξi}ni=1 and S′ = {ξ′i}ni=1, we say the pair (S, S′) is neighboring
if max{|S \ S′|, |S′ \ S|} = 1 and we denote neighboring datasets with S ∼ S′. For an algorithm A
and some privacy parameters ε > 0 and δ ∈ (0, 1), we say A satisfies (ε, δ)-differential privacy if
P(A(S) ∈ A) ≤ eεP(A(S′) ∈ A) + δ for all S ∼ S′ and all subset A in the range of A.

In this work, we focus on the settings when ε ∈ (0, 1) and δ ∈ (0, 1/n) given dataset of size n.
Sensitivity is an important concept that makes designing (ε, δ)-DP mechanisms straightforward.

Definition 2. Let A be some randomized algorithm operating on S and outputting a vector in Rd. If
A has sensitivity ∆A := supS∼S′∥A(S)−A(S′)∥ with probability at least 1− δ, then the Gaussian
mechanism outputs A(S) +N (0, (∆A

p
2 log(1.25/δ)/ε)2Id) and achieves (ε, 2δ)-DP [17, 22].

The following basic composition rule of differential privacy will be used in the analysis.

Lemma 2.1. If A1 is (ε1, δ1)-DP and A2 is (ε2, δ2)-DP, then (A1,A2) is (ε1 + ε2, δ1 + δ2)-DP
[17]. For a sequence of interactive algorithms {Ak}Kk=1 each satisfying (εk, δk)-DP and operat-
ing on a subset Sk, if Sk’s are disjoint then the composition (A1(S1),A2(S2), . . . ,AK(SK)) is
(maxk∈[K] εk,maxk∈[K] δk)-DP (known as parallel composition in McSherry [36]).
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Algorithm 1 Output Perturbation for Strongly-Convex Minimization
Input: Dataset S = {ξi}ni=1, algorithm A, DP parameters (ε, δ), strong-convexity parameter µ.

1: Run the algorithm A on the smooth strongly-convex finite-sum problem minx∈X F̂S(x) =
(1/n)

Pn
i=1 f(x; ξi) to obtain the output A(S) such that ∥A(S)− x̂∗

S∥ ≤ L/(µn) with proba-
bility at least 1− δ/4, where x̂∗

S = argminx∈X F̂S(x) is the empirical optimal solution.
Output: x̃ = A(S) +N (0,σ2Id) with σ = 4L

p
2 log(2.5/δ)/(µnε).

2.2 Stochastic Minimax Optimization

The stochastic minimax (a.k.a. saddle point) optimization problem has the form:

min
x∈X

max
y∈Y

F (x, y) ≜ Eξ[f(x, y; ξ)], (1)

where F is the population-level expectation of the stochastic continuous objective f(·, ·; ξ) : Rdx ×
Rdy → R with closed convex domains X ⊂ Rdx and Y ⊂ Rdy whose stochasticity is captured by
the random vector ξ. We are interested in the population saddle point (x∗, y∗) ∈ X ×Y of the above
problem such that F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗) for all (x, y) ∈ X × Y .

For some randomized algorithm with output (x̃, ỹ), we measure its convergence rates by the popula-
tion strong duality gap E[maxy∈Y F (x̃, y)−minx∈X F (x, ỹ)] or the population weak duality gap
maxy∈Y E[F (x̃, y)]−minx∈X E[F (x, ỹ)]. Note that both duality gaps are always larger than 0, and
a deterministic (x̃, ỹ) is the saddle point if and only if the duality gaps are 0.

In practice, we usually do not have access to the distribution Pξ of the random vector ξ. Instead we
are given a dataset S = {ξi}ni=1 with n random vectors independently sampled from the distribution
Pξ. We define the empirical minimax optimization problem as

min
x∈X

max
y∈Y

F̂S(x, y) ≜
1

n

nX

i=1

f(x, y; ξi). (2)

Similarly, we can define the empirical saddle point (x̂∗
S , ŷ

∗
S) and the empirical duality gap w.r.t. the

empirical function F̂S . Zhang et al. [51] established the stability and generalization properties of the
empirical saddle point, which is essential to the design of our DP-SMO algorithms.

3 Differentially Private Stochastic Convex Optimization

As a warm-up, we start with a simpler problem of differentially private stochastic convex optimization
(DP-SCO) to showcase our main ideas. We consider the following stochastic optimization:

min
x∈X

F (x) ≜ Eξ[f(x; ξ)],

where the stochastic function f(·, ξ) : Rd → R is defined on a convex domain X ⊂ Rd and ξ is a
random vector from an unknown distribution Pξ . Given a dataset S with n i.i.d. samples from Pξ , we
develop a generic output perturbation framework with both privacy and population loss guarantees.

3.1 Near-Linear Time Algorithms for Smooth Strongly-Convex Functions

First we study the case when the objective function is strongly-convex with the following assumptions.
Assumption 3.1. For any ξ, the function f(x; ξ) is L-Lipschitz, ℓ-smooth, and convex on the closed
convex domain X ⊂ Rd.
Assumption 3.2. For any ξ, f(x; ξ) satisfies Assumption 3.1 and it is µ-strongly convex on X .

Shalev-Shwartz et al. [42] proved that the empirical optimal solution has bounded stability if the
objective f(·; ξ) is strongly-convex and Lipschitz w.r.t. its domain (see Lemma A.2 in the appendix).
As long as the output of some algorithm A is close enough to the empirical solution, we can show
that A has bounded sensitivity, and thus standard Gaussian mechanism (Definition 2) can be applied
to ensure differential privacy. This is formalized in Algorithm 1, where A is any algorithm for solving
smooth strongly-convex finite-sum minimization problems. The theorem below shows that Algorithm
1 is (ε, δ)-DP with near-optimal guarantees on the excess risk. A proof is provided in Appendix A.
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Algorithm 2 Phased Output Perturbation for Convex Minimization
Input: Dataset S = {ξi}ni=1, algorithm A, DP parameters (ε, δ), regularizer µ, initializer x0.

1: Set K = log(n), n̄ = n/K and x̃0 = x0.
2: for k = 1, · · · ,K do
3: Set µk = µ · 2k.
4: Run the algorithm A on the smooth strongly-convex finite-sum minimization problem

minx∈X F̂k(x) ≜ (1/n̄)
Pkn̄

i=(k−1)n̄+1 f(x; ξi) + (µk/2)∥x − x̃k−1∥2 to obtain the out-
put xk such that ∥xk − x̂∗

k∥ ≤ L/(µkn̄) with probability at least 1 − δ/4, where x̂∗
k =

argminx∈X F̂k(x) is the empirical optimal solution.
5: x̃k = xk +N (0,σ2

kId) with σk = 4L
p
2 log(2.5/δ)/(µkn̄ε).

Output: x̃K .

Theorem 3.3. Under Assumption 3.2, Algorithm 1 is (ε, δ)-DP and its output x̃ satisfies

(excess empirical risk) E[F̂S(x̃)− F̂S(x̂
∗
S)] ≤ 33L2κ · d log(2.5/δ)

µn2ε2
,

(excess population risk) E[F (x̃)− F (x∗)] ≤ L2κ

�
7

µn
+

48d log(2.5/δ)

µn2ε2

�
,

where κ = ℓ/µ is the condition number and we assume x∗ and x̂∗
S are interior points of X .

Remark 1. Many algorithms for smooth strongly-convex finite-sum minimization problems guarantee
E[F̂S(A(S))− F̂S(x̂

∗
S)] ≤ γ with O(T (n,κ) log(1/γ)) gradient evaluations, where n is the sample

size and κ is the condition number. Setting 1/γ = 32µn2/(δ2L2) satisfies the requirements of
A by Markov’s inequality (see Appendix A). The gradient complexity of Algorithm 1 is O((n +
κ) log(n/δ)) for SVRG [26] or SARAH [38], and O((n+

√
nκ) log(n/δ)) for Katyusha [2].

As a comparison, most state-of-the-art private algorithms [44, 50, 14] for smooth strongly-convex
functions only focus on empirical problems. The linear-time algorithms in Feldman et al. [22] achieve
optimal population guarantees but only work for κ ≤ Õ(n) since they utilize the stability of SGD.
Instead, we provide a flexible framework that includes various base methods without the necessity to
show their algorithm-specific stability. Further, near-linear time-complexity can be attained using fast
variance reduction-based methods. Similar results existed in [33], but their base algorithm A only
has in-expectation guarantees, which brings a critical challenge to the design of private mechanisms.

3.2 Near-Linear Time Algorithms for Smooth Convex Functions

Next, we study the convex setting. A direct method is to first reduce the convex problem to a
strongly-convex one by adding a regularizer (µ/2)∥x∥2 to the objective and then apply Algorithm 1.
However, this approach only achieves a sub-optimal rate [50, 33]. Inspired by the phased-ERM [22]
method for nonsmooth convex losses, we show that a more sophisticated multi-phase Algorithm 2
using an increasing sequence of regularization parameters {µk} can achieve near-optimal guarantees
on the population loss for smooth DP-SCO. The increasing regularization parameters ensure that both
added DP noise and approximation errors coming from the regularizer can be properly controlled.
The output of Algorithm 2 satisfies the following guarantees, as proved in Appendix A.
Theorem 3.4. Let Assumption 3.1 hold. Suppose there exists at least one optimal solution x∗ ∈
argminx∈X F (x) such that ∥x∗∥ ≤ D. Algorithm 2 is (ε, δ)-DP and its output x̃K satisfies

E[F (x̃K)− F (x∗)] ≤ 4LD · log(n)
�

1√
n
+

7
p
d log(2.5/δ)

nε

�
,

for the excess population risk when setting µ = (L/D)max
�
1/

√
n, 14 log(n)

p
d log(2.5/δ)/(nε)

	
.

Remark 2. By Remark 1 and the fact that
PK

k=1 1/µk ≤ O((D/L)
√
n), the total gradient com-

plexity of Algorithm 2 is O((n +
√
nℓD/L) log(n/δ)) using SVRG [26] or SARAH [38], and

O((n + n3/4
p
ℓD/L) log(n/δ)) for Katyusha [2] (see Appendix A). We also point out that the

smoothness assumption here is not necessary to derive the utility bound, but allows the use of fast
accelerated algorithms for solving the regularized ERM problems.
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Algorithm 3 Output Perturbation for Strongly-Convex–Strongly-Concave Minimax Problems
Input: Dataset S = {ξi}ni=1, algorithm A, DP parameters (ε, δ), SC parameters (µx, µy).

1: Run algorithm A on smooth strongly-convex–strongly-concave finite-sum saddle point problem
minx∈X maxy∈Y F̂S(x, y) = (1/n)

Pn
i=1 f(x, y; ξi) to obtain the output (Ax(S),Ay(S)) such

that with probability at least 1− δ/8,

µx∥Ax(S)− x̂∗
S∥2 + µy∥Ay(S)− ŷ∗S∥2 ≤ L2

µn2
,

where (x̂∗
S , ŷ

∗
S) is the saddle point of F̂S(x, y) and we let µ := min{µx, µy}.

2: Set σx = (8L/(nε))
p
2 log(5/δ)/(µxµ) and σy = (8L/(nε))

p
2 log(5/δ)/(µyµ).

Output: x̃ = Ax(S) +N (0,σ2
xIdx) and ỹ = Ay(S) +N (0,σ2

yIdy ).

Bassily et al. [7] first proved optimal population guarantees for smooth convex functions, but their
algorithm needs O(n3/2

√
ε) gradient queries. The algorithms in Feldman et al. [22] achieve linear

time-complexity, and require that ℓ ≤ O((L/D)max{√n,
p
d log(1/δ)/ε}) rooted in the stability

analysis of SGD. In contrast, our framework can achieve near-optimal population guarantees using any
algorithm without additional restrictions to the smoothness parameter. By equipping with variance
reduction-based methods, near-linear time-complexity can also be attained when ℓ ≤ O(

√
nL/D).

To the best of our knowledge, this is the first time that sophisticated optimization algorithms besides
SGD are proven to obtain near-optimal population guarantees in near-linear time. Additionally, in the
regime that Ω(

√
nL/D) ≤ ℓ ≤ O(nL/D) where previous smooth DP-SCO algorithms [7, 22] fail

to provide optimal guarantees, our framework still achieves a near-optimal rate with a better gradient
complexity Õ(n3/4

p
ℓD/L) compared to the state-of-the-art nonsmooth DP-SCO algorithms [4, 30].

4 Differentially Private Stochastic Minimax Optimization

Using the same ideas as the minimization case in the previous section, we develop differentially
private algorithms for stochastic minimax optimization in (1).

4.1 Near-Linear Time Algorithms for Smooth Strongly-Convex–Strongly-Concave Functions

First, we study the strongly-convex–strongly-concave (SC-SC) case with the following assumptions.

Assumption 4.1. For any vector ξ, f(x, y; ξ) is L-Lipschitz and ℓ-smooth on the closed convex
domain X × Y ⊂ Rdx × Rdy . Moreover, f(·, y; ξ) is convex on X for any y ∈ Y , and f(x, ·; ξ) is
concave on Y for any x ∈ X .

Assumption 4.2. For any vector ξ, f(x, y; ξ) satisfies Assumption 4.1 and f(·, y; ξ) is µx-strongly
convex on X for any y ∈ Y , and f(x, ·; ξ) is µy-strongly concave on Y for any x ∈ X .

In a manner similar to the minimization case, Zhang et al. [51] showed that the empirical saddle point
is stable, which also implies its generalization error (see Lemma B.2 in the appendix). As a direct
consequence, any algorithm A whose output is sufficiently close to the empirical saddle point has
bounded sensitivity. This observation leads to Algorithm 3 for SC-SC DP-SMO with guarantees
given in the theorem below. Here A can be any method for smooth SC-SC finite-sum minimax
problems, and smoothness allows us to obtain efficient algorithms.

Theorem 4.3. Under Assumption 4.2. Let saddle points (x̂∗
S , ŷ

∗
S) and (x∗, y∗) be interior points of

the domain X × Y . Then Algorithm 3 is (ε, δ)-DP and its output (x̃, ỹ) satisfies the following utility
bounds on the empirical and population strong duality gap:

(empirical) E
h
max
y∈Y

F̂S(x̃, y)−min
x∈X

F̂S(x, ỹ)
i
≤ 257L2(κxκy + κ) · d log(5/δ)

µn2ε2
,

(population) E
h
max
y∈Y

F (x̃, y)−min
x∈X

F (x, ỹ)
i
≤ 3L2(κxκy + κ)

�
3

µn
+

128d log(5/δ)

µn2ε2

�
,

where we let µ = min{µx, µy}, κx = ℓ/µx, κy = ℓ/µy , κ = ℓ/µ , and d = max{dx, dy}.
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Remark 3. Existing methods for finite-sum saddle point problems output solutions such that
E[maxy∈Y F̂S(Ax(S), y) − minx∈X F̂S(x,Ay(S))] ≤ γ with complexity O(T (n,κ) log(1/γ)).
Thus setting 1/γ = 16µn2/(δL2) satisfies the requirements of A (see Appendix B). The gradient
complexity of Algorithm 3 is O(nκ log(n/δ)) for Extragradient [43], O((n + κ2) log(n/δ)) for
SVRG/SAGA [39], O((n +

√
nκ) log(n/δ)) for Acc-SVRG/SAGA [39] and O((n +

√
nκxκy +

n3/4
√
κ) log(n/δ)) for AL-SVRE [34] or Catalyst-Acc-SVRG [48].

The minimax problem is equivalent to a minimization problem on x when the domain Y is restricted
to a singleton. As a result, the lower-bound Ω(1/(µxn)+dx log(1/δ)/(µxn

2ε2)) of SC DP-SCO [6]
trivially holds for SC-SC DP-SMO, and our results are near-optimal w.r.t. n and (ε, δ). The flexible
framework allows the use of off-the-shelf optimization algorithms for smooth SC-SC finite-sum
minimax problems from a well-studied research community [48, 34] without being aware of the
algorithm-specific stability bound. Based on this framework, we can produce the first near-linear time
algorithms for smooth SC-SC DP-SMO with near-optimal guarantees on the duality gap. Similar rates
were obtained in [33] on the population primal risk through the reduction to SC DP-SCO. However,
the generalization error on the primal function does not always apply to the original minimax problem
when the expectation and maximization cannot be exchanged.

4.2 Near-Linear Time Algorithms for Smooth Convex-Concave Functions

In this section, we focus on the more general case when the objective is smooth and convex-concave.
We continue to build private algorithms using the stability and generalization results of empirical
solutions. When the function is convex-concave, the following results for the regularized empirical
problems can be applied by adding an SC-SC regularizer. Here, the stability bound is slightly tighter
than the one in [51] and a proof is provided in Appendix B for completeness.

Lemma 4.4. Consider a stochastic minimax problem such that f(x, y; ξ) is convex-concave and L-
Lipschitz with a µx-strongly convex µy-strongly concave regularizer G(x, y). Let µ = min{µx, µy}
and denote the empirical saddle point of function F̂S(x, y) +G(x, y) as (x̂∗

S , ŷ
∗
S) given dataset S

with n i.i.d. samples. Then for any neighboring datasets S ∼ S′, we have

µx∥x̂∗
S − x̂∗

S′∥2 + µy∥ŷ∗S − ŷ∗S′∥2 ≤ 4L2

µn2
.

The stability result implies the generalization error of the empirical solution can be bounded as

max
y∈Y

E
h
F (x̂∗

S , y) +G(x̂∗
S , y)

i
−min

x∈X
E
h
F (x, ŷ∗S) +G(x, ŷ∗S)

i
≤ 2

√
2L2

µn
,

measured by the population weak duality gap.

Unlike DP-SCO, the interaction between the primal variable x and the dual variable y puts additional
challenge in the analysis. In order to derive a near-optimal algorithm for convex-concave objectives,
we need to carefully design the regularization parameters for the primal x and the dual y to control
both approximation errors and DP noise. Based on the phased output perturbation framework, we
propose a novel algorithm for convex-concave DP-SMO in Algorithm 4.

The small fixed parameter µ ensures the approximation error from adding regularization for the dual
is properly bounded. The role of the increasing parameter µk is the same as Algorithm 2. We only add
noise to the primal solutions and output x̃K in Algorithm 4. A natural way to derive a corresponding
dual solution is to solve the smooth concave maximization problem maxy∈Y E[F (x̃K , y)] with DP
constraints. We instead provide an alternative method that is symmetric to Algorithm 4 by switching
the role of the primal and the dual. This phased algorithm iteratively solves

min
x∈X

max
y∈Y

�
1

n̄

kn̄X

i=(k−1)n̄+1

f(x, y; ξi) +
µ

2
∥x∥2 − µk

2
∥y − ỹk−1∥2

�
,

at phase k and only perturbs the dual variables. The detailed Algorithm 5 is provided in Appendix B.
Its output ỹK together with the output x̃K of Algorithm 4 satisfy (ε, δ)-DP by basic composition in
Lemma 2.1. The guarantees are shown in the following theorem with detailed proofs in Appendix B.
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Algorithm 4 Phased Output Perturbation for Convex-Concave Minimax Problems
Input: Dataset S = {ξi}ni=1, algorithm A, DP Parameters (ε, δ), regularizer µ, initializer x0.

1: Set K = log(n), n̄ = n/K and x̃0 = x0.
2: for k = 1, · · · ,K do
3: Set µk = µ · 2k.
4: Run the algorithm A on the smooth SC-SC finite-sum saddle point problem

min
x∈X

max
y∈Y

F̂k(x, y) ≜
1

n̄

kn̄X

i=(k−1)n̄+1

f(x, y; ξi) +
µk

2
∥x− x̃k−1∥2 −

µ

2
∥y∥2,

to obtain the output (xk, yk) such that with probability 1− δ/8,

µk∥xk − x̂∗
k∥2 + µ∥yk − ŷ∗k∥2 ≤ L2

µn̄2
,

where (x̂∗
k, ŷ

∗
k) is the saddle point of the regularized empirical function F̂k(x, y).

5: x̃k = xk +N (0,σ2
kIdx

) with σk = (8L/(n̄ε))
p
2 log(5/δ)/(µkµ).

Output: x̃K .

Theorem 4.5. Let Assumption 4.1 hold. Suppose max{∥x∥, ∥y∥} ≤ D for all x ∈ X and y ∈ Y .
Then the composition of Algorithm 4 and 5 is (ε, δ)-DP and the output (x̃K , ỹK) satisfies the following
bound on the population weak duality gap:

max
y∈Y

E[F (x̃K , y)]−min
x∈X

E[F (x, ỹK)] ≤ 16LD · log2(n)
�

1√
n
+

5
p
d log(5/δ)

nε

�
,

when setting µ = (L/D)max
n
2/
√
n, 13 log(n)

p
d log(5/δ)/(nε)

o
, where d = max{dx, dy}.

Remark 4. By Remark 3, we can set 1/γ = 16µn̄2/(δL2) to satisfy the requirements of A in
each phase. For example, if we use Extragradient [43], the total complexity is 2

PK
k=1 O((n̄(ℓ +

µk)/µ) log(n̄/δ)) = O((n3/2ℓD/L + n2) log(n/δ)). After similar calculations, the complexity
becomes O((nℓD/L+ n5/4) log(n/δ)) if A is AL-SVRE [34] or Catalyst-Acc-SVRG [48] noticing
that the condition number (ℓ+ µk)/µ can be as large as O(n).
Remark 5. To achieve near-linear time-complexity, we utilize the special structures of our reg-
ularized problems in Algorithm 4 and 5. (i) Objective functions of the regularized problems
are separable with different smoothness parameters w.r.t. x and y. Applying the algorithm in
Jin et al. [25] that is optimized for such special case, we can achieve the overall complexity
O((n + nℓD/L) log(n/δ)). (ii) The regularization terms with potentially large smoothness pa-
rameters are prox-friendly 2. SVRG/SAGA and its accelerated version [39] which leverage this
property can be used, and the complexity only depends on the smoothness parameter of f(x, y; ξ). The
total complexity is O((n+n(ℓD/L)2) log(n/δ)) for SVRG/SAGA, and O((n+nℓD/L) log(n/δ))
for Acc-SVRG/SAGA, noticing that now the condition number ℓ/µ is only O(

√
nℓD/L). More

details are provided in Appendix B.

Algorithm 4 can be extended to the smooth C-SC case or the SC-C case, where near-linear time
near-optimal algorithms are also provided (see Appendix B). According to the lower-bound discussed
in [11], our utility guarantee is optimal up to logarithmic terms. Although the primal problem
minx∈X Φ(x) ≜ maxy∈Y F (x, y) is not necessarily smooth when f(x, y; ξ) is smooth and convex-
concave, we provide several instances of the flexible framework that achieve near-optimal rates in
near-linear time. This improves upon current results for DP-SMO [11, 49] and gives a new example
where near-linear time algorithms are available for nonsmooth DP-SCO. Our results suggest that for
nonsmooth DP-SCO problems, if there exists some smooth convex-concave minimax reformulation,
then near-optimal rates can be attained in near-linear time. For example, the nonsmooth convex
problem minx∈Rdx ∥Ax− b∥1 given A ∈ Rdy×dx and b ∈ Rdy is equivalent to the smooth convex-
concave minimax problem minx∈Rdx maxy∈Rdy ,∥y∥∞≤1 y

⊤(Ax− b). However, it remains an open
question whether optimal utility bound can be obtained in linear time for general nonsmooth problems.

2This means the proximal operator is easy to compute. See Palaniappan and Bach [39] for more details.
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5 Conclusion

We provide a general framework for both smooth DP-SCO and DP-SMO problems with the near-
optimal privacy-utility trade-off. The flexible framework allows to bring various off-the-shelf, fast
convergent non-private optimization algorithms into the DP domain. Using the framework, we enrich
the class of near-linear time algorithms for smooth DP-SCO and provide the first near-linear time
algorithms for smooth DP-SMO. For future work, it is interesting to study whether the logarithmic
terms in gradient complexity and the final utility bound of our algorithms can be further removed.
Another direction is to derive simpler private algorithms for smooth convex-concave DP-SMO based
on the special structure of the regularized problems. Moreover, we believe our framework also
opens the door to simpler derivatives with possibly improved complexities for nonsmooth DP-SCO,
nonsmooth DP-SMO, and even more general forms of optimization problems such as variational
inequalities and games. We will leave these for future investigation.
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