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ABSTRACT

Deep neural networks (DNNs) usually contain millions, maybe billions, of pa-
rameters/weights, making both storage and computation very expensive. This has
motivated a large body of work to reduce the complexity of the neural network
by using sparsity-inducing regularizers. Another well-known approach for con-
trolling the complexity of DNNs is parameter sharing/tying, where certain sets
of weights are forced to share a common value. Some forms of weight sharing
are hard-wired to express certain invariances, with a notable example being the
shift-invariance of convolutional layers. However, there may be other groups of
weights that may be tied together during the learning process, thus further re-
ducing the complexity of the network. In this paper, we adopt a recently pro-
posed sparsity-inducing regularizer, named GrOWL (group ordered weighted `1),
which encourages sparsity and, simultaneously, learns which groups of parame-
ters should share a common value. GrOWL has been proven effective in linear
regression, being able to identify and cope with strongly correlated covariates.
Unlike standard sparsity-inducing regularizers (e.g., `1 a.k.a. Lasso), GrOWL not
only eliminates unimportant neurons by setting all the corresponding weights to
zero, but also explicitly identifies strongly correlated neurons by tying the cor-
responding weights to a common value. This ability of GrOWL motivates the
following two-stage procedure: (i) use GrOWL regularization in the training pro-
cess to simultaneously identify significant neurons and groups of parameter that
should be tied together; (ii) retrain the network, enforcing the structure that was
unveiled in the previous phase, i.e., keeping only the significant neurons and en-
forcing the learned tying structure. We evaluate the proposed approach on several
benchmark datasets, showing that it can dramatically compress the network with
slight or even no loss on generalization performance.

1 INTRODUCTION

Deep neural networks (DNNs) have recently revolutionized machine learning by dramatically ad-
vancing the state-of-the-art performance in many applications, ranging from speech and image
recognition to playing video games (Goodfellow et al., 2016). A typical DNN consists of a se-
quence of concatenated layers of functions, potentially involving millions or billions of parameters;
by using extremely large training datasets, these architectures are able to learn extremely complex
non-linear mappings, features, and dependencies.

A large amount of research has been devoted to the use of regularization in DNN learning (Goodfel-
low et al., 2016), aiming at reducing the generalization error. It has been shown that the parametriza-
tion of many DNNs is very redundant, in the sense that a large fraction of the parameters can be
predicted from the remaining ones, with no accuracy loss (Denil et al., 2013). Several regularization
methods have been proposed to tackle the potential over-fitting caused by this redundancy. Arguably,
the earliest and simplest choice is the classical `2 norm, known as weight decay in the early neural
networks literature (Rumelhart et al., 1988), and as ridge regression in statistics. In the past two
decades, sparsity-inducing regularization based on the `1 norm, also known as Lasso (Tibshirani,
1996), and variants thereof, became standard tools in statistics and machine learning, including in
deep learning (Goodfellow et al., 2016). In recent work, Scardapane et al. (2017) use group-Lasso
(a variant of Lasso that assumes that the parameters are organized in groups and encourages sparsity
at the group level (Yuan & Lin, 2006)) in deep learning. One of the effects of Lasso or group-Lasso
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Figure 1: A DNN is first trained with GrOWL regularizer to simultaneously identify the sparse but
significant connectivities and the cluster information of the selected connectivities. We then retrain
the neuron network only in terms of the selected connectivities while enforcing parameter sharing
within each cluster.

regularization in learning a DNN is that many of the parameters may become exactly zero, thus
reducing the amount of memory needed to store the model, and lowering the computational cost of
applying it.

It has been pointed out by several authors that a major drawback of Lasso (or group-Lasso) regu-
larization is that in the presence of groups of highly correlated covariates/features, it tends to select
only one or an arbitrary convex combination of features from each group (Bondell & Reich, 2008;
Bühlmann et al., 2013; Figueiredo & Nowak, 2016; Oswal et al., 2016; Zou & Hastie, 2005). More-
over, the learning process tends to be unstable, in the sense that subsets of parameters that end up
being selected may change dramatically with minor changes in the data or algorithmic procedure.
In DNNs, it is almost unavoidable to encounter correlated features, not only due to the high dimen-
sionality of the input to each layer, but also because neurons tend to co-adapt, yielding strongly
correlated features that are passed as input to the subsequent layer (Srivastava et al., 2014).

In this work, we propose using, as a regularizer for learning DNNs, the group version of the ordered
weighted `1 (OWL) norm Figueiredo & Nowak (2016), termed group-OWL (GrOWL), which was
recently proposed by Oswal et al. (2016). In a linear regression context, GrOWL regularization
has been shown to avoid the above mentioned deficiency of group-Lasso regularization. In addition
to being a sparsity-inducing regularizer, GrOWL is able to explicitly identify groups of correlated
features and set the corresponding parameters/weights to be very close or exactly equal to each other,
thus taking advantage of correlated features, rather than being negatively affected by them. In deep
learning parlance, this corresponds to adaptive parameter sharing/tying, where instead of having to
define a priori which sets of parameters are forced to share a common value, these sets are learned
during the training process. We exploit this ability of GrOWL regularization to encourage parameter
sparsity and group-clustering in a two-stage procedure depicted in Fig. 1: we first use GrOWL to
identify the significant parameters/weights of the network and, simultaneously, the correlated cluster
information of the selected features; then, we retrain the network only in terms of the selected
features, while enforcing the weights within the same cluster to share a common value.

The experiments reported in this paper confirm that using GrOWL regularization in learning DNNs
does encourage sparsity, by eliminating small weights, and yields parameter sharing, by tying groups
of weights to have the same absolute values. We test the proposed approach on two benchmark
datasets, MNIST and CIFAR-10, comparing its performance with weight decay and group-Lasso
regularization, and exploring the accuracy-memory trade-off. Our results indicate that GrOWL is
able to reduce the number of free parameters in the network without degrading the accuracy, as
compared to other regularization approaches.

2 RELATED WORK

In order to relieve the burden on both required memory and data for training and storing DNNs, a
substantial amount of work has focused on reducing the number of free parameters that need to be
estimated, namely by enforcing weight sharing. The classical instance of parameter sharing is found
in the convolutional layers of DNNs (Goodfellow et al., 2016). In fact, the use of weight-sharing
as a simplifying technique for neural networks can be traced back to more than three decades ago
(LeCun, 1987; Rumelhart & McClelland, 1986).
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Recently, with the goal of reducing the storage and communication costs of DNNs, there has been
a surge of interest in compressing the description of these models. Various methods have been
proposed that approximate or quantize the learned weights after the training process. Denton et al.
(2014) have shown that, in some cases, it is possible to replace the original weight matrix with a
low-rank approximation. Alternatively, Aghasi et al. (2016) propose retraining the network layer
by layer, keeping the layer inputs and outputs close to the originally trained model, while seeking
a sparse transform matrix, whereas Gong et al. (2014) propose the use of vector quantization to
compress the parameters of DNNs.

Network pruning is another relevant line of work. Early work by LeCun et al. (1989) and Hassibi
et al. (1993) uses the information provided by Hessian of the loss function to remove less important
weights of the network, which requires expensive computation of second order derivatives. Recently,
Han et al. (2016) reduce the number of parameters by an order of magnitude using an iterative algo-
rithm that alternates between learning the parameters and removing those below a certain threshold.
Li et al. (2016) propose to prune filters, which seeks sparsity with respect to neurons, rather than
connectivities; that approach relieves the burden on requiring sparse libraries or special hardware
to deploy the network. All these methods either require multiple training/retraining iterations or a
careful choice of pruning thresholds.

There is a large body of work on using sparsity-inducing regularization for training DNNs. For
example, Collins & Kohli (2014) exploit `1 and `0 regularization to encourage weight sparsity;
however, the sparsity level achieved is typically modest, making this approach not competitive in
terms of DNN compression. Group-Lasso has also been used in training DNNs, which allows seek-
ing sparsity in terms of neurons (Scardapane et al., 2017; Alvarez & Salzmann, 2016; Zhou et al.,
2016; Murray & Chiang, 2015) or other structures, e.g., filters, channels, filter shapes, and layer
depth (Wen et al., 2016). However, as mentioned above, both Lasso and group-Lasso can fail to
select important features if they are strongly correlated with each other. In Section 4, we will further
illustrate this fact on both synthetic and real data.

A recent stream of work has focused on using further parameter sharing in convolutional DNNs. By
tying weights in an appropriate way, Dieleman et al. (2016) obtain a convolutional DNN with rota-
tion invariance. On the task of analyzing positions in the game Go, Clark & Storkey (2015) showed
improved performance by constraining features to be invariant to reflections along the x-axis, y-axis,
and diagonal-axis. Finally, Chen et al. (2015) used a hash function to randomly group the weights
such that those in a hash bucket share the same value. In contrast, with GrOWL regularization, we
aim to learn weight sharing from the data itself, rather than specifying it a priori.

Dropout-type methods have been proposed to fight over-fitting and are very popular, arguably due
to their simplicity of implementation. It has been shown that dropout effectively reduces over-fitting
and prevents different neurons from co-adapting. Decorrelation is another popular technique in
deep learning pipelines (Bengio & Bergstra, 2009; Cogswell et al., 2015; Rodrı́guez et al., 2016).
Unlike sparsity-inducing regularizers, decorrelation methods try to make full use of the model’s
capacity by decorrelating the neurons. Although dropout and decorrelation can reduce over-fitting,
they do not compress the network, hence do not address the issue of high memory cost. It should
also be mentioned that our proposal can be seen as complementary to dropout and decorrelation,
in the following sense: whereas dropout and decorrelation can reduce co-adaption of nodes during
training, GrOWL regularization copes with co-adaptation by tying together the weights associated
to co-adapted nodes.

3 GROUP-OWL REGULARIZATION FOR DEEP LEARNING

3.1 THE GROUP-OWL NORM

We start by recalling the definition of the group-OWL (GrOWL) regularizer and very briefly review-
ing some of its relevant properties (Oswal et al., 2016).

Definition 1. Given a matrix W ∈ Rn×m, let w[i]· denote the row of W with the i-th largest `2
norm. Let λ ∈ Rn+, with 0 < λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The GrOWL regularizer (which is a norm)
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Ωλ : Rn×m → R is defined as

Ωλ(W ) =

n∑
i=1

λi
∥∥w[i]·

∥∥ (1)

This is a group version of the OWL regularizer (Figueiredo & Nowak, 2016), also known as WSL1
(weighted sorted `1 (Zeng & Figueiredo, 2014)) and SLOPE (Bogdan et al., 2015), where the groups
are the rows of its matrix argument. It is clear that GrOWL includes group-Lasso as a special case
when λ1 = λn. As a regularizer for multiple/multi-task linear regression, each row of W contains
the regression coefficients of a given feature, for the m tasks. It has been shown that by adding the
GrOWL regularizer to a standard squared error loss function, the resulting estimate of W has the
following property: rows associated with highly correlated covariates are very close or even exactly
equal to each other (Oswal et al., 2016). In the linear case, GrOWL encourages correlated features
to form predictive clusters corresponding to the groups of rows that are nearly or exactly equal. The
rationale underlying this paper is that when used as a regularizer for DNN learning, GrOWL will
induce both sparsity and parameters tying, as illustrated in Fig. 2 and explained below in greater
detail.

3.2 LAYER-WISE GROWL REGULARIZATION FOR FEEDFORWARD NEURAL NETWORKS

A typical feed-forward DNN with L layers can be treated as a function f of the following form:

f(x, θ) ≡ hL = fL (hL−1WL + bL) , hL−1 = fL−1 (hL−2WL−1 + bL−1) , ..., h1 = f1 (xW1 + b1)

θ =
(
W1, b1, . . . ,WL, bL

)
denotes the set of parameters of the network, and each fi is a component-

wise nonlinear activation function, with the rectified linear unit (ReLU), the sigmoid, and the hyper-
bolic tangent being common choices for this function (Goodfellow et al., 2016).

Given labelled data D =
(
(x(1), y(1)), ..., (x(m), y(m))

)
, DNN learning may be formalized as an

optimization problem,

min
θ
L(θ) +R(θ), where L(θ) =

m∑
i=1

L
(
y(i), f

(
x(i), θ

))
, (2)

and L
(
y, ŷ
)

is the loss incurred when the DNN predicts ŷ for y, andR is a regularizer. The regular-
izer herein adopted is a sum of GrOWL penalties, each applied to each layer of the neural network,
i.e.,

R(θ) =

L∑
l=1

Ωλ(l)

(
Wl

)
, λ(l) ∈ RNl−1

+ , (3)

where Nl denotes the number of neurons in the l-th layer and 0 < λ
(l)
1 ≥ λ

(l)
2 ≥ · · · ≥ λ

(l)
Nl−1

≥ 0.
Notice that R(θ) does not depend on b1, ..., bL, which means these parameters are not regularized,
as is common practice.

As indicated in Eq. (3), the number of groups in each GrOWL regularizer equals the number of
neurons in the previous layer, i.e., λ(l) ∈ RNl−1 . In other words, we treat the weights associated
with each input feature as a group. For fully connected layers, whereWl ∈ RNl−1×Nl , each group is
a row of the weight matrix. When considering convolutional layers, whereWl ∈ RFw×Fh×Nl−1×Nl ,
with Fw and Fh denoting the width and height, respectively, of each filter, we first reshape Wl to a
2-dimensional array, i.e., Wl →W 2D

l , where W 2D
l ∈ RNl−1×(FwFhNl), and then apply GrOWL on

the reshaped matrix. That is, if the l-th layer is convolutional, then

R(Wl) = Ωλ(l)

(
W 2D
l

)
. (4)

Each row of W 2D
l represents the operation on an input channel. The rationale to apply the GrOWL

regularizer to each row of the reshaped weight matrix is that GrOWL can select the relevant fea-
tures of the network, while encouraging the coefficient rows of each layer associated with strongly
correlated features from the previous layer to be nearly or exactly equal, as depicted in Fig. 2. The
goal is to significantly reduce the complexity by: (i) pruning unimportant neurons of the previous
layer that correspond to zero rows of the (reshaped) weight matrix of the current layer; (ii) group-
ing the rows associated with highly correlated features of the previous layer, thus encouraging the
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Figure 2: GrOWL’s regularization effect on deep nets. Fully connected layers (Left): for each layer
l GrOWL clusters the input features from the previous layer l − 1 into different groups, e.g., blue
and green. Within each neuron of layer l, the weights associated with the input features from the
same cluster (input arrows marked with the same color) share the same parameter value. For layer
l − 1, the neurons, corresponding with the zero valued rows of Wh, have zero inputs to the current
layer and hence get removed automatically. Convolutional layers (right): each group (row) is
predefined as the filters that associates with the same input channel, parameter sharing is enforced
among the filters within each neuron that corresponds with the same cluster (marked as blue with
different effects) of input channels.

coefficient rows in each of these groups to be very close to each other. As a consequence, in the re-
training process, we could further compress the neural network by enforcing the parameters within
each neuron that belong to the same cluster to share same values.

In the work of Alvarez & Salzmann (2016), each group is predefined as the set of parameters associ-
ated to a neuron, and group-Lasso regularization is applied to seek group sparsity, which corresponds
to zeroing out redundant neurons of each layer. In contrast, we treat the filters corresponding with
the same input channel as a group, and GrOWL is applied to prune the redundant groups and thus
remove the associated unimportant neurons of previous layer, while grouping associated parameters
of the current layer that correspond with highly correlated input features to different clusters. More-
over, shown in Section 4, group-Lasso can fail at selecting all relevant features of previous layers,
and for the selected ones the corresponding coefficient groups are quite dissimilar from each other,
making it impossible to further compress the DNN by enforcing parameter tying.

3.3 PROXIMAL GRADIENT ALGORITHM

To solve (2), we use a proximal gradient algorithm (Bauschke & Combettes, 2011), which has the
following general form: at the t-th iteration, the parameter estimates are updated according to

θ(t+1) = proxηR
(
θ(t) − η∇θL(θ(t))

)
(5)

where, for some convex function Q, proxQ denotes its proximity operator (Bauschke & Combettes,
2011), which is defined as proxQ(ξ) = arg minν Q(ν) + 1

2‖ν − ξ‖
2
2. In the previous expression,

‖ν − ξ‖22 denotes the sum of the squares of the differences between the corresponding components
of ν and ξ, regardless of their organization (in our case, a collection of matrices and vectors).

SinceR(θ), as defined in (3), is separable across the weight matrices of different layers and zero for
b1, ..., bL, the corresponding proximity operator is also separable, thus

W
(t+1)
l = prox

ηΩ
(l)
λ

(
W

(t)
l − η∇Wl

L(θ(t))
)
, for l = 1, . . . , L (6)

b
(t+1)
l = b

(t)
l − η∇blL(θ(t)) for l = 1, ..., L. (7)

It was proved by Oswal et al. (2016) that the proximity operator of the GrOWL norm can be com-
puted as follows. For some matrix V ∈ RN×M , let U = proxΩλ

(V ), and vi and ui denote the
corresponding i-th rows. Then,

ui =
vi
‖vi‖

(proxΩλ
(ṽ))i (8)

where ṽ = [‖v1‖, ‖v2‖, · · · , ‖vN‖]. The proximal operator proxΩ
λ(l)

for a vector in RN (in which
case GrOWL coincides with OWL) can be computed with O(n log n) complexity, where the core
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computation is the so-called pool adjacent violators algorithm (PAVA (de Leeuw et al., 2009)) for
isotonic regression. We provide one of the existing algorithms in Appendix A; for details of the
algorithm, the reader is referred to the work of Bogdan et al. (2015) and Zeng & Figueiredo (2015).
In this paper, we apply the proximal gradient descent per epoch, which generally yields better per-
formance. The training method is summarized in Algorithm 1.

Algorithm 1

Input: parameters of the OWL regularizers λ(l), ..., λ(L), learning rate η
for each epoch T do

for each iteration t in epoch T do
Update the parameter via backpropagation (BP)

end for
Apply proximity operator via (6)

end for

3.4 IMPLEMENTATION DETAILS

3.4.1 SETTING THE GROWL WEIGHTS

GrOWL is a family of regularizers, with different variants obtained by choosing different weight
sequences λ1, . . . , λn. In this paper, we propose the following choice:

λi =

{
Λ1 + (p− i+ 1)Λ2, for i = 1, ..., p,

Λ1, for i = p+ 1, ..., n,
(9)

where p ∈ {1, ...n} is a parameter. The first p weights follow a linear decay, while the remaining
ones are all equal to Λ1. Notice that, if p = n, the above setting is equivalent to OSCAR (Bondell
& Reich, 2008). Roughly speaking, Λ1 controls the sparsifying strength of the regularizer, while Λ2

controls the clustering property (correlation identification ability) of GrOWL (Oswal et al., 2016).
Moreover, by setting the weights to a common constant beyond index pmeans that clustering is only
encouraged among the p largest coefficients, i.e., only among relevant coefficient groups.

Finding adequate choices for p, Λ1, and Λ2 is crucial for jointly selecting the relevant features of
the network and identifying the underlying correlations among them. In practice, we find that with
properly chosen p, GrOWL is able to find more correlations of the underlying data than OSCAR.
We explore different choices of p in Section 4.1.

3.4.2 PARAMETER TYING

After the initial training phase, at each layer l, rows of Wl that corresponds to highly correlated
outputs of layer l − 1 have been made similar or even exactly equal. To further compress the DNN,
we force rows that are close to each other to be identical. We first group the rows into different
clusters 1 according to the pairwise similarity metric

Sl(i, j) =
WT
l,iWl,j

max (‖Wl,i‖22, ‖Wl,j‖22)
∈ [−1, 1], (10)

where Wl,i and Wl,j denote the i-th and j-th rows of Wl, respectively.

With the cluster information obtained by using GrOWL, we enforce parameter sharing for the rows
that belong to a same cluster by replacing their values with the averages (centroid) of the rows in
that cluster. In the following retraining process , let G(l)

k denote the k-th cluster of the l-th layer, then
centroid g(l)

k of this cluster is updated via

∂L
∂g

(l)
k

=
1∣∣∣G(l)
k

∣∣∣
∑

Wl,i∈G(l)
k

∂L
∂Wl,i

. (11)

1In this paper, we use the built-in affinity propagation method of the scikit-learn package (Buitinck et al.,
2013). A brief description of the algorithm is provided in Appendix B where we also talk about why we choose
this algorithm to cluster the rows.
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4 NUMERICAL RESULTS

We assess the performance of the proposed method on two benchmark datasets: MNIST and CIFAR-
10. We consider two different networks and compare GrOWL with group-Lasso and weight decay, in
terms of the compression vs accuracy trade-off. For fair comparison, the training-retraining pipeline
is used with the different regularizers. After the initial training phase, the rows that are close to each
other are clustered together and forced to share common values in the retraining phase. We imple-
ment all models using Tensorflow Abadi et al. (2016). To evaluate the effect of the different regu-
larizers, we use the following quantities: sparsity = #zero params

# total params ; compression rate = # total params
# unique params ;

parameter sharing = # nonzero params
# unique params .

4.1 DIFFERENT CHOICES OF GROWL PARAMETERS

We first evaluate GrOWL norm regularization on synthetic data. The covariance matrix Σ of the
data X is set as a block diagonal matrix such that each block represents the covariances of a cluster
of correlated features, and there is a gap g between two blocks. Within each cluster, the covariance
between two features Xi and Xj is cov(Xi, Xj) = 0.96|i−j|. we assume that the features from
different clusters are independent of each other, while In this section, we set n = 784,K = 10 and
block size equals 50, g = 28. We generate 10000 training examples and 1000 testing examples.

Figure 3: Regularization effect of
GrOWL with different p values in Eq
(9).

We train a neural network with a single fully connected
layer that consists of 300 hidden units. In Fig 3, we plot
the the first 25000 entries of the sorted similarity matri-
ces obtained by applying GrOWL with different p (Eq
9) values. Although, by setting the weights to a com-
mon constant beyond index p means that clustering is
only encouraged among the p largest coefficients, i.e.,
only among relevant coefficient groups, Figure 3 shows
that, with probably chosen p, GrOWL is able to encour-
age more parameter tying than OSCAR (p = n). On the
other hand, choosing smaller p values allows us to use
large Λ2, which encourages parameter tying among com-
paratively loose correlations. In practice, we found that
choosing p around the target portion of nonzero param-
eters over total parameters yields better performance in
general. The intuition is that we only want to identify
correlations among the remaining important parameters/connections.

Fig 3 shows that weight decay (denoted as `2) can also push parameters together, though the param-
eter tying effect is not as obvious as that obtained by applying GrOWL. As has been observed in
the literature (Bondell & Reich, 2008), weight decay often achieves better generalization as com-
pared with sparsity-inducing regularizers. It achieves this via parameter shrinkage, especially in the
highly correlated region, but it cannot yield a sparse model. In the following section, we explore
the compression performance of GrOWL by comparing it with both group-Lasso and weight decay.
For each case, the baseline performance is provided as the best performance obtained by running the
original neural network (without compression) after sweeping the hyper-parameter on the weight
decay regularizer over a range of values.

4.2 FULLY CONNECTED NEURAL NETWORK ON MNIST

The MNIST dataset contains 28×28 (784) pixels images of handwritten digits (0, 1, ..., 9), each
located at the center of the image. Fig 4 (a) shows the (784× 784) correlation matrix of the dataset
(the margins are zero due to the redundant background of the images). We use a network with a
single fully connected layer of 300 hidden units. The network is trained for 300 epochs and then
retrained for an additional 100 epochs, both with momentum. The initial learning rate is set to 0.001
for both the training and retraining phases, and it is reduced by a factor of 0.96 every 10 epochs. We
set p = 0.5, and Λ1,Λ2 are selected through grid search.
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Figure 4: MNIST: comparison of the data correlation and the similarity maps (Eq (10)) of the
parameter rows obtained by training the neural network with GrOWL, GrOWL+`2, group-Lasso,
group-Lasso+`2 and weight decay.

Pairwise similarities (see Eq. (10)) between the rows of the weight matrices learned with different
regularizers are shown in Fig. 4 (b–f). As we can see, GrOWL (+`2) identifies more correlations
than group-Lasso (+`2), and the similarity patterns in Fig. 4 (b, c) are very close to that of the data
(Fig. 4(a)). On the other hand, weight decay also identifies correlations between parameter rows,
but it does not induce a sparse model. Moreover, as shown in Table 1, GrOWL obtains a higher level
of parameter sharing than does weight decay.

The compression vs accuracy trade-off of the different regularizers is summarized in Table 1. As
we can see, by applying the `2 norm regularizer together with group-Lasso or GrOWL, we achieve
a higher compression rate while yielding even better accuracy. Table 1 also shows that, with even
smaller sparsities after the initial training phase, GrOWL (+`2) compresses the network more than
group-Lasso (+`2) does, due to the significant amount of correlation it identifies. This also implies
that group-Lasso can only select a subset of the correlated features while GrOWL selects all of them.
On the other hand, group-Lasso suffers from randomly selecting a subset of correlated features.
We illustrate this effect in Fig. 5, which plots the indices of nonzero rows, showing that GrOWL
stably selects relevant features while group-Lasso does not. The mean ratios of changed indices2 are
11.09% and 0.58% for group-Lasso and GrOWL, respectively.

Table 1: Sparsity, parameter sharing, and compression rate results on MNIST. Baseline model is
trained with weight decay and we do not enforce parameter sharing for baseline model. We train
each model for 5 times and report the average values together with their standard deviations.

Regularizers Sparsity Parameter Sharing Compression Accuracy
baseline 0.0± 0% 1.0± 0 1.0± 0X 98.3± 0.1%
weight decay 0.0± 0% 1.6± 0 1.6± 0X 98.4± 0.0%
group-Lasso 87.6± 0.1% 1.9± 0.1 15.8± 1.0X 98.1± 0.1%
group-Lasso+`2 93.2± 0.4% 1.6± 0.1 23.7± 2.1X 98.0± 0.1%
GrOWL 80.4± 1.0% 3.2± 0.1 16.7± 1.3X 98.1± 0.1%
GrOWL+`2 83.6± 0.5% 3.9± 0.1 24.1± 0.8X 98.1± 0.1%

2The mean ratio of changed indices is defined as: 1
n

∑n
k=1 ‖Ik − Ī‖1/‖Ī‖0, where n is the number of

experiments, Ik is the index vector of kth experiment, and Ī = 1
n

∑n
k=1 Ik is the mean index vector.

8



Under review as a conference paper at ICLR 2018

Figure 5: MNIST: sparsity pattern of the trained fully connected layer, for 5 training runs, using
group-Lasso (2) and GrOWL. For similar compression rates (15.8X and 16.7X), GrOWL is more
stable.

4.3 VGG-16 ON CIFAR-10

To evaluate the proposed method on large DNNs, we consider a VGG-like (Simonyan & Zisser-
man, 2014) architecture proposed by Zagoruyko (2015) on the CIFAR-10 dataset. The network is
summarized in Table 3; comparing with the original VGG of Simonyan & Zisserman (2014), their
fully connected layers are replaced with two small ones with 14.3% of the total parameters. A batch
normalization layer is added after each convolutional layer and the first fully connected layer. Un-
like Zagoruyko (2015), we don’t use dropout. We first train under different regularizers over 150
epochs, then retrain for another 50 epochs, using the learning rate decay scheme described by He
et al. (2016): the initial rates for the training and retraining phases are set to 0.01 and 0.001, re-
spectively; the learning rate is multiplied by 0.1 every 60 epochs of the training phase, and every
20 epochs of the retraining phase. For GrOWL (+`2), we set p = 0.1n (see Eq. (9)) for all layers,
where n denotes the number of rows of each layer.

Table 2: Sparsity (S1) and Parameter Sharing (S2) of VGG-16 on CIFAR-10. Layers marked by *
are regularized. We report the averaged results over 5 runs.

Layers Weight Decay group-Lasso group-Lasso + `2 GrOWL GrOWL + `2
(S1, S2) (S1, S2) (S1, S2) (S1, S2) (S1, S2)

conv1 0%, 1.0 0%, 1.0 0%, 1.0 0%,1.0 0%, 1.0
*conv2 0%, 1.0 34%, 1.0 40%, 1.0 20%, 1.0 34%, 1.0
*conv3 0%, 1.0 28%, 1.0 20%, 1.0 28%, 1.0 17%, 1.0
*conv4 0%, 1.0 34%, 1.0 29%, 1.0 30%, 1.0 27% 1.0
*conv5 0%, 1.0 12%, 1.0 11%, 1.0 8%, 1.0 14%, 1.0
*conv6 0%, 1.0 38%, 1.0 40%, 1.0 38%, 1.0 43%, 1.0
*conv7 0%, 1.0 46%, 1.0 51%, 1.0 40%, 1.0 50%, 1.0
*conv8 0%, 1.0 49%, 1.0 53%, 1.0 50%, 1.0 55%, 1.0
*conv9 0%, 1.0 78%, 1.0 78%, 1.0 74%, 1.1 75%, 1.2
*conv10 0%, 1.2 76%, 1.0 76%, 1.0 66%, 2.7 73%, 3.0
*conv11 0%, 1.2 84%, 1.0 87%, 1.0 81%, 3.7 88%, 3.7
*conv12 0%, 2.0 85%, 1.0 91%, 1.0 75%, 2.6 78%, 2.5
*conv13 0%, 2.1 75%, 1.1 90%, 1.1 78%, 1.9 71%, 4.2
*fc 0%, 4.2 78%, 1.0 91%, 1.1 69%, 2.7 81%, 2.2
softmax 0%, 1.0 0%,1.0 0%, 1.0 0%, 1.0 0%, 1.0
Compression 1.3± 0.1X 11.1± 0.5X 14.5± 0.5X 11.4± 0.5X 14.5± 0.5X
Accuracy 93.1± 0.0% 92.1± 0.2% 92.7± 0.1% 92.2± 0.1% 92.7± 0.1%
Baseline Accuracy: 93.4± 0.2%, Compression: 1.0X

The results are summarized in Table 2.3 In the experiments, we found that it is quite hard to encour-
age parameter tying in the first 7 convolutional layers. The reason may be that the filters of these
first 7 convolutional layers have comparatively large feature maps (from 32×32 to 8×8), which are

3For all of the regularizers, we use the preference value 0.8 to run the affinity propagation algorithm to
cluster the rows at the end of initial training process. In Table 4 (Appendix D), we explore the clustering effects
of the affinity propagation over different preference values.
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Figure 6: Output channel cosine similarity histogram obtained with different regularizers. Labels:
GO:GrOWL, GOL:GrOWL+`2, GL:group-Lasso, GLL:group-Lasso+`2, WD:weight decay.

only loosely correlated. We illustrate this reasoning in Fig. 6, showing the cosine similarity between
the vectorized output channels of layers 1, 6, 10, and 11, at the end of the training phase; it can be
seen that the outputs of layers 10 and 11 have many more significant similarities than that of layer
6. Although the output channels of layer 1 also have certain similarities, as seen in Table 2, neither
GrOWL (+`2) nor weight decay tends to tie the associated weights. This may mean that the network
is maintaining the diversity of the inputs in the first few convolutional layers.

Although GrOWL and weight decay both encourage parameter tying in layers 9-13, weight decay
does it with less intensity and does not yield a sparse model, thus it cannot significantly compress the
network. Li et al. (2016) propose to prune small weights after the initial training phase with weight
decay, then retrain the reduced network; however, this type of method only achieves roughly 3X
compression4. As mentioned by Li et al. (2016), layers 3-7 can be very sensitive to pruning; however,
both GrOWL (+`2) and group-Lasso (+`2) effectively compress them with a minor accuracy loss.

On the other hand, similar to what we observed by running the simple fully connected neural net-
work on MNIST, the accuracy and memory trade-off imrpoves significantly by applying GrOWL or
group-Lasso together with `2. However, Table 2 also shows that the accuracy vs. memory trade-off
achieved by GrOWL (+`2) and group-Lasso (+`2) are almost the same. We suspect that this is
caused by the fact that the CIFAR-10 dataset is simple enough that one could still expect a good
performance after strong network compression. We believe this gap in the compression vs accu-
racy trade-off can be further increased in larger networks on more complex datasets. We leave this
question for future work.

5 CONCLUSION

We have proposed using the recent GrOWL regularizer for simultaneous parameter sparsity and
tying in DNN learning. By leveraging on GrOWL’s capability of simultaneously pruning redundant
parameters and tying parameters associated with highly correlated features, we can significantly
reduce the model complexity, with a slight or even no loss in generalization accuracy. We evaluate
the proposed method on both a fully connected neural network and a deep convolutional neural
network. The results show that GrOWL can compress large DNNs by a factor of 11.4 to 14.5.

The correlation patterns identified by GrOWL are close to those of the input features to each layer.
This may be important to reveal the structure of the features, contributing to the interpretability of
deep learning models. On the other hand, by automatically tying together the parameters corre-
sponding to highly correlated features, GrOWL alleviates the negative effect of strong correlations
that might be induced by the noisy input or the co-adaption tendency of deep neural networks.

However, the gap in the accuracy and memory trade-off obtained by applying GrOWL and group-
Lasso to compress neural networks gets decreased as we move to large DNNs. Although we suspect
this can be caused by running a much larger network on a simple dataset, this motivates us to explore
different ways to apply GrOWL to compress neural networks. One possible method is applying
GrOWL within each neuron by predefining each 2D convolutional filter as a group (instead all 2D
convolutional filters corresponding to the same input features). By doing so, we encourage parameter

4Although parameter sharing is not considered by Li et al. (2016), according to Table 2, pruning following
weight decay together with parameter sharing still cannot compress the network as much as GrOWL.
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sharing among much smaller units, which in turn would further improve the diversity vs parameter
sharing trade-off. We leave this as future work.
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APPENDIX A PROXGROWL

Various methods have been proposed to compute the proximal mapping of OWL (ProxOWL) . It has
been proven that the computation complexity of these methods is O(n log n) which is just slightly
worse than the soft thresholding method for solving `1 norm regularization. In this paper, we use
Algorithm 2 that was originally proposed in Bogdan et al. (2015).

Algorithm 2 ProxGrOWL Bogdan et al. (2015) for solving proxη,Ωλ(z)

Input: z and λ
Let λ̃ = ηλ and z̃ = |Pz| be a nonincreasing vector, where P is a permutation matrix.
while z̃ − λ̃ is not nonincreasing: do

Identify strictly increasing subsequences, i.e., segments i : j such that

z̃i − λ̃i < z̃i+1 − λ̃i+1 < z̃j − λ̃j (12)

Replace the values of z̃ and λ̃ over such segments by their average value: for k ∈
{i, i+ 1, · · · , j}

z̃k ←
1

j − i+ 1

∑
i≤k≤j

z̃k, λ̃k ←
1

j − i+ 1

∑
i≤k≤j

λ̃k (13)

end while
Output: ẑ = sign (z)PT (z̃ − λ̃)+.

APPENDIX B AFFINITY PROPAGATION

Affinity Propagation is a clustering method based on sending messages between pairs of data sam-
ples. The idea is to use these messages to determine the most representative data samples, which are
called exemplars, then create clusters using these exemplars.

Provided with the precomputed data similarity s(i, j), i 6= j and preference s(i, i), there are two
types information being sent between samples iteratively: 1) responsibility r(i, k), which measures
how likely that sample k should be the exemplar of sample i; 2) availability a(k, i), which is the
evidence that sample i should choose sample k as its exemplar. The algorithm is described in 3.

Algorithm 3 Affinity Propagation Frey & Dueck (2007)

Initialization: r(i, k) = 0, a(k, i) = 0 for all i, k
while not converge do

Responsibility updates:

r(i, k)← s(i, k)−max
j 6=k

(a(j, i) + s(i, j))

Availability updates:

a(k, k)←
∑
j 6=k

max{0, r(j, k)}

a(k, i)← min

0, r(k, k) +
∑

j 6∈{k,i}

max{0, r(j, k)}


end while
Making assignments:

c∗i ← arg max
k

r(i, k) + a(k, i)
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Unlike k-means or agglomerative algorithm, Affinity Propagation does not require the number of
clusters as an input. We deem this as a desired property for enforcing parameter sharing in neural
network compression because it’s impossible to have the exact number of clusters as a prior infor-
mation. In practice, the input preference of Affinity Propagation determines how likely each sample
will be chosen as an exemplar and its value will influence the number of clusters created.

APPENDIX C MNIST SPARE PATTERN PLOT

Figure 7: Similarity maps for parameter rows obtained by group-Lasso, GrOWL, group-Lasso+`2,
GrOWL+`2. The mean ratio of changed indices2 are 11.09%, 0.59%, 32.07%, and 0.62% for the
four different regularization methods, respectively.

APPENDIX D VGG-16 ON CIFAR-10

Table 3: Network statistics of VGG-16.

Layers Output #Channels
#Params

w × h in&out
conv1 32× 32 3, 64 1.7E+03
*conv2 32× 32 64, 64 3.7E+04
*conv3 16× 16 64, 128 7.4E+04
*conv4 16× 16 128, 128 1.5E+05
*conv5 8× 8 128, 128 2.9E+05
*conv6 8× 8 128, 256 5.9E+05
*conv7 8× 8 256, 256 5.9E+05
*conv8 4× 4 256, 512 1.2E+06
*conv9 4× 4 512, 512 2.4E+06
*conv10 4× 4 512, 512 2.4E+06
*conv11 2× 2 512, 512 2.4E+06
*conv12 2× 2 512, 512 2.4E+06
*conv13 2× 2 512, 512 2.4E+06
*fc 1 512, 512 1.0E+06
sofrmax 1 512, 10 5.1E+03
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Table 4: VGG: Clustering rows over different threshold values. For each experiment, we report
clustering accuracy (A), compression rate (C), and parameter sharing (S) of layers 9-14. For each
regularizer, we use different threshold values to cluster the rows at the end of initial training process,
and then retrain the neural network correspondingly. The results are reported as the averages over 5
training and retraining runs..

Threshold Value 0.6 0.7 0.8 0.9
GrOWL 92.2%, 13.6, 3.5 92.2%, 12.5, 2.6 92.2%, 11.4, 2.1 92.2%, 10.9, 1.7
Group Lasso 92.2%, 12.1, 1.1 92.0%, 11.4, 1.1 92.1%, 11.0, 1.0 92.2%, 9.5, 1.0
GrOWL + `2 92.7%, 14.7, 2.3 92.5%, 15.4, 2.9 92.7%, 14.5, 2.3 92.6,%, 13.5, 1.8
GrLasso + `2 92.7%, 14.8, 1.2 92.7%, 14.5, 1.1 92.7%, 14.5, 1.0 92.6%, 14.3, 1.0
Weight Decay 93.2%, 1.8, 2.2 93.4%, 1.5, 1.7 93.1%, 1.3, 1.4 93.3%, 1.1, 1.1

16


	Introduction
	Related Work
	Group-OWL Regularization for Deep Learning
	The Group-OWL Norm
	Layer-Wise GrOWL Regularization For Feedforward Neural Networks
	Proximal Gradient Algorithm
	Implementation Details
	Setting the GrOWL Weights
	Parameter Tying


	Numerical Results
	Different Choices of GrOWL Parameters
	Fully Connected Neural Network on MNIST
	VGG-16 on CIFAR-10

	Conclusion
	ProxGrOWL
	Affinity Propagation
	MNIST Spare Pattern Plot
	VGG-16 on CIFAR-10

