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Abstract

We propose an approach for automatic model designing, which is signifi-
cantly faster and less expensive than previous methods. In our method,
which we name Efficient Neural Architecture Search (ENAS), a controller
learns to discover neural architectures by searching for an optimal path
within a larger predetermined model. The parameters of the predeter-
mined model are trained to minimize a canonical loss function, such as
the cross entropy, on the training dataset. The controller learns the path
with policy gradient to maximize the expected reward on the validation set.
In our experiments, ENAS achieves comparable test accuracy while being
10x faster and requiring 100x less resources than NAS. On the CIFAR-10
dataset, ENAS can design novel architectures that achieve the test error of
3.86%, compared to 3.41% by standard NAS (Zoph et al., 2017). On the
Penn Treebank dataset, ENAS also discovers a novel architecture, which
achieves the test perplexity of 64.6 compared to 62.4 by standard NAS.

1 Introduction

Neural architecture search (NAS) has recently been used successfully to design model archi-
tectures for a number of tasks, especially image classification and language modeling (Zoph
& Le, 2017; Zoph et al., 2017). Despite its success, NAS is computationally expensive and
time consuming. For instance, Zoph et al. (2017) use 450 GPUs and train in 3-4 days. On the
other hand, using less computing resources often leads to less compelling results (Negrinho
& Gordon, 2017; Baker et al., 2017).
In this work, we propose a method to accelerate NAS. First, we observe that it is possible
to share parameters among all child models in a particular search space. This observation
effectively avoids having to train from scratch each new architecture found during the search
process (Zoph & Le, 2017; Zoph et al., 2017; Zhong et al., 2017), leading to a faster search
time. Though it is appealing, sharing parameters among different architectures can lead to
very noisy updates to the parameters, as an update to one architecture may carry negative
effects to other architectures. To address this problem, we determine a large model ahead
of time, with a careful weight sharing scheme that allows our method to generate a discrete
mask within this model, which we describe in Section 4. We then interleave two processes:
(1) training the shared parameters to minimize a canonical loss function, such as the cross
entropy, on the training data; and (2) searching for good architectures, which are represented
by discrete sequences of tokens, using policy gradient on the validation set. This method
can quickly discover novel architectures whilst using far less computing resources. Because
of this efficiency, we name our method Efficient Neural Architecture Search (ENAS).
We give a theoretical justification of the convergence guarantee of ENAS, and then demon-
strate empirically its effectiveness on two tasks: image classification on CIFAR-10 and lan-
guage modeling on Penn Treebank. For both tasks, ENAS is able to discover novel neural
architectures that achieve comparable accuracies to best reported results by NAS methods.
Specifically, ENAS achieves 3.86% error rate on CIFAR-10 and 64.6 perplexity on Penn
Treebank. In comparison, the best results reported by previous NAS approaches are 3.41%
error rate on CIFAR-10 and 62.4 perplexity on Penn Treebank. More importantly, ENAS
is significantly faster than previous methods. In our experiments, ENAS takes less than
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15 hours to train, running on a single Nvidia GTX 1080Ti GPU, meaning that ENAS uses
up to two orders of magnitude less computational resources and is also up to an order of
magnitude faster than NAS.

2 Neural Architecture Search with Reinforcement Learning

The goal of NAS is to find a model architecture m that achieves a high reward R(m)
on a particular task. This setting is general: R(m) can be the accuracy for an image
classifier, or the perplexity of a language model. Recent approaches such as Zoph & Le
(2017); Zoph et al. (2017); Baker et al. (2017); Bello et al. (2017); Zhong et al. (2017) used
reinforcement learning to search the combinatorial space of architectures, attempting to
model a parameterized policy π(m; θ) of m to maximize the expected reward

J(θ) = Em∼π(m;θ) [R(m)] (1)

The key differences between these NAS approaches are in the design choices for the search
space, the parametrization of π(m, θ), and the learning algorithm for optimizing J(θ).
There are two main approaches for designing the search space. The first approach designs
the whole architecture all at once. For instance, if we were to design a convolutional network,
we would choose how many filters to use at each layer, the filter sizes, how to set up the
skip connections, etc. We call this approach macro search space design. Macro design is
used by Zoph & Le (2017); Baker et al. (2017); Negrinho & Gordon (2017); Brock et al.
(2017); Saxena & Verbeek (2016). The second approach, which we call micro search space
design, aims to search for smaller modules which are then replicated and assembled to form
the final model. Micro design is used by Zoph et al. (2017); Zhong et al. (2017). We note
that Zoph & Le (2017) also use micro design when designing the RNN cell.
An architecture m is often represented as a sequence, with a grammar and meaning spec-
ified by the NAS algorithm. Because modeling variable length sequences is necessary, the
reinforcement learning policy π(m; θ) is often parametrized with a recurrent neural network.
J(θ) is then learned with various reinforcement learning algorithms. For instance, Zoph &
Le (2017) use REINFORCE (Williams, 1992) with a moving average baseline and Zoph
et al. (2017) use Proximal Policy Optimization (Schulman et al., 2017) to learn J(θ). Deep
Q-learning approaches have also been explored (Baker et al., 2017; Zhong et al., 2017).

3 The Source of the Computational Expense

NAS methods are typically time consuming and computationally expensive. Most signif-
icantly, Zoph & Le (2017) and Zoph et al. (2017) respectively train in 3-4 weeks and 3-4
days, using 800 and 450 GPUs concurrently at any time during their training. Zhong et al.
(2017) report to use 32 GPUs, training in 3 days. This amount of computing resource,
albeit reduced compared to the first two studies, is still not widely available. Baker et al.
(2017) report to use 10 GPUs, training in 5 days, but the architectures found on CIFAR-10
do not yield as compelling results, mainly because the method did not have an opportunity
to explore enough architectures.
The computational expense of NAS methods is due to the fact that they train each child
model m from scratch. To see this, note that in Eqn. 1, the reward R(m) cannot be
computed without the optimal parameters ω∗m of the model m. To find ω∗m, we need to
train m to convergence. Due to the high sample complexity of reinforcement learning,
many models m have to be sampled, trained, and evaluated. We posit that this is the main
weakness of NAS approaches: after training each model m, only the reward R(m;ω∗m) is
kept, while the learned parameters in ω∗m, which could be reused, are thrown away.
Several methods have been proposed to avoid training each architecture m from scratch, such
as convolutional neural fabrics (ConvFabrics) (Saxena & Verbeek, 2016) and SMASH (Brock
et al., 2017). These methods are often more computationally efficient. However, the tradeoff
in ConvFabrics is that their search space is not flexible enough to include novel architec-
tures, e.g., architectures with arbitrary skip connection patterns as in Zoph & Le (2017).
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In contrast, SMASH can design many interesting architectures, but requires a hypernet-
work (Ha et al., 2017) to generate the weights ωm, conditional on the architecture m.
While a hypernetwork can efficiently rank different architectures, as shown in the paper,
the real performance of each network, i.e., R(m, ω∗m), is different from its performance with
ωm generated by a hypernetwork. Such discrepancy can cause misleading signals, which
may make SMASH unsuitable for reinforcement learning.
In this work, we propose a novel approach that combines the strengths of both ConvFabrics
and SMASH. Unlike SMASH, we do not use a hypernetwork to generate ωm for each m, but
instead keep a shared set of parameters ω among all architectures m. Unlike ConvFabrics,
we design a different mechanism to specify computing paths in our model, leading to a very
flexible search space. In fact, our search space is larger than the search space of SMASH
as well as the search space described in Zoph & Le (2017). As a result, our method can
efficiently discover novel ones that achieve better accuracy than SMASH.

4 Efficient Neural Architecture Search

4.1 Parameters Sharing in Convolutional Models

Figure 1: Our search space for convolutional models where all models can share the param-
eters. Left: the dotted arrows denote the skip connections. Right: At each layer, there are
6 distinct branches, i.e. computational paths.

We propose a scheme to share parameters among different convolutional architectures, which
is illustrated in Figure 1. Our method requires a pre-specified number of layers, denoted
by L, in all models in our search space.1 Suppose that at each layer, we have to make a
decision of which of B operations to perform. In this paper, we use B = 6 operations at
each layer: four convolutions with square filters of sizes 1, 3, 5, 7, an average pooling, and a
max pooling of filter size 3× 3. All these operations have the spatial strides 1× 1 and their
outputs are centrally padded to preserve the spatial dimensions. Each of these operations
has a maximum number of output channels C, set to 256. Parameters are independent to
each branch in each layer. We denote by ω the set of all shared parameters in the model.
During each data pass, each of the L×B×C channels in the network is controlled by a binary
mask, which, if turned off, will remove the corresponding channel from the network. These
binary masks are specified by a controller network, which we will describe in Section 4.3.
Since the number of channels can be large, we group them into blocks of S channels, where
S evenly divides C. Consequentially, for each channel, we only predict C/S binary masks.

1While this requirement could be relaxed, e.g., by introducing stochastic auxiliary
heads (Szegedy et al., 2016), we find that such stochastic heads make our training unstable.
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In order to allow architectures with arbitrary patterns of skip connections (He et al., 2016;
Zoph & Le, 2017), we insert skip connections between every pair of layers in the network,
which the controller can also turn on or turn off. Therefore, each configuration of the
channels and the skip connections realizes an architecture in our search space. The resulting
search space has 2LBC/S+L(L−1)/2 configurations.

Structure of Convolutional Layers. Each convolutional operation in our method is
followed by a batch normalization (Ioffe & Szegedy, 2015) and then a ReLU layer. We find
the alternate setting of batch norm-conv-ReLU (Zoph et al., 2017) to have worse results.

Stabilizing Stochastic Skip Connections. If a layer receives skip connections from
multiple layers before it, then these layers’ outputs are concatenated in their depth dimen-
sion, and then a convolution of filter size 1 × 1 (followed by a batch normalization layer
and a ReLU layer) is performed to ensure the number of output channels is still equal to C.
This is necessary because if we were to follow Zoph & Le (2017) in concatenating the skip
connected layers, that would result in `(`−1)

2 channels at layer `th, leading to a prohibitively
large number of parameters. Using 1× 1 convolutions is more economical.

Global Average Pooling. After the final convolutional layer, we average all the activa-
tions of each channel and then pass them to the Softmax layer. This trick was introduced
by Lin et al. (2013), with the purpose of reducing the number of parameters in the dense
connection to the Softmax layer to avoid overfitting. This trick is important to ENAS, be-
cause in ENAS, each configuration of the lower layers can lead to radically different outputs
in the final layer, especially in the early training steps. If the Softmax head overfits to any
of these configurations, subsequent updates made to model parameters ω become unstable,
e.g. parameters in the Softmax layer have much larger gradients than parameters in other
layers.
As we shall see in Section 4.4, our training algorithm can lead to noisy updates on ω. These
three aforementioned tricks are thus crucial to our scheme of sharing parameters among
different convolutional models. We carry out ablation studies which show that removing
any of the tricks significantly de-stablizes our ENAS training process.

4.2 Parameters Sharing in Recurrent Models

For RNNs, NAS is used to design the architecture for each cell; this cell is then replicated at
each time step and at each layer (Zoph & Le, 2017). Rather than searching for a completely
novel cell architecture like Zoph & Le (2017), we start with the recurrent highway network
(RHN), a recurrent cell architecture that not only allows gradients to propagate asympot-
ically without loss but also allows the cell to model more complex transformations (Zilly
et al., 2017). Each RHN cell resembles a dense layer in a feed forward network, augmented
with a linear carousel. In He et al. (2016), the authors found that skip connections can im-
prove the gradient flows in deep networks, leading to better performance. We hypothesize
whether RHN can also benefit from having skip connections among their highway layers.
We thus use ENAS to learn the skip connections pattern in the highway layers. Specifically,
if layer `th receives the skip connections from layers i1 < i2 < ... < ik, then the output s` is
computed as follows

h` ← tanh
(

s`−1 ·W(h)
`

)
; t` ← sigmoid

 k∑
j=1

sij ·W
(t)
`,ij

 (2)

s` ← t` ⊗ h` + (1− t`)⊗ s`−1, (3)

where ⊗ denotes the elementwise product and W(h)
` and W(t)

`,j are weight matrices. When
k = 1 and i1 = ` − 1 for all layers `, we have the original RHN (Zilly et al., 2017). It is
worth noting that the update rule in Eqn. 3 can be rewritten as

s` ← s`−1 + (h` − s`−1)⊗ t`︸ ︷︷ ︸
δ`

(4)
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If Edata∼D[δ`] = 0, this update rule is consistent with the feature identity and the unrolled
iterative estimation interpretations of highway networks (Greff et al., 2017).
Eqn. 2 has a pitfall: if a layer s` does not receive any connection from all previous layers,
the model fails to compile. This phenomenon was noted in Zoph & Le (2017) as compilation
failure. We resolve the issue by forcing each layer s` to be connected to s`−1, effectively
absorbing the highway connection into the skip connections.

4.3 The Policy Network

Following Zoph & Le (2017), we parameterize the policy π(m; θ) with an RNN. In all
experiments, we use a two-layer stacked Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997; Sutskever et al., 2014) with 64 hidden units per layer to model a sequence
of tokens. The meaning of the sequence of tokens depends on the class of architectures we
want to design, as we discuss below.

General Form of the Controller. Figure 2 illustrates the RNN that models our general
controller. In order to design a convolutional architecture with L layers, each with B
branches, we let the controller RNN run for L blocks of B + 1 steps. In each block, the
first B steps sample B masks for the corresponding B channels. Each mask is an integer
in (0, 2C/S − 1], where C and S are as in Section 4.1. The last step in each block is the
anchor step, whose output is used in a content-based attention function (Bahdanau et al.,
2015) to sample the binary decisions whether to establish a skip connections between layers.
Specifically, for layers i and j if i < j then

p(layer i is connected to layer j) ∝ exp (tanh (anchori ·W1 + anchorj ·W2) · v), (5)
where W1, W2, and v are trainable parameters. If at layer j the controller samples k skip
connections to the previous layers i1, i2, ..., ik then the embedding to the next step in the
next block of the RNN is the average of the corresponding k anchor steps.

Figure 2: A block of B mask predictions and an anchor prediction. If the desired convolu-
tional network has L layers, then this block is replicated L times.

Practical Restricted Controller. Since the described controller results in a very large
search space, we explore two of its restrictions, corresponding to two sub-search spaces. In
the first restriction, we remove the anchor step in each block, equivalently removing the
controller’s ability to design skip connections. Instead, we enforce the network to use the
skip connections pattern of DenseNet (Huang et al., 2016).
In the second restriction, we keep only the anchor step in each blocks, remove all the
mask predictions, and force the network to use convolutions of filter size 3 × 3 and C
channels, equivalently focusing the controller to find a good skip connection pattern. Our
best convolutional architecture is obtained by this variation, described in more details in
Section 5. This is consistent with the observation in (Zoph & Le, 2017) that (1) if the
search space is too large, the controller fails to find the good configurations, and (2) fixing
a particular dimension in the search space and then using some manual designs lead to the
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best models. For recurrent models, as we only want to design the skip connection patterns
in RHN cells (cf. Section 4.2), we simply employ this second restriction.

4.4 Optimization Algorithm and Convergence Guarantee

With the described specifications on the models and parameters, the training algorithm of
ENAS consists of two alternating phases.

Training the Shared Parameters ω. In this step, we fix the policy π(m; θ) and perform
stochastic gradient descent (SGD) updates on ω to minimize the expected loss function
L(m;ω). The gradient is computed via the unbiased Monte Carlo estimate

∇ωEm∼π(m;θ) [L(m;ω)] ≈ 1
M

M∑
i=1
∇ωL(mi, ω) (6)

We find that M = 1 works just fine, i.e. we can update ω using the gradient from any single
model m sampled from π(m; θ). We train ω for a whole pass through the training data set.

Training the Policy π(m; θ). In this step, we fix ω and update the policy parameters
θ, aiming to maximize the expected reward Em∼π(m;θ) [R(m, ω)]. We employ the Adam
optimizer (Kingma & Ba, 2015), for which the gradient is computed via the REINFORCE
equation (Williams, 1992), with variance reduction using a moving average baseline b̂:

∇θEm∼π(m;θ) [R(m, ω)] ≈ 1
M

M∑
i=1

(
R(mi;ω)− b̂

)
· ∇θ log p(mi; θ) (7)

The reward R(m, ω) is computed on a minibatch of examples sampled from the validation
set, rather than the training set, as we want to encourage ENAS to select the model that
generalizes well, rather than the model that overfits the training set well. We try two
alternative implementations of this step, where we evaluate R(m, ω) only on the training
set, and on minibatches either from the training set or the validation set. The resulting
training algorithms converge faster, but the found architectures generalize poorly.
The reward function for image classification is the rate of correct classification on a mini-
batch of images sampled from the validation set. The reward function for language model
is c/valid ppl, where the perplexity is computed on a minibatch, also sampled from the
validation set. This reward function is different from the reward function proposed by Zoph
& Le (2017), which is c/valid ppl2. In Appendix A, we derive these choices with theoretical
justifications that they stabilize the interleaving updates in Eqn. 6 and 7.

4.5 Inference

We propose two approaches to inference. In the first approach, we sample several models
from π(m, θ). We compute each model’s reward on a single minibatch sampled from the
validation set. We then take the model with the highest reward to re-train from scratch.
In the second approach, we also sample models from π(m; θ), but unlike the first approach,
we keep ω and evaluate R(m̂, ω) as the ensemble reward of these models. Specifically, with
the image classification task, we average the pre-softmax logits of the sampled models, and
with the language model task, we average the post-softmax logits of the sampled models.
In our experiments, the first approach yields better results. To match the performance of an
architecture retrained using the first approach, e.g. in terms of accuracy on CIFAR-10, the
second approach needs as many as 171 samples, making its inference more expensive than
the inference of a single retrained model. Our interpretation is that ENAS does achieve the
same effect of NAS methods, i.e. discovering good architectures, but does not learn a good
set of parameters to be shared by all of them.
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5 Experiments

5.1 Image Classification on CIFAR-10

Dataset. The CIFAR-10 dataset (Krizhevsky, 2009) consists of 50,000 training images and
10,000 test images. We use the standard data pre-processing and augmentation techniques,
i.e. subtracting the mean and dividing the standard deviation from each channel computed
on the training images, centrally padding the training images to 40 × 40 and randomly
cropping them back to 32× 32, and randomly flipping them horizontally.

Training details. The shared parameters ω is trained with Nesterov momentum (Nes-
terov, 1983), where the learning rate follows the cosine schedule with lmax = 0.05,
lmin = 0.001, T0 = 10 and Tmul = 2 (Loshchilov & Hutter, 2017). Each architecture search
is run for 10 + 20 + 40 + 80 + 160 = 310 epochs. Each weight component in ω is initialized
from a scaled Gaussian as described in He et al. (2015). We also apply an `2 weight decay
of 10−4. The same settings are employed to train the architecture recommended by the
controller.

Method Depth Parameters Error
(million) (%)

ResNet (He et al., 2016) 110 1.7 6.61
WideResNet (Zagoruyko & Komodakis, 2016) 28 36.5 4.17
DenseNet-BC (Huang et al., 2016) 190 25.6 3.46
Multi-Branch Net (Ahmed & Torresani, 2017) 26 34.3 3.19
Shake-Shake 26 2x96d (Gastaldi, 2016) 26 26.2 2.86
Shake-Shake + CutOut (DeVries & Taylor, 2017) 26 26.2 2.56
Budgeted Super Nets (Veniat & Denoyer, 2017) 16 − 9.21
ConvFabrics Dense (Saxena & Verbeek, 2016) 16 21.2 7.43
Macro NAS with Q-Learning (Baker et al., 2017) 11 11.2 6.92
Net Transformation (Cai et al., 2017) 17 19.7 5.70
FractalNet (Larsson et al., 2017) 21 38.6 4.60
SMASH (Brock et al., 2017) 211 16.0 4.03
Micro NAS with Q-Learning (Zhong et al., 2017) 24 − 3.60
NAS with stride (Zoph & Le, 2017) 20 2.5 6.01
NAS no stride or pooling 15 4.2 5.50
NAS + max pooling 39 7.1 4.47
NAS + max pooling + more filters 39 37.4 3.65
NASNet-B (Zoph et al., 2017) 14 2.6 3.73
NASNet-C 14 3.1 3.59
NASNet-A 20 3.3 3.41
ENAS + channels + dense connection 12 12.6 4.35
ENAS + connections + conv 3× 3 15 14.1 5.04
ENAS + connections + locally dense connections 39 19.4 4.42
ENAS + connections + multi branches 15 32.0 3.86

Table 1: Classification error rates of ENAS and other methods on CIFAR-10. In this table,
the first block presents the state-of-the-art models, all of which are designed by human
experts. The second block presents various NAS approaches that do not use more than
50 GPUs. All models in this second block have higher test error rates than ENAS except
for Zhong et al. (2017), which use 32 GPUs. The next two blocks present the state-of-the-
art NAS techniques, which are very computationally expensive. The last block presents the
performance of ENAS .

The policy parameters θ are initialized uniformly in [−0.1, 0.1], and trained with the Adam
optimizer at a learning rate of 10−3. We additionally utilize three techniques to prevent the
premature convergence of REINFORCE. First, a temperature τ = 5.0 and a tanh constant
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c = 2.5 are applied to the controller’s logits, i.e. every sample s from the controller’s logits
u comes from the distribution s ∼ softmax(c · tanh (u/τ)). Second, we add to the reward
the entropy term of the controller’s samples weighted by λent = 0.1, which discourages con-
vergence (Williams & Peng, 1991). Lastly, we enforce the sparsity in the skip connections
by adding to the reward the Kullback-Leibler divergence between the skip connection prob-
ability in Eqn. 5 and a chosen probability ρ = 0.4, which represents the prior belief of a skip
connection being formed. The KL divergence term is weighted by λkl = 0.5 in our reward.

Results. Table 1 summarizes the test errors of ENAS and other approaches. The time
taken to discover our models are reported in Table 2. More details are as follows.

Method GPUs Time
Macro NAS with Q-Learning (Baker et al., 2017) 10 8-10 days
Net Transformation (Cai et al., 2017) 5 3 days
SMASH (Brock et al., 2017) 1 37.2 hours2

Micro NAS with Q-Learning (Zhong et al., 2017) 32 3 days
NAS (Zoph & Le, 2017) 800 3-4 weeks
Micro NAS (Zoph et al., 2017) 450 3-4 days
ENAS + channels 1 11.6 hours
ENAS + connections 1 12.4 hours

Table 2: Time taken to search for the desired architectures for CIFAR-10.

In the first experiment, we search for the masks at each branch and each layer in a 12-layer
network. Layers 4th and 8th are max pooling layers with a kernel size of 2×2 and a stride of
2, which reduce each spatial dimension of the layers’ outputs by a factor of 2. Within each
group of 3 layers where the spatial dimensions of the layers remain constant, we connect
each layer to all layers before it (Huang et al., 2016). We use the block size of S = 32,
resulting in C/S = 256/32 = 8 blocks per branch per layer. The resulting model, depicted
in Figure 3, almost always has 64 or 96 channels at each branch and each layer, indicating
that the controller does not choose to activate all blocks. This is the desired behavior, as
doing so would over-parametrize the model and result in overfitting. The search for this
architecture takes only 11.6 hours and yet the resulting model achieves the test error of
4.35%, which is better than all but one model reported by Zoph & Le (2017).
In the second experiment, we search for a good pattern of skip connections. We use 3 × 3
convolutions with 48 output channels at all layers. Our controller is allowed to form skip
connections between arbitrary layers, but forming such connections between layers with
different spatial dimensions would result in compilation failures. To circumvent, after each
max pooling in the network, we centrally pad the output so that its spatial dimensions
remain unchanged. In 12.4 hours, this process discovers the pattern of skip connections
depicted in Figure 4. This pattern has the property that skip connections are formed much
more densely at higher layers than at lower layers, where most connections are only between
consecutive layers. The architecture found in this experiment has the test error of 5.04%,
which is slightly worse than the one found in the first experiment.
We manually augment the pattern of skip connections using two approaches. First, similar
to Zoph & Le (2017), we replace the 3 × 3 convolutions at each layer with 3 consecutive
layers that are densely connected, each has 256 channels. The resulting model achieves
a better test error of 4.42%. Second, following Xie et al. (2017) and Ahmed & Torresani
(2017), we replace blocks of 3 densely connected layers with 4 parallel branches, where each
branch performs a 3×3 convolution on the input layer and their outputs are combined using
a 1× 1 convolution. The resulting architecture achieves the test error of 3.86%.

Sanity Check with Ablation Study. To assert the role of ENAS, we carry out two
sanity check experiments. In the first study, we uniformly at random pick a configuration

2We took the authors’ published code, ran it for a few epochs and interpolated the running time.
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of channels and skip connections and just train a model. As a result, about half of the
channels and skip connections are selected, resulting in a model with 47.1M parameters,
which has the error rate of 5.86%. This error rate is worse than the models designed by
ENAS, which have fewer parameters. In the second study, we only train ω and do not update
the controller. The effect is similar to dropout with a rate of 0.5 on both the channels and
the skip connections. At convergence, the model has the error rate of 11.92%. On the
validation set, the ensemble of 250 Monte Carlo configurations of the trained model could
only reach 8.99% test error rate. We therefore conclude that the appropriate training of the
ENAS controller is crucial for good performance.

5.2 Language Model with Penn Treebank

Training details. Our controller is trained with the same settings as described in Sec-
tion 5.1 for CIFAR-10, except that now we anneal the skip connection probability to ρ = 0.45
and set learning rate for Adam to 0.005. The shared parameters ω are trained using stochas-
tic gradient descent with a learning rate of 0.2, decayed by a factor of 0.9 after every 3 epochs
starting at epoch 15, for a total of 150 epochs. During the architecture search process, fol-
lowing Melis et al. (2017), we randomly reset the starting state with probability of 0.001.
We also employ weight tying (Inan et al., 2017). No additional regularization technique is
applied. When retraining the architecture recommended by the controller, however, we use
variational dropout and an `2 regularization with weight decay of 10−7.

Results. Table 3 presents our results in comparison with other methods. In 8.2 hours, our
controller finds the architecture as depicted in Figure 5 in the Appendix. This architecture
has only 8 million parameters and achieves the test perplexity of 71.3, which is better than
LSTM trained using the same setting. Finally, if we increase the number of hidden units in
our model so that the total number of parameters is 21M, then it achieves the test perplexity
of 64.6, which is very close to the test perplexity found by full-scaled NAS (Zoph & Le, 2017),
which uses orders of magnitude more computing resources and time.

Method Parameters Test
(million) Perplexity

LSTM+Vanilla Dropout (Zaremba et al., 2014) 66 78.4
LSTM+VD (Gal & Ghahramani, 2016) 66 75.2
LSTM+VD+MC (Gal & Ghahramani, 2016) 66 73.4
LSTM+WT (Inan et al., 2017) 51 68.5
Recurrent Highway Network (Zilly et al., 2017) 24 66.0
LSTM+Hyper-parameters Search (Melis et al., 2017) 24 59.5
LSTM+AWD (Merity et al., 2017) 24 52.8
LSTM+AWD+Dynamic Eval (Krause et al., 2017) 24 51.1
NAS (Zoph & Le, 2017) 32 67.9
NAS+VD 25 64.0
NAS+VD+WT (Zoph & Le, 2017) 54 62.4
ENAS (small) 8 71.3
ENAS (large) 21 64.6

Table 3: Test perplexity on Penn Treebank of ENAS and other approaches. VD = Varia-
tional Dropout; WT = Weight Tying; MC = Monte Carlo sampling.

6 Conclusion

Neural Architecture Search (NAS) is an important advance that allows faster architecture
design for neural networks. However, the computational expense of NAS prevents it from
being widely adopted. In this paper, we presented ENAS, an alternative method to NAS,
that requires less resources and time. The key insight of our method is to share parameters

9



Under review as a conference paper at ICLR 2018

across child models during architecture search. This insight is implemented by having NAS
search for a path within a larger model. We demonstrate empirically that the method works
well on both CIFAR-10 and Penn Treebank datasets.
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Appendices
A Derivation of Reward Functions

For model m with shared parameters ω, the cross-entropy loss L(m, ω) can be computed
by integrating over the data space x ∼ P (x)

L(m, ω) = −
∫
dP (x) log p(x|m, ω). (8)

Below, we show that the reinforcement learning signals R(m, ω) that we specified in Sec-
tion 4.4 are the unbiased Monte Carlo approximations of the posterior of the data, i.e.∫
dP (x)p(x|m, ω).

Before we present the derivation, let us put forth a remark. In Chapter 3.3.2 of Bottou
(1991), it was shown that if the estimations of gradients ∇̂ω and ∇̂θ are unbiased, then
under reasonable assumptions of the function to optimize, the SGD updates of ω converge
almost surely. In other words, if we fix π(m, θ) and just perform SGD to update ω, it will
converge to a local minimum. However, the role of π(m; θ) is to calibrate the expectation
Em [L(m, ω)]. Specifically, by Jensen’s inequality

Em [L(m, ω)] = −Em

[∫
dP (x) log p(x|m, ω)

]
(9)

≤ − logEm

[∫
dP (x)p(x|m, ω)

]
(10)

= − logEm [R(m, ω)]. (11)

Thus, maximizing Em∼π(m,θ) [R(m, ω)] pushes down a surrogate function of Em[L(m, ω)],
similar to the M-step in the family of Expectation-Maximization algorithms.
Now we present the derivation. On an image classification task, the data x is actually a pair
(x,y) of an image and its label. If instead of predicting the label by taking argmax of the
model’s probabilities, we sample the label ŷ ∼ p(y|x,m, ω), as done in Bayesian classifiers,
then the expected accuracy is∫

dP (x,y)Em [R(m, ω)] =
∫
dP (x,y)Em

[
Eŷ∼p(y|x,m,ω)1[ŷ = y]

]
(12)

=
∫
dP (x,y)Em [p(y|x,m, ω)] . (13)

The accuracy on a minibatch is thus a Monte Carlo approximation of of Em [p(x|m, ω)].
On a language model task, the data x is a sequence of words. Letting |x| be the number of
words in x, the expectation of the proposed reward in Section 4.4 is∫

dP (x)Em

[
c

valid ppl(x|m, ω)

]
= −c

∫
dP (x)Em

[
exp log p(x|m, ω)

|x|

]
(14)

= −c
∫
dP (x)Em [p(x|m, ω)− exp |x|] (15)

∝ −c
∫
dP (x)Em [p(x|m, ω)] . (16)

Since we use R(m, ω) as the signal for reinforcement learning, we can omit the constant
c
∫
dP (x) exp |x| since it will integrate to 0 in the REINFORCE equation, just like the

constant baseline (Williams, 1992). This justifies the use of the signal c
valid ppl(x) for learning.
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B Models found for CIFAR-10

Figure 3: A configuration of channels found by ENAS for CIFAR-10.
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Figure 4: A skip connection pattern found by ENAS for CIFAR-10.
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C Models found for Penn Treebank

Figure 5: A pattern of skip connections that ENAS found to augment the RHN cell on Penn
Treebank.
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