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Abstract

Predicting multimodal future behavior of traffic participants is essential for robotic1

vehicles to make safe decisions. Existing works explore to directly predict future2

trajectories based on latent features or utilize dense goal candidates to identify3

agent’s destinations, where the former strategy converges slowly since all motion4

modes are derived from the same feature while the latter strategy has efficiency5

issue since its performance highly relies on the density of goal candidates. In6

this paper, we propose the Motion TRansformer (MTR) framework that models7

motion prediction as the joint optimization of global intention localization and8

local movement refinement. Instead of using goal candidates, MTR incorporates9

spatial intention priors by adopting a small set of learnable motion query pairs.10

Each motion query pair takes charge of trajectory prediction and refinement for a11

specific motion mode, which stabilizes the training process and facilitates better12

multimodal predictions. Experiments show that MTR achieves state-of-the-art13

performance on both the marginal and joint motion prediction challenges, ranking14

1st on the leaderbaords of Waymo Open Motion Dataset. Code will be available.15

1 Introduction16

Motion forecasting is a fundamental task of modern autonomous driving systems. It has been17

receiving increasing attention in recent years [18, 43, 27, 52, 33] as it is crucial for robotic vehicles18

to understand driving scenes and make safe decisions. Motion forecasting requires to predict future19

behaviors of traffic participants by jointly considering the observed agent states and road maps, which20

is challenging due to inherently multimodal behaviors of the agent and complex scene environments.21

To cover all potential future behaviors of the agent, existing approaches mainly fall into two different22

lines: the goal-based methods and the direct-regression methods. The goal-based methods [18, 56]23

adopt dense goal candidates to cover all possible destinations of the agent, predicting the probability24

of each candidate being a real destination and then completing the full trajectory for each selected25

candidate. Although these goal candidates alleviate the burden of model optimization by reducing26

trajectory uncertainty, their density largely affects the performance of these methods: fewer candidates27

will decrease the performance while more candidates will greatly increase computation and memory28

cost. Instead of using goal candidates, the direct-regression methods [33, 44] directly predict a set29

of trajectories based on the encoded agent feature, covering the agent’s future behavior adaptively.30

Despite the flexibility in predicting a broad range of agent behaviors, they generally converge slowly31

as various motion modes are required to be regressed from the same agent feature without utilizing32

any spatial priors. They also tend to predict the most frequent modes of training data since these33

frequent modes dominate the optimization of the agent feature. In this paper, we present a unified34

framework, namely Motion TRansformer (MTR), which takes the best of both types of methods.35

In our proposed MTR, we adopt a small set of novel motion query pairs to model motion prediction36

as the joint optimization of two tasks: The first global intention localization task aims to roughly37
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identify agent’s intention for achieving higher efficiency, while the second local movement refinement38

task aims to adaptively refine each intention’s predicted trajectory for achieving better accuracy. Our39

approach not only stabilizes the training process without depending on dense goal candidates but also40

enables flexible and adaptive prediction by enabling local refinement for each motion mode.41

Specifically, each motion query pair consists of two components, i.e., a static intention query and a42

dynamic searching query. The static intention queries are introduced for global intention localization,43

where we formulate them based on a small set of spatially distributed intention points. Each static44

intention query is the learnable positional embedding of an intention point for generating trajectory of45

a specific motion mode, which not only stabilizes the training process by explicitly utilizing different46

queries for different modes, but also eliminates the dependency on dense goal candidates by requiring47

each query to take charge of a large region. The dynamic searching queries are utilized for local48

movement refinement, where they are also initialized as the learnable embeddings of the intention49

points but are responsible for retrieving fine-grained local features around each intention point. For50

this purpose, the dynamic searching queries are dynamically updated according to the predicted51

trajectories, which can adaptively gather latest trajectory features from a deformable local region for52

iterative motion refinement. These two queries complement each other and have been empirically53

demonstrated their great effectiveness in predicting multimodal future motion. Besides that, we also54

propose a dense future prediction module. Existing works generally focus on modeling the agent55

interaction over past trajectories while ignoring the future trajectories’ interaction. To compensate for56

such information, we adopt a simple auxiliary regression head to densely predict future trajectory57

and velocity for each agent, which are encoded as additional future context features to benefit future58

motion prediction of our interested agent. The experiments show that this simple auxiliary task works59

well and remarkably improves the performance of multimodal motion prediction.60

Our contributions are three-fold: (1) We propose a novel motion decoder network with a new61

concept of motion query pair, which adopts two types of queries to model motion prediction as joint62

optimization of global intention localization and local movement refinement. It not only stabilizes63

the training with mode-specific motion query pairs, but also enables adaptive motion refinement64

by iteratively gathering fine-grained trajectory features. (2) We present an auxiliary dense future65

prediction task to enable the future interactions between our interested agent and other agents. It66

facilitates our framework to predict more scene-compliant trajectories for the interacting agents. (3)67

By adopting these techniques, we propose MTR framework that explores transformer encoder-decoder68

structure for multimodal motion prediction. Our approach achieves state-of-the-art performance69

on both the marginal and joint motion prediction benchmarks of Waymo Open Motion Dataset70

(WOMD) [13], outperforming previous best ensemble-free approaches with +8.48% mAP gains for71

marginal motion prediction and +7.98% mAP gains for joint motion prediction. As of 19 May 2022,72

our approach ranks 1st on both the marginal and joint motion prediction leaderboards of WOMD.73

2 Related Work74

Motion Prediction for Autonomous Driving. Recently, motion prediction has been extensively75

studied due to the growing interest in autonomous driving, and it typically takes road map and76

agent history states as input. To encode such scene context, early works [34, 29, 5, 11, 55, 3, 8]77

typically rasterize them into an image so as to be processed with convolutional neural networks78

(CNNs). LaneGCN [25] builds a lane graph toscalability capture map topology. VectorNet [15] is79

widely adopted by recent works [18, 40, 33, 44] due to its efficiency and scalability, where both road80

maps and agent trajectories are represented as polylines. We also adopt this vector representation,81

but instead of building global graph of polylines, we propose to adopt transformer encoder on82

local connected graph, which not only better maintains input locality structure but also is more83

memory-efficient to enable larger map encoding for long-term motion prediction.84

Given the encoded scene context features, existing works explore various strategies to model multi-85

modal future motion. Early works [1, 19, 37, 41, 38] propose to generate a set of trajectory samples86

to approximate the output distribution. Some other works [9, 20, 31, 35, 39] parameterize multi-87

modal predictions with Gaussian Mixture Models (GMMs) to generate compact distribution. HOME88

series [17, 16] generate trajectories with sampling on a predicted heatmap. IntentNet [7] considers89

intention prediction as a classification with 8 high level actions, while [27] proposes a region-based90

training strategy. Goal-based methods [56, 38, 14, 28] are another kinds of models where they first91

estimate several goal points of the agents and then complete full trajectory for each goal.92
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Figure 1: The architecture of MTR framework. (a) indicates the dense future prediction module,
which predicts a single trajectory for each agent (e.g., drawn as yellow dashed curves in the above
of (a)). (b) indicates the dynamic map collection module, which collects map elements along each
predicted trajectory (e.g., drawn as the shadow region along each trajectory in the above part of (b))
to provide trajectory-specific feature for motion decoder network. (c) indicates the motion decoder
network, where K is the number of motion query pairs, T is the number of future frames, D is hidden
feature dimension and N is the number of transformer decoder layers. The predicted trajectories,
motion query pairs, and query content features are the outputs from last decoder layer and will be
taken as input to next decoder layer. For the first decoder layer, both two components of motion
query pair are initialized as predefined intention points, the predicted trajectories are replaced with
the intention points for initial map collection, and query content features are initialized as zeros.

Recently, the large-scale Waymo Open Motion Dataset (WOMD) [13] is proposed for long-term93

motion prediction. To address this challenge, DenseTNT [18] adopts a goal-based strategy to classify94

endpoint of trajectory from dense goal points. Other works directly predict the future trajectories95

based on the encoded agent features [33] or latent anchor embedding [44]. However, the goal-based96

strategy has the efficiency concern due to a large number of goal candidates, while the direct-97

regression strategy converges slowly as the predictions of various motion modes are regressed from98

the same agent feature. In contrast, our approach adopts a small set of learnable motion query pairs,99

which not only eliminate the large number of goal candidates but also alleviate the optimization100

burden by utilizing mode-specific motion query pairs for predicting different motion modes.101

Some very recent works [42, 22, 21] also achieve top performance on WOMD by exploring Mix-and-102

Match block [42], a variant of MultiPath++ [22] or heterogeneous graph [21]. However, they generally103

focus on exploring various structures for encoding scene context, while how to design a better motion104

decoder for multimodal motion prediction is still underexplored. In contrast, our approach focuses on105

addressing this challenge with a novel transformer-based motion decoder network.106

Transformer. Transformer [45] has been widely applied in natural language processing [10, 2]107

and computer vision [12, 47, 4, 46, 53]. Our approach is inspired by DETR [4] and its follow-up108

works [58, 30, 26, 54], especially DAB-DETR [26], where the object query is considered as the109

positional embedding of a spatial anchor box. Motivated by their great success in object detection,110

we introduce a novel concept of motion query pair to model multimodal motion prediction with prior111

intention points, where each motion query pair takes charge of predicting a specific motion mode and112

also enables iterative motion refinement by combining with transformer decoders.113

3 Motion TRansformer (MTR)114

We propose Motion TRansformer (MTR), which adopts a novel transformer encoder-decoder structure115

with iterative motion refinement for predicting multimodal future motion. The overall structure is116

illustrated in Figure 1. In Sec. 3.1, we introduce our encoder network for scene context modeling. In117

Sec. 3.2, we present motion decoder network with a novel concept of motion query pair for predicting118

multimodal trajectories. Finally, in Sec. 3.3, we introduce the optimization process of our framework.119

3.1 Transformer Encoder for Scene Context Modeling120

The future behaviors of the agents highly depend on the agents’ interaction and road map. To encode121

such scene context, existing approaches have explored various strategies by building global interacting122
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graph [15, 18] or summarizing map features to agent-wise features [33, 44]. We argue that the locality123

structure is important for encoding scene context, especially for the road map. Hence, we propose a124

transformer encoder network with local self-attention to better maintain such structure information.125

Input representation. We follow the vectorized representation [15] to organize both input trajectories126

and road map as polylines. For the motion prediction of a interested agent, we adopt the agent-centric127

strategy [56, 18, 44] that normalizes all inputs to the coordinate system centered at this agent. Then,128

a simple polyline encoder is adopted to encode each polyline as an input token feature for the129

transformer encoder. Specifically, we denote the history state of Na agents as Ain ∈ NNa×t×Ca ,130

where t is the number of history frames, Ca is the number of state information (e.g., location, heading131

angle and velocity), and we pad zeros at the positions of missing frames for trajectories that have132

less than t frames. The road map is denoted as Min ∈ RNm×n×Cm , where Nm is the number of map133

polylines, n is the number of points in each polyline and Cm is the number of attributes of each point134

(e.g., location and road type). Both of them are encoded by a PointNet-like [36] polyline encoder as:135

Ap = ϕ (MLP(Ain)) , Mp = ϕ (MLP(Min)) , (1)

where MLP(·) is a multilayer perceptron network, and ϕ is max-pooling to summarize each polyline136

features as agent features Ap ∈ RNa×D and map features Mp ∈ RNm×D with feature dimension D.137

Scene context encoding with local transformer encoder. The local structure of scene context is138

important for motion prediction. For example, the relation of two parallel lanes is important for139

modelling the motion of changing lanes, but adopting attention on global connected graph equally140

considers relation of all lanes. In contrast, we introduce such prior knowledge to context encoder by141

adopting local attention, which better maintains the locality structure and are more memory-efficient.142

Specifically, the attention module of j-th transformer encoder layer can be formulated as:143

Gj = MultiHeadAttn
(

query=Gj−1 + PEGj−1 , key=κ(Gj−1) + PEκ(Gj−1), value=κ(Gj−1)
)
, (2)

where MultiHeadAttn(·, ·, ·) is the multi-head attention layer [45], G0 = [Ap,Mp] ∈ N(Na+Nm)×D144

concatenating the features of agents and map, and κ(·) denotes k-nearest neighbor algorithm to find145

k closest polylines for each query polyline. PE denotes sinusoidal position encoding of input tokens,146

where we utilize the latest position for each agent and utilize polyline center for each map polyline.147

Thanks to such local self-attention, our framework can encode a much larger area of scene context.148

The encoder network finally generates both agent features Apast ∈ RNa×D and map features M ∈149

RNm×D, which are considered as the scene context inputs of the following decoder network.150

Dense future prediction for future interactions. Interactions with other agents heavily affect behav-151

iors of our interested agent, and the pioneer works propose to model the multi-agent interactions with152

hub-host based network [59], dynamic relational reasoning [24], social spatial-temporal network [51],153

etc. However, most existing works generally focus on learning such interactions over past trajectories154

while ignoring the interactions of future trajectories. Therefore, considering that the encoded features155

A have already learned rich context information of all agents, we propose to densely predict both156

future trajectories and velocities of all agents by adopting a simple regression head on A:157

S1:T = MLP(Apast), (3)

where Si ∈ RNa×4 includes future position and velocity of each agent at time step i, and T is the158

number of future frames to be predicted. The predicted trajectories S1:T are encoded by adopting159

the same polyline encoder as Eq. (1) to encode the agents’ future states as features Afuture ∈ RNa×D,160

which are then utilized to enhance the above features A by using a feature concatenation and three161

MLP layers as A = MLP([Apast, Afuture]). This auxiliary task provides additional future context162

information to the decoder network, facilitating the model to predict more scene-compliant future163

trajectories for the interested agent. The experiments in Table 3 demonstrates that this simple and164

light-weight auxiliary task can effectively improve the performance of multimodal motion prediction.165

3.2 Transformer Decoder with Motion Query Pair166

Given the scene context features, a transformer-based motion decoder network is adopted for multi-167

modal motion prediction, where we propose motion query pair to model motion prediction as the168

joint optimization of global intention localization and local movement refinement. Each motion169

query pair contains two types of queries, i.e., static intention query and dynamic searching query,170

for conducting global intention localization and local movement refinement respectively. As shown171
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in Figure 2, our motion decoder network contains stacked transformer decoder layers for iteratively172

refining the predicted trajectories with motion query pairs. Next, we illustrate the detailed structure.173

Global intention localization aims to localize agent’s potential motion intentions in an efficient174

and effective manner. We propose static intention query to narrow down the uncertainty of future175

trajectory by utilizing different intention queries for different motion modes. Specifically, we generate176
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Figure 2: The network structure of our motion de-
coder network with motion query pair.

K representative intention points I ∈ RK×2177

by adopting k-means clustering algorithm on178

the endpoints of ground-truth (GT) trajecto-179

ries, where each intention point represents an180

implicit motion mode that considers both mo-181

tion direction and velocity. We model each182

static intention query as the learnable posi-183

tional embedding of the intention point as:184

QI = MLP (PE(I)) , (4)
where PE(·) is the sinusoidal position encod-185

ing, and QI ∈ RK×D. Notably, each in-186

tention query takes charge of predicting tra-187

jectories for a specific motion mode, which188

stabilizes the training process and facilitates189

predicting multimodal trajectories since each190

motion mode has their own learnable embed-191

ding. Thanks to their learnable and adaptive192

properties, we only need a small number of193

queries (e.g., 64 queries in our setting) for194

efficient intention localization, instead of us-195

ing densely-placed goal candidates [56, 18]196

to cover the destinations of the agents.197

Local movement refinement aims to complement with global intention localization by iteratively198

gathering fine-grained trajectory features for refining the trajectories. We propose dynamic searching199

query to adaptively probe trajectory features for each motion mode. Each dynamic searching query is200

also the position embedding of a spatial point, which is initialized with its corresponding intention201

point but will be dynamically updated according to the predicted trajectory in each decoder layer.202

Specifically, given the predicted future trajectories Y j
1:T = {Y j

i ∈ RK×2 | i = 1, · · · , T} in j-th203

decoder layer, the dynamic searching query of (j + 1)-th decoder layer is updated as follows:204

Qj+1
S = MLP

(
PE(Y j

T )
)
. (5)

As shown in Figure 3, for each motion query pair, we propose a dynamic map collection module to205

extract fine-grained trajectory features by querying map features from a trajectory-aligned local region,206

which is implemented by collecting L polylines whose centers are closest to the predicted trajectory.207

As the agent’s behavior largely depends on road maps, this local movement refinement strategy208

enables to continually focus on latest local context information for iterative motion refinement.209

Attention module with motion query pair. In each decoder layer, static intention query is utilized to210

propagate information among different motion intentions, while dynamic searching query is utilized211

to aggregate trajectory-specific features from scene context features. Specifically, we utilize static212

intention query as the position embedding of self-attention module as follows:213

Cj
sa = MultiHeadAttn(query=Cj−1 +QI , key=Cj−1 +QI , value=QI), (6)

where Cj−1 ∈ RK×D is query content features from (j − 1)-th decoder layer, C0 is initialized to214

zeros, and Cj
sa ∈ RK×D is the updated query content. Next, we utilize dynamic searching query as215

query position embedding of cross attention to probe trajectory-specific features from the outputs216

of encoder. Inspired by [30, 26], we concatenate content features and position embedding for both217

query and key to decouple their contributions to the attention weights. Two cross-attention modules218

are adopted separately for aggregating features from both agent features A and map features M as:219

Cj
A = MultiHeadAttn(query=[Cj

sa, Q
j
S ], key=[A,PEA], value=A),

Cj
M = MultiHeadAttn(query=[Cj

sa, Q
j
S ], key=[α(M),PEα(M)], value=α(M)), (7)

Cj = MLP([Cj
A, C

j
M ])
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where [·, ·] indicates feature concatenation, α(M) is the aforementioned dynamic map collection220

module to collect L trajectory-aligned map features for motion refinement. Note that for simplicity, in221

Eq. (6) and (7), we omit the residual connection and feed-forward network in transformer layer [45].222

Finally, Cj ∈ RK×D is the updated query content features for each motion query pair in j-th layer.223

Multimodal motion prediction with Gaussian Mixture Model. For each decoder layer, we append224

a prediction head to Cj for generating future trajectories. As the behaviors of the agents are highly225

multimodal, we follow [9, 44] to represent the distribution of predicted trajectories with Gaussian226

Mixture Model (GMM) at each time step. Specifically, for each future time step i ∈ {1, · · · , T}, we227

predict the probability p and parameters (µx, µy, σx, σy, ρ) of each Gaussian component as follows228

Zj
1:T = MLP(Cj), (8)

where Zj
i ∈ RK×6 includes K Gaussian components N1:K(µx, σx;µy, σy; ρ) with probability distri-229

bution p1:K. The predicted distribution of agent’s position at time step i can be formulated as:230

P j
i (o) =

K∑
k=1

pk · Nk(ox − µx, σx; oy − µy, σy; ρ). (9)

where P j
i (o) is the occurrence probability of the agent at spatial position o ∈ R2. The predicted231

trajectories Y j
1:T can be generated by simply extracting the predicted centers of Gaussian components.232

3.3 Training Losses233

Our model is trained end-to-end with two training losses. The first auxiliary loss is L1 regression loss234

to optimize the outputs of Eq. (3). For the second Gaussian regression loss, we adopt negative log-235

likelihood loss according to Eq. (9) to maximum the likelihood of ground-truth trajectory. Inspired236

by [9, 44], we adopt a hard-assignment strategy that selects one closest motion query pair as positive237

Gaussian component for optimization, where the selection is implemented by calculating the distance238

between each intention point and the endpoint of GT trajectory. The Gaussian regression loss is239

adopted in each decoder layer, and the final loss is the sum of the auxiliary regression loss and all the240

Gaussian regression loss with equal loss weights. Please refer to appendix for more loss details.241

4 Experiments242

4.1 Experimental Setup243

Dataset and metrics. We evaluate our approach on the large-scale Waymo Open Motion Dataset244

(WOMD) [13], which mines interesting interactions from real-world traffic scenes and is currently245

the most diverse interactive motion dataset. There are two tasks in WOMD with separate evaluation246

metrics: (1) The marginal motion prediction challenge that independently evaluates the predicted247

motion of each agent (up to 8 agents per scene). (2) The joint motion prediction challenge that needs248

to predict the joint future positions of 2 interacting agents for evaluation. Both of them provide 1249

second of history data and aim to predict 6 marginal or joint trajectories of the agents for 8 seconds250

into the future. There are totally 487k training scenes, and about 44k validation scenes and 44k testing251

scenes for each challenge. We utilize the official evaluation tool to calculate the evaluation metrics,252

where the mAP and miss rate are the most important ones as in the official leaderboard[49, 48].253
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Table 1: Performance comparison of marginal motion prediction on the validation and test set of
Waymo Open Motion Dataset. †: The results are shown in italic for reference since their performance
is achieved with model ensemble techniques. We only evaluate our default setting MTR on the test
set by submitting to official test server due to the limitation of submission times of WOMD.

Method Reference minADE ↓ minFDE ↓ Miss Rate ↓ mAP ↑

Test

MotionCNN [23] CVPRw 2021 0.7400 1.4936 0.2091 0.2136
ReCoAt [57] CVPRw 2021 0.7703 1.6668 0.2437 0.2711
DenseTNT [18] ICCV 2021 1.0387 1.5514 0.1573 0.3281
SceneTransformer [33] ICLR 2022 0.6117 1.2116 0.1564 0.2788
MTR (Ours) - 0.6050 1.2207 0.1351 0.4129
†MultiPath++ [44] ICRA 2022 0.5557 1.1577 0.1340 0.4092
†MTR-Advanced-ens (Ours) - 0.5640 1.1344 0.1160 0.4492

Val
MTR (Ours) - 0.6046 1.2251 0.1366 0.4164
MTR-e2e (Ours) - 0.5160 1.0404 0.1234 0.3245
†MTR-ens (Ours) - 0.5686 1.1534 0.1240 0.4323
†MTR-Advanced-ens (Ours) - 0.5597 1.1299 0.1167 0.4551

Table 2: Performance comparison of joint motion prediction on the interactive validation and test set
of Waymo Open Motion Dataset.

Method Reference minADE ↓ minFDE ↓ Miss Rate ↓ mAP ↑

Test

Waymo LSTM baseline [13] ICCV 2021 1.9056 5.0278 0.7750 0.0524
HeatIRm4 [32] CVPRw 2021 1.4197 3.2595 0.7224 0.0844
AIR2 [50] CVPRw 2021 1.3165 2.7138 0.6230 0.0963
SceneTransformer [33] ICLR 2022 0.9774 2.1892 0.4942 0.1192
M2I [40] CVPR 2022 1.3506 2.8325 0.5538 0.1239
MTR (Ours) - 0.9181 2.0633 0.4411 0.2037

Val MTR (Ours) - 0.9132 2.0536 0.4372 0.1992

Implementation details. For the context encoding, we stack 6 transformer encoder layers. The254

road map is represented as multiple polylines, where each polyline contains up to 20 map points255

(about 10m in WOMD). We select Nm = 768 nearest map polylines around the interested agent.256

The number of neighbors in encoder’s local self-attention is set to 16. The hidden feature dimension257

is set as D = 256. For the decoder modules, we stack 6 decoder layers. L is set to 128 to collect the258

closest map polylines from context encoder for motion refinement. By default, we utilize 64 motion259

query pairs where their intention points are generated by conducting k-means clustering algorithm on260

the training set. To generate 6 future trajectories for evaluation, we use non-maximum suppression261

(NMS) to select top 6 predictions from 64 predicted trajectories by calculating the distances between262

their endpoints, and the distance threshold is set as 2.5m. Please refer to Appendix for more details.263

Training details. Our model is trained in an end-to-end manner by AdamW optimizer with a learning264

rate of 0.0001 and batch size of 80 scenes. We train the model for 60 epochs with 8 GPUs (NVDIA265

RTX 8000), and the learning rate is decayed by a factor of 0.5 every 5 epochs from epoch 30. The266

weight decay is set as 0.01 and we do not use any data augmentation.267

MTR-e2e for end-to-end motion prediction. We also propose an end-to-end variant of MTR, called268

MTR-e2e, where only 6 motion query pairs are adopted so as to remove NMS post processing. In the269

training process, instead of using static intention points for target assignment as in MTR, MTR-e2e270

selects positive mixture component by calculating the distances between its 6 predicted trajectories271

and the GT trajectory, since 6 intention points are too sparse to well cover all potential future motions.272

4.2 Main Results273

Performance comparison for marginal motion prediction. Table 1 shows our main results for274

marginal motion prediction, our MTR outperforms previous ensemble-free approaches [18, 33] with275

remarkable margins, increasing the mAP by +8.48% and decreasing the miss rate from 15.64% to276

13.51%. In particular, our single-model results of MTR also achieve better mAP than the latest work277

MultiPath++ [44], where it uses a novel model ensemble strategy that boosts its performance.278

Table 1 also shows the comparison of MTR variants. MTR-e2e achieves better minADE and minFDE279

by removing NMS post-processing, while MTR achieves better mAP since it learns explicit meaning280

of each motion query pair that produces more confident intention predictions. We also propose a281

simple model ensemble strategy to merge the predictions of MTR and MTR-e2e and utilize NMS282

to remove redundant predictions (denoted as MTR-ens), and it takes the best of both models and283

achieves much better mAP. By adopting such ensemble strategy to 7 variants of our framework (e.g.,284
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Table 3: Effects of different components in MTR framework. All models share the same encoder
network. “latent learnable embedding” indicates using 6 latent learnable embeddings as queries of
decoder network, and “iterative refinement” indicates using 6 stacked decoders for motion refinement.

Global Intention
Localization

Iterative
Refinement

Local Movement
Refinement

Dense Future
Prediction minADE ↓ minFDE ↓ Miss Rate ↓ mAP ↑

Latent learnable embedding × × × 0.6829 1.4841 0.2128 0.2633
Static intention query × × × 0.7036 1.4651 0.1845 0.3059
Static intention query ✓ × × 0.6919 1.4217 0.1776 0.3171
Static intention query ✓ ✓ × 0.6833 1.4059 0.1756 0.3234
Static intention query ✓ × ✓ 0.6735 1.3847 0.1706 0.3284
Static intention query ✓ ✓ ✓ 0.6697 1.3712 0.1668 0.3437

6 16 32 64 100
Number of Motion Query Pairs

0.20
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Figure 4: MTR framework with different number of mo-
tion query pairs, and two different colored lines demon-
strate different strategies for selecting the positive mix-
ture component during training process.

Table 4: Effects of local self-attention in
transformer encoder. “#polyline” is the
number of input map polylines used for
context encoding, and a large number of
polylines indicate that there is a larger
map context around the interested agent.
“OOM” indicates running out of memory.

Attention #Polyline minADE ↓ minFDE ↓ MR ↓ mAP ↑
Global 256 0.683 1.4031 0.1717 0.3295
Global 512 0.6783 1.4018 0.1716 0.3280
Global 768 OOM OOM OOM OOM
Local 256 0.6724 1.3835 0.1683 0.3372
Local 512 0.6707 1.3749 0.1670 0.3392
Local 768 0.6697 1.3712 0.1668 0.3437
Local 1024 0.6757 1.3782 0.1663 0.3452

more decoder layers, different number of queries, larger hidden dimension), our advanced ensemble285

results (denoted as MTR-Advanced-ens) achieve best performance on the test set leaderboard.286

Performance comparison for joint motion prediction. To evaluate our approach for joint motion287

prediction, we combine the marginal predictions of two interacting agents into joint prediction as288

in [6, 13, 40], where we take the top 6 joint predictions from 36 combinations of these two agents.289

The confidence of each combination is the product of marginal probabilities. Table 2 shows that290

our approach outperforms state-of-the-arts [33, 40] with large margins on all metrics. Particularly,291

our MTR boosts the mAP from 12.39% to 20.37% and decreases the miss rate from 49.42% to292

44.11%. The remarkable performance gains demonstrate the effectiveness of MTR for predicting293

scene-consistent future trajectories. Besides that, we also provide some qualitative results in Figure 5294

to show our predictions in complicated interacting scenarios.295

As of May 19, 2022, our MTR ranks 1st on the motion prediction leaderboard of WOMD for both296

two challenges [49, 48]. The significant improvements manifest the effectiveness of MTR framework.297

4.3 Ablation Study298

We study the effectiveness of each component in MTR. For efficiently conducting ablation experi-299

ments, we uniformly sampled 20% frames (about 97k scenes) from the WOMD training set according300

to their default order, and we empirically find that it has similar distribution with the full training set.301

All models are evaluated with marginal motion prediction metric on the validation set of WOMD.302

Effects of the motion decoder network. We study the effectiveness of each component in our303

decoder network, including global intention localization, iterative refinement and local movement304

refinement. Table 3 shows that all components contributes remarkably to the final performance305

in terms of the official ranking metric mAP. Especially, our proposed static intention queries with306

intention points achieves much better mAP (i.e., +4.26%) than the latent learnable embeddings307

thanks to its mode-specific querying strategy, and both the iterative refinement and local movement308

refinement strategy continually improve the mAP from 30.59% to 32.34% by aggregating more309

fine-grained trajectory features for motion refinement.310

Effects of dense future prediction. Table 3 shows that our proposed dense future prediction module311

significantly improves the quality of predicted trajectories (e.g., +1.78% mAP), which verifies that312

future interactions of the agents’ trajectories are important for motion prediction and our proposed313

strategy can learn such interactions to predict more reliable trajectories.314
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(a) V2 is passing the intersection to turn left
with high speed. Our model predicts multimodal
behaviors for V1: turn left or make a U-turn. In
any case, V1 is predicted to yield for V2.

t+0s

t+8s

low
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(b) P2 is passing the road through the
crosswalk while V1 is on the right-turn lane
to turn right. Both V1 and V3 are predicted
to yield for P2.

(c) Our model predicts multimodal behaviors for V1: go
straight and turn right, since it still has a distance to the
intersection. V2 is predicted to yield for V1 when turning
left, since V1 is moving fast towards the intersection.

Figure 5: Qualitative results of MTR framework on WOMD. There are two interested agents in each
scene (green rectangle), where our model predicts 6 multimodal future trajectories for each of them.
For other agents (blue rectangle), a single trajectory is predicted by dense future prediction module.
We use gradient color to visualize the trajectory waypoints at different future time step, and trajectory
confidence is visualized by setting different transparent. Abbreviation: Vehicle (V), Pedestrian (P).

Effects of local attention for context encoding. Table 4 shows that by taking the same number of315

map polylines as input, local self-attention in transformer encoder achieves better performance than316

global attention (i.e., +0.77% mAP for 256 polylines and +1.12% mAP for 512 polylines), which317

verifies that the input local structure is important for motion prediction and introducing such prior318

knowledge with local attention can benefit the performance. More importantly, local attention is more319

memory-efficient and the performance keeps growing when improving the number of map polylines320

from 256 to 1,024, while global attention will run out of memory due to its quadratic complexity.321

Effects of the number of motion query pairs with different training strategies. As mentioned322

before, during training process, MTR and MTR-e2e adopt two different strategies for assigning323

positive mixture component, where MTR depends on static intention points (denoted as α) while324

MTR-e2e utilizes predicted trajectories (denoted as β). Figure 4 investigates the effects of the number325

of motion query pairs under these two strategies, where we have the following observations: (1)326

When increasing the number of motion query pairs, strategy α achieves much better mAP and miss327

rate than strategy β. Because intention query points can ensure more stable training process since328

each intention query points is responsible to a specific motion mode. In contrast, strategy β depends329

on unstable predictions and the positive component may randomly switch among all components,330

so a large number of motion query pairs are hard to be optimized with strategy β. (2) The explicit331

meaning of each intention query point also illustrates the reason that strategy α consistently achieves332

much better mAP than strategy β, since it can predict trajectories with more confident scores to333

benefit mAP metric. (3) From another side, when decreasing the number of motion query pairs, the334

miss rate of strategy α greatly increases, since a limit number of intention query points can not well335

cover all potential motions of agents. Conversely, strategy β works well for a small number of motion336

query pairs since its queries are not in charge of specific region and can globally adapt to any region.337

5 Conclusion338

In this paper, we present MTR, a novel framework for multimodal motion prediction. The motion339

query pair is defined to model motion prediction as the joint optimization of global intention localiza-340

tion and local movement refinement. The global intention localization adopts a small set of learnable341

static intention queries to efficiently capture agent’s motion intentions, while the local movement re-342

finement conducts iterative motion refinement by continually probing fine-grained trajectory features.343

The experiments on both marginal and joint motion prediction challenges of large-scale WOMD344

dataset show that our approach achieves state-of-the-art performance.345

Limitations. The proposed framework adopts an agent-centric strategy to predict multimodal346

future trajectories for one interested agent, which leads to redundant context encoding if there are347

multiple interested agents in the same scene. Although the dense future prediction module partially348

compensates for this limitation, it can only predict a single future trajectory for each agent. Hence, how349

to develop a joint motion prediction framework that can simultaneously predict multimodal motion for350

multiple agents is one important future work. Besides, the rule-based NMS post-processing can result351

in suboptimal predictions for minADE and minFDE metrics, and how to develop a learning-based352

module to produce a required number of future trajectories (e.g., 6 trajectory) from full multimodal353

predictions (e.g., 64 predictions) is also worth exploring for a more robust framework.354
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