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Abstract

The ability to represent and reason about numbers in different contexts is an1

important aspect of human and animal cognition. Literature in numerical cognition2

posits the existence of two number representation systems: one for representing3

small, exact numbers, which is largely based on visual processing, and another4

system for representing larger, approximate quantities. In this work, we investigate5

number sense in vision and language models by examining learned representations6

and asking: What is the structure of the space representing numbers? Which7

modality contributes mostly to the representation of a number? While our analyses8

reveal that small numbers are processed differently from large numbers, as in9

biological systems, we also found a strong linguistic contribution in the structure10

of number representations in vision and language models, highlighting a difference11

between representations in biology and artificial systems.12

1 Introduction13

Whether it is foraging for food in novel environments, or counting slices of cake at a birthday party,14

humans and animals daily demonstrate various aspects of numerical competence. Reasoning about15

quantities is a fundamental cognitive feature, and it plays an important role in survival and successful16

reproduction. Literature in numerical cognition points to two systems of number representation;17

an approximate system that supports intuitive reasoning about numerical magnitudes, often been18

referred to as number sense (Dehaene, 1997; Lipton & Spelke, 2003), as well as the system in charge19

of rapid, confident and accurate discrimination of small numerosities known as subitizing (Kaufman20

et al., 1949). Thus, natural intelligence is endowed with neural mechanisms that support emergence21

of number competence as a by-product of exposure to natural visual stimuli, without any explicit22

training for numerosity estimation (Nieder, 2020).23

In contrast, the majority of existing work in artificial intelligence has focused on more advanced24

aspects of numerical competence, such as counting (Zhang et al., 2018; Mandler & Shebo, 1982; Trott25

et al., 2018), arithmetic or quantitative reasoning (Geva et al., 2020; Drori et al., 2022; Lewkowycz26

et al., 2022). While these are important components of analytical skill, they are either gradually27

acquired during development or via formal education, and are thus associated with various higher-level28

cognitive functions. Fewer studies have investigated how more fundamental notions of numerical29

competence, such as those that have been documented in naïve animals or prelinguistic infants,30

develop in artificial systems (Creatore et al., 2021; Testolin et al., 2020). In this work, we ask31

whether contemporary deep neural networks trained on large amounts of static image-text data learn32

representations that are functionally comparable to those underlying number processing in biological33

cognition. We study whether distinct number representations can be observed for small versus large34

numerosities and how this depends on the specific modality. Our findings suggest that number35
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representations in vision and language models are structured in a way that is consistent with the36

two-system theory in numerical cognition. When comparing modalities, we found that language37

contributes more than vision towards accurate number representation. We argue that biases in the38

data used to train these models might explain some of our findings.39

2 Related Work40

Numeracy-related research in artificial intelligence and machine learning spans a spectrum of mo-41

tivations. On the one hand, there is a strong application-driven incentive to improve performance42

and the quality of representations on tasks requiring numerical skills (e.g., arithmetic, magnitude43

comparison or numerical common sense, among others) which has been lagging behind other NLP44

benchmarks (Thawani et al., 2021; Wallace et al., 2019; Parcalabescu et al., 2021; Lin et al., 2020).45

Helpful approaches improving performance on such tasks include using curated synthetic data (Geva46

et al., 2020; Zhang et al., 2015), or heuristics such as counting-specific model components (Zhang47

et al., 2018; Trott et al., 2018).48

On the other hand, understanding how the more abstract concept of a number is related to visually49

perceived numerosity is associated with the grounding problem studied in artificial intelligence50

and cognitive science (Harnad, 2003). Understanding the representation of numbers, and factors51

that affect it, offers the potential of enriching such representations in artificial systems by informed52

inductive biases. Creatore et al. (2021) show that basic neural networks can develop internal53

representations that support qualitatively different numerosity perceptions systems, akin to number54

sense and subitizing, though with some differences compared to human processes. Wallace et al.55

(2019) find that token embeddings learned from text can accurately encode magnitudes for numbers56

within the training range, while failing to extrapolate to numbers outside the range. While affirming57

that linguistic data contains a significant amount of information about numbers, it is unclear how58

these representations relate to biological ones, where small numerosities are perceived differently59

from larger ones.60

As well, the existing work in ML related to numeracy has predominantly been focused on specific61

benchmark performance (Parcalabescu et al., 2021; Zhang et al., 2015; Wallace et al., 2019), and62

less so on fine-grained analysis of learned number representation and its relation to biological63

representations. In this work, we scrutinize these representations in the context of what is known64

about number representation in biological systems.65

3 Methods: Models and Datasets66

Transformer-based neural network models (Vaswani et al., 2017) have become a de facto standard67

modelling choice in NLP since their inception, and the extension to support the visual modality68

has opened doors to study a new space of problems and multimodal interactions (Du et al., 2022;69

Hendricks et al., 2021; Bugliarello et al., 2021). Here, to characterize representations of numbers,70

we use the VILBERT (Lu et al., 2019) architecture, a vision and language model that extends the71

BERT (Devlin et al., 2018) architecture to support processing of visual and text inputs. It processes72

inputs via two separate, parallel streams, which are subsequently combined via co-attentional trans-73

former layers. Text is presented as a sequence of tokens, while image is serialized as a sequence of74

region-of-interest features extracted from a separate convolutional neural network (Ren et al., 2015).75

Most vision and language models are pre-trained on pretext tasks with multimodal data, analogous to76

the training process used with text-based transformer models. Then, models are further fine-tuned on77

a specific transfer task such as visual question answering (VQA), visual commonsense reasoning,78

referring expressions, or caption-based image retrieval by learning a task-specific decoding head.79

The lingustic stream of the VILBERT model is initialized with BERT weights, and the model is80

pretrained on 3.3M image-text pairs from Conceptual Captions (CC; Sharma et al., 2018).81

Here, we also study the model that has been fine-tuned on VQA datasets which include explicit82

number-related questions. In VQA, the task is to answer a question about a given image. We83

investigate representations in models that have been fine-tuned on two widely used VQA datasets:84

VQAV2 (Goyal et al., 2017), and Visual Genome (VG; Krishna et al., 2017). While the original85

VILBERT implementation uses a classifier as a decoding head, we use auto-regeressive token86

decoder, which is more flexible as it does not require a priori specification of the number of output87
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classes. In VQAv2 there are 10 human responses for each image-question pair, while there is just one88

response in VG. In our analyses we focus on number-related questions (i.e., those that start with How89

many... or What number...), and use the existing data splits. In total, such questions represent about90

11.5% and 8% of all questions in VQAV2 and VG, respectively.91

4 Results92

4.1 Analysis: Number Representation Similarity93
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Figure 1: Visualizing similarities between number embeddings. Top: Pairwise cosine similarities between token
embeddings for number tokens 0 to 14. Bottom: Dendrograms showing the hierarchy of number clusters based
on similarities between embeddings.

First, we look at differences in number representations between text-only models and multimodal94

models. Rather than looking at aggregate benchmark performance on number-related tasks (Par-95

calabescu et al., 2021; Wallace et al., 2019), we examine the relationship between learned number96

representations. Specifically, we are interested in whether learned representations capture any struc-97

ture reflecting the order of numbers at the qualitative level, and the change in structure during the98

pre-train/fine-tune process.99

We extract learned token embeddings for numbers 0 to 14 from three models: BERT (text-only),100

VILBERT pre-trained on CC (multimodal), and pre-trained VILBERT fine-tuned on VG (multi-101

modal). For two-digit numbers, we only consider a single token (i.e., "14" instead of "1" and "4").102

Figure 1 (top) shows pairwise cosine similarities between extracted token embeddings. Text-only103

embeddings, shown in Figure 1 (A), display a pattern of 3 visually distinct clusters: one for the104

token 0, one for numbers 1-9, and one for numbers 10 and larger. Multimodal pre-training appears to105

distort that pattern, especially as numbers from 10 to 14 become less similar to any other numbers.106

This occurs because captions in CC contain only numbers from 0 to 9. As well, CC has a peculiar107

distribution of numbers, with 3 and 4 being the most frequent, possibly due to common occurrences108

of "3D" and "4K" tokens in the dataset.109

To highlight the similarity between individual representations, we plot results of hierarchical clustering110

of representations of numbers from 0 to 10 in the bottom of Figure 1.1 Clustering was performed on111

2D PCA-projected representations of token embeddings, using the centroid method and the Euclidean112

metric for calculating the distance between clusters. The algorithm starts by treating each token as113

an individual cluster, and proceeds to iteratively merge least dissimilar clusters. In all cases, we114

observe that some of the first clusters formed from singletons are those for subsequent numbers (e.g.,115

some of them are (3, 4) and (5, 6) for text-only representations; (2, 3) for multimodal pre-trained116

1This is the range present in all conditions we examined.

3



representations; and (0, 1) and (2, 3) for fine-tuned multimodal representations). We observe further117

interpretable groupings in the case of BERT, as 2 is merged with (3, 4), 1 with (2, (3, 4)), 7 with (9,118

(10, 8))) etc. For fine-tuned representation a cluster is formed for (2, 3) and 4, and another one for all119

larger numbers. In general, we also observe anti-patterns (i.e., 10 merging with 8 for BERT; or 10120

with small numbers for multimodal pre-trained).121

Restricting the analysis to the following three clusters: 0, small numbers within subitizing range122

(i.e., 1–4), and larger numbers outside the subitizing range (i.e., 5–10), which we take to be the gold123

standard reflective of number representation structure in humans and animals, allows us to evaluate124

cluster assignments observed in hierarchical clustering. Specifically, we consider cluster assignments125

at points where the distance cut-off value defines three clusters for each dendrogram in Figure 1.126

To compute the F1 score, we follow the approach outlined in Schütze et al. (2008, Section 16.3).127

The highest F1 score is observed for text-only representations (F1 = 1.00), followed by multimodal128

fine-tuned on VG (F1 = 0.90), multimodal-pretrained (F1 = 0.78), and multimodal fine-tuned on129

VQAV2 (F1 = 0.53). This leads us to conclude that text-only number representations are structured130

in a way that is most similar to the structure of number representations in humans and animals.131

4.2 Influence of Modality and Numerosity in Number Representation132

 [how] [many] [apples]

[MASK] [MASK] [MASK]

1
2
3

E
N
C

 [MASK] [MASK] [MASK]
1
2
3

E
N
C

 [how] [many] [apples]
1
2
3

E
N
C

A) Multimodal probe

B) Vision probe

C) Language probe

Figure 2: Probes for multimodal, visual and lan-
guage number representations.

Dataset Probe (1, 4) (5, 10) (1, 10)

VQAv2 Vis 44.22 23.71 37.36
VQAv2 Lang 46.59 31.26 38.75
VQAv2 [Lang, Vis] 55.09 29.04 46.39

VG Vis 56.72 31.81 52.66
VG Lang 58.57 37.35 54.46
VG [Lang, Vis] 69.10 31.61 64.17

Random n/a 25.27 16.12 10.46

Table 1: Classification accuracy on test sets for number labels
from pooled feature representations.

133

In biological systems, the processing of items within the subitizing range is attributed to the visual134

system, while larger numbers are assumed to be processed in a different way (Kaufman et al., 1949).135

In the previous analysis we found text-based number representations to be the most interpretable.136

However, it is unclear which modality contributes the most to the representation of a number in137

multimodal models, and whether this depends on the number range. In this section, we design a138

probe to answer that question, inspired by similar work in the domain (Lin et al., 2020; Wallace et al.,139

2019; Parcalabescu et al., 2021).140

We train probes to predict numerals based on features extracted from different modalities: multimodal141

(concatenated visual and linguistic features), visual, and linguistic. Features are extracted from a142

fine-tuned model as pooled representations of an input question (text) or image (vision) from the143

‘CLS‘ (for text) or ‘IMG‘ (for images) tokens at the encoder output during the forward pass on a144

dataset. In other words, for each (question, image) tuple from a VQA dataset we get two feature145

vectors. For the vision probe, used to examine the contribution of visual modality in representing146

numbers, we entirely mask the input question; for the language probe, we entirely mask the visual147

input to the model. Figure 2 illustrates the probing process. The probe is trained to minimize the148

cross-entropy loss when predicting the corresponding numeric label—the answer associated with149

the (question, image) tuple. By ablating one modality in this way, we can study the contribution150

of the other modality in predicting numbers. Each probe is trained on features from a train split of151

a corresponding dataset, and tested on the val split of the same dataset. As well, separate probes152

are trained for different number ranges. Further details on training and evaluation are provided in153

Appendix A.1.154

The probing results are shown in Table 1. In most cases, multimodal features are best at encoding155

numbers compared to features from a single modality. They are better at encoding smaller numbers156

(i.e., 1–4) than the larger numbers (i.e., 5–10). In fact, training on the full range of 10 numbers157
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reduces the accuracy. As for individual modalities, linguistic features appear not only to be better at158

encoding numbers than the visual features, but also better than multimodal features for larger numbers.159

The fact that language is more informative of small numbers than vision is a remarkable difference160

between number representation in humans and deep neural networks, as animals and pre-linguistic161

infants are able to subitize without having developed or acquired language. The reason why it might162

be somewhat easier to predict the number given a masked image, than to predict the number given163

masked text is that the question type How many... or What number... is more informative of the space164

of possible answers than the image itself. Given an image, without any text, the space of possible165

answers is more diverse (i.e., yes/no answers, number, color, nouns, verbs etc).166

5 General Discussion167

The ability to represent and reason about numerical quantities has been extensively studied in human168

and animal cognition. Human brains, as well as brains of other animals, are equipped with a form of169

rudimentary number sense essential for survival and reproduction (Dehaene, 1997; Nieder, 2020). In170

this work, we investigated whether contemporary neural networks processing visual and linguistic171

inputs develop a notion of a number that is comparable to that observed in biological systems. Namely,172

we investigated how are numbers represented, and whether small numerosities in the subitizing range173

(i.e., 1–4 items) are processed differently from large numerosities.174

First, we found interpretable structure among number representations—in some instances, repre-175

sentations between subsequent numbers were more similar compared to representations between176

non-subsequent numbers. When we coarsely clustered number representations into groups based on177

how numbers are represented and processed in biological systems (small numbers in the subitizing178

range vs. numbers outside that range), we surprisingly observed a perfect score for number rep-179

resentations coming from a model that has only been trained on text (BERT). We speculate that180

number ordering, as observed during cluster merge process, as well as grouping of small vs larger181

numbers could be due to the statistical distribution of numbers in the training text. That is, pairs182

of numbers such as (1, 2) or (3, 4) are more likely to occur than (1, 5) or (2, 4). In addition, the183

Newcomb-Benford law (Newcomb, 1881; Benford, 1938), stating that leading digits are likely to be184

small, might imply better representation of numbers within the subitizing range in real-world data,185

which could explain some of the patterns we observe. It is worth noting that the distribution of digits186

in multi-modal data did not adhere to that law.187

Second, we examined to what extent individual modalities in vision and language models contribute188

to the representation of a number. We designed a probe that ablated one modality and learned to189

predict numbers based on the inputs to the other, non-ablated modality. While multimodal features190

were best at predicting the number overall, and especially small numbers in the subitizing range,191

linguistic features were better at this task than visual features. We found this result surprising in light192

of the fact that humans and non-human animals develop numerical competence through exposure to193

natural visual stimuli. The higher accuracy on smaller number ranges for all modalities is also likely194

to be explained by better representation of small numbers in training data, which is the case for both195

datasets. Numbers 1–4 account for 83.6% (VQAV2) and 93.1% (VG) of probe training data (with196

remaining numbers being 5–10). As a reference, the Newcom-Benford law predicts that numbers 1–4197

would account for approximately 70% of data. We consider it an open question as to why linguistic198

features appear better than multimodal features for the representation of larger numbers (i.e., 5–10).199

In future work, we would like to better examine the role of pre-training, robustness and generality of200

learned number representations. Since vision and language models are known to latch onto surface-201

level correlations in the data in VQA (Goyal et al., 2017; Agrawal et al., 2016), it is unclear how202

transferable learned number representations are. As well, due to distributional statistics of numerical203

data in these datasets, it is difficult to discern whether subitizing-like patterns we observe are simply204

due to better representation of small numbers, or are indicative of an emergent phenomenon with205

distinctive cognitive and behavioural characteristics.2 We postulate that systematic assessments,206

similar to those used in cognitive science and psychology, might help to accurately characterize the207

role of different factors contributing to number sense in artificial systems.208

2However, data biases can play a fundamental role in emergence of higher-level skills: For example, Chan
et al. (2022) find that few-shot learning emerges only with certain distributional statistics and only for some
architectures.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they320

were chosen)? [Yes]321

(c) Did you report error bars (e.g., with respect to the random seed after running experi-322

ments multiple times)? [No]323

(d) Did you include the total amount of compute and the type of resources used (e.g., type324

of GPUs, internal cluster, or cloud provider)? [Yes]325

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...326

(a) If your work uses existing assets, did you cite the creators? [Yes]327

(b) Did you mention the license of the assets? [N/A]328

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]329

330

(d) Did you discuss whether and how consent was obtained from people whose data you’re331

using/curating? [N/A]332

(e) Did you discuss whether the data you are using/curating contains personally identifiable333

information or offensive content? [N/A]334

5. If you used crowdsourcing or conducted research with human subjects...335

(a) Did you include the full text of instructions given to participants and screenshots, if336

applicable? [N/A]337

(b) Did you describe any potential participant risks, with links to Institutional Review338

Board (IRB) approvals, if applicable? [N/A]339

(c) Did you include the estimated hourly wage paid to participants and the total amount340

spent on participant compensation? [N/A]341

A Appendix342

A.1 Technical Details for Probing Experiments343

Our probe is an MLP with 2 hidden layers, with 100 units in each, and a linear layer at the output (10344

units). Output of each unit in each layer is passed through a ReLU non-linearity. Training labels are345

numbers from 1–10, encoded as one-hot vectors. We use cross-entropy loss at the output, which is346

minimized using Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001. We train the347

probe for 50K steps using feature vectors (i.e., ‘CLS‘ or ‘IMG‘ tokens) extracted from the forward348

pass of a training split of VQA dataset through the VILBERT model, and evaluate on the val split349

of the same dataset. We only extract features from (image, question) pairs where the question starts350

with “How many“ or “What number“. We normalize answers so that “1.“ and “1” is the same answer.351

For VILBERT pre-training and fine-tuning we use 16 TPUv3s, while for evaluation (collecting352

pooled features) we use 1 GPU. GPUs are either Tesla V100 or P100.353

8


	Introduction
	Related Work
	Methods: Models and Datasets
	Results
	Analysis: Number Representation Similarity
	Influence of Modality and Numerosity in Number Representation

	General Discussion
	Appendix
	Technical Details for Probing Experiments


