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Abstract

Pruning is an effective way to reduce the huge inference cost of large Transformer1

models. However, prior work on model pruning requires retraining the model.2

This can add high cost and complexity to model deployment, making it difficult to3

use in many practical situations. To address this, we propose a fast post-training4

pruning framework for Transformers that does not require any retraining. Given5

a resource constraint and a sample dataset, our framework automatically prunes6

the Transformer model using structured sparsity methods. To retain high accuracy7

without retraining, we introduce three novel techniques: (i) a lightweight mask8

search algorithm that finds which heads and filters to prune based on the Fisher9

information; (ii) mask rearrangement that complements the search algorithm; and10

(iii) mask tuning that reconstructs the output activations for each layer. We apply11

our method to BERTBASE and DistilBERT, and we evaluate its effectiveness on12

GLUE and SQuAD benchmarks. Our framework achieves up to 2.0⇥ reduction in13

FLOPs and 1.56⇥ speedup in inference latency, while maintaining < 1% loss in14

accuracy. Importantly, our framework prunes Transformers in less than 3 minutes15

on a single GPU, which is over two orders of magnitude faster than existing pruning16

approaches that retrain. Our code will be publicly available at GitHub.17

1 Introduction18

In recent years, Transformer [74] has become a de facto standard model architecture in Natural19

Language Processing [11, 44, 4], and it is becoming common in Computer Vision [13, 73, 46] and20

Speech Recognition [2, 24, 7] as well. However, efficient deployment of Transformer architectures21

has been challenging due to their large model size and high latency. To address this, structured22

pruning has become a promising technique for efficient Transformer deployment.23

While prior work on pruning Transformers substantially reduces inference time, it is often difficult to24

use in practice for several reasons. First, previous approaches require retraining the pruned model25

and/or jointly learning the pruning configurations during training. For instance, Block Movement26

Pruning [36] increases the training time by 10⇥ for pruning. Such additional training adds significant27

computational overhead, given the large training cost of Transformers. Second, previous methods28

add many moving parts to the model deployment process. Pruning pipelines are often complex and29

involve additional hyperparameter tuning. For instance, ROSITA [45] uses a three-stage knowl-30

edge distillation [22] with sophisticated pruning schedules. Such techniques demand significant31

engineering efforts for reproducing and debugging, which impedes their adoption in production32

pipelines. Third, these previous methods do not directly adapt to the users’ constraints. They either33

rely on vague regularization hyperparameters or fixed architectures selected independently of the user34

settings. This can result in sub-optimal models not tailored for the given constraint and hardware.35
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Figure 1: (a) Prior pruning frameworks require additional training on the entire training set and
involve user intervention for hyperparameter tuning. This complicates the pruning process and
requires a large amount of time (e.g., ⇠20 hours). (b) Our pruning framework does not require
retraining. It outputs pruned Transformer models satisfying the FLOPs/latency constraints within
much less time (e.g., ⇠3 minutes), without user intervention.

To address these limitations, we propose a fast post-training pruning framework for Transformers36

that does not require any retraining of the models. As illustrated in Figure 1, our framework takes37

as input a Transformer model, a sample dataset, and a FLOPs/latency constraint. It then outputs a38

pruned Transformer model that can be deployed immediately. By avoiding expensive retraining, the39

end-to-end compression pipeline can be extremely fast and simplified, typically in a few minutes,40

without any user interventions that complicate the whole process.41

Indeed, post-training compression has been widely studied for quantization, and it gained consid-42

erable attention in both academia and industry [3, 92, 26]. Although quantization-aware training43

methods achieve higher compression rates in general, post-training quantization (PTQ) has often44

been more preferred in practice due to its retraining-free advantage. PTQ allows quantization to45

happen seamlessly when deploying models through the various frameworks such as TensorRT [53],46

TFLite [17], and OpenVINO [28]. Similar to these PTQ frameworks, our framework provides an47

out-of-the-box tool that enables pruning of Transformers without engineering efforts.48

Our contributions can be summarized as follows:49

• We propose a novel post-training pruning framework for Transformers that does not require model50

retraining. To retain accuracy without retraining, our framework consists of three stages of: (i)51

the mask search process guided by the Fisher information matrix to find which heads/filters to52

prune (Section 4.1); (ii) the mask rearrangement process that rearranges the pruned heads/filters by53

capturing intra-layer interactions (Section 4.2); and (iii) the mask tuning process that adjusts the54

mask variables to ensure that the output signal is recovered for each layer (Section 4.3).55

• We extensively test our framework by applying it to BERTBASE and DistilBERT on GLUE and56

SQuAD tasks (Section 5.2). With 1% of accuracy drop, our framework reduces 30–50% of the57

original FLOPs (Figure 4), resulting in up to 1.56⇥ speedup on an NVIDIA V100 GPU (Table 3).58

• We show that our method achieves comparable or even better FLOPs-accuracy trade-off than prior59

structured pruning methods without retraining (Section 5.3, Figure 5). Our end-to-end pruning60

finishes in only 39 and 135 seconds on average for GLUE and SQuAD (Section 5.4, Table 5),61

which is over 100⇥ faster than the retraining methods.62

2 Related Works63

Efficient Transformers. In order to improve the inference speed and reduce the memory footprint of64

Transformers, multiple different approaches have been proposed. These can be broadly categorized65

as follows: (i) efficient architecture design [37, 34, 69, 79, 27, 85]; (ii) hardware-software co-66

design [18, 78, 19, 70]; (iii) knowledge distillation [60, 30, 80, 68]; (iv) quantization [91, 63, 90, 32];67

(v) neural architecture search [77, 87, 65, 64, 6, 89]; and (vi) pruning. In this paper, we only focus on68

pruning and briefly discuss the related works.69

Transformers Pruning. Pruning has been a popular choice for reducing unimportant weights in70

Transformers. Pruning can be largely categorized into unstructured and structured pruning. For71

unstructured pruning, magnitude-based pruning [16], the lottery-ticket hypothesis [15, 55, 8, 9],72
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movement pruning [61] have been explored for Transformers. While these methods compress the73

model size, commodity hardware cannot take advantage of the unstructured sparsity for speedup.74

For this reason, a number of structured pruning methods have been introduced to remove structured75

sets of parameters. For example, [49, 75] drop attention heads in multi-head attention layers. Another76

thread of work prunes entire Transformer blocks based on a simple heuristic [59] or an adaptive77

training using a layer-wise dropout method [14]. Relatedly, [81] structurally prunes weight matrices78

via low-rank factorization and l0 regularization; [31, 42] attempt to jointly prune attention heads and79

filters of weight matrices; and [47, 23] take a step further by dynamically determining the pruning80

configurations at run time. Recent block pruning schemes chunk weight matrices into blocks and81

prune them based on group Lasso [41], adaptive regularization [88], and movement pruning [36].82

While the structured pruning techniques have achieved high compression rates and speedups, the83

improvement largely attributes to retraining of the models during or after pruning, often combined84

with knowledge distillation. However, model retraining introduces several practical problems. Most85

notably, retraining in general increases training time significantly. For instance, Block Movement86

Pruning (BMP) [36], a state-of-the-art structured Transformer pruning method, requires 10⇥ longer87

training time than normal fine-tuning. In addition, the extra hyperparameters introduced by the88

pruning methods add additional moving parts and lead to increased training cost.89

Post-training Model Compression. Post-training compression methods have been widely studied90

in quantization. These methods, categorized as post-training quantization (PTQ), perform quanti-91

zation without any retraining, thereby minimizing the training cost and user intervention. Multiple92

approaches have been proposed for PTQ in order to mitigate the accuracy degradation without re-93

training, including analytic computation of optimal clipping ranges [3], outlier channel splitting [92],94

and adaptive rounding methods [51, 26].95

Although not as much as for quantization, post-training schemes have also been explored for unstruc-96

tured [25, 38] and structured pruning. For structured pruning, Srinivas and Babu [67] propose to97

detect and merge similar convolution filters iteratively, and Neuron Merging [33] compensates for the98

information loss due to pruning by merging similar neurons based on cosine distance. While these99

methods are effective for CNNs, their applicability is limited to models with simple architectures,100

and they rely on the characteristics of ReLU nonlinearity [25, 33]. Hence, the prior methods cannot101

be extended to the general Transformer architectures.102

3 Overview103

3.1 Background104

Transformer Architecture. In this paper, we focus on the pruning of encoder-based Transformer [74]105

models, especially the BERT [11] architecture family. BERT is a stack of homogeneous Transformer106

encoder blocks, each of which consists of a multi-head attention (MHA) layer followed by a point-107

wise Feed-Forward Network (FFN) layer. Specifically, an MHA layer consists of H independently108

parameterized attention heads:109

MHA(x) =
HX

i=1

Atti(x), xMHA = LN
�
x + MHA(x)

�
,

where Att is a dot product attention head, LN is layer normalization, and x is the input sequence. The110

output of the MHA layer is then fed into the FFN layer, which consists of N filters:111

FFN(x) =
� NX

i=1

W(2)
:,i �(W

(1)
i,: x + b

(1)
i
)
�
+ b

(2)
, xout = LN

�
xMHA + FFN(xMHA)

�
,

where W(1)
,W(2)

, b
(1) and b

(2) are the FFN parameters, and � is the activation function, typically112

GELU [21]. Note that (H , N ) is (12, 3072) for BERTBASE, and (16, 4096) for BERTLARGE. We also113

denote L as the number of Transformer layers.114

Granularity of Pruning. Our framework considers the structured pruning of both heads in MHA and115

filters in FFN layers. We do not prune the embedding and the final classifier, as computation of those116

layers takes a negligible portion of the total inference latency. Since our pruning framework always117

produces a smaller dense architecture, the model can be readily accelerated without the need for118

specialized hardware logic, which is often required to gain latency speedup for unstructured sparsity.119
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Figure 2: Overview of our pruning framework. (a) The mask variables are initialized as 1. Then they
undergo the three-stage pipeline of (b) mask search (Section 4.1), (c) rearrangement (Section 4.2),
and (d) tuning (Section 4.3).

Notations. For mathematical simplicity, we introduce mask variables associated with the outputs of120

heads and filters:121

MHA(x;mMHA
l

) =
HX

i=1

m
MHA
l,i

� Atti(x), FFN(x;mFFN
l

) =
� NX

i=1

m
FFN
l,i

� W(2)
:,i �(W

(1)
i,: x + b

(1)
i
)
�
+ b

(2)
,

where mMHA
l

2 RH and mFFN
l

2 RN are the mask variables for MHA and FFN in the l-th layer,122

respectively, and m
MHA
l,i

and m
FFN
l,i

are their i-th elements. Furthermore, � denotes Hadamard product.123

Originally, the mask variables are initialized to 1. Zeroing out a mask variable is equivalent to pruning124

a head/filter associated with it. That is, setting m
MHA
l,i

and m
MHA
l,i

as zero is equivalent to pruning the125

i-th head and filter, respectively.126

Overall, there are HL head mask variables and NL filter mask variables, summing up to (H +N)L127

number of total mask variables in a Transformer model. To simplify notations, we additionally define128

mMHA 2 RHL, mFFN 2 RNL, and m 2 R(H+N)L as the flattened vectors of the head, filter, and total129

mask variables, respectively, across all layers. In what follows, we discuss how to find the optimal130

sparse masks under a given cost constraint and how to adjust their values to recover accuracy.131

3.2 Framework Overview132

Figure 1(b) and Figure 2 illustrate the overview of our framework.133

Inputs. Our framework has 3 inputs: a Transformer model; a sample dataset; and a resource constraint.134

The input Transformer model should contain weights fine-tuned for a downstream task. The sample135

dataset is a small partition of the training dataset (typically 1–2K examples) of the downstream task.136

The resource constraint can be given either as the number of floating point operations (FLOPs) or as137

an actual latency on target hardware. In the later case, we further assume that a latency lookup table138

for the target hardware is provided.139

Compression Pipeline. As illustrated in Figure 2, our framework consists of 3 stages: Fisher-140

based mask search; Fisher-based mask rearrangement; and mask tuning. During the Fisher-based141

mask search stage (Section 4.1), we search for a binary mask applied to the heads and filters by142

incorporating the Fisher information of the mask variables. Intuitively, the mask variables with143

relatively higher Fisher information are considered more important, and they should be less likely144

to be pruned [39, 50, 43]. As finding the optimal mask that minimizes the Fisher information loss145

is intractable using the full Fisher matrix, we propose a lightweight search algorithm that finds the146

optimal mask under reasonable approximations. Second, in the Fisher-based mask rearrangement147

stage (Section 4.2), the framework modifies the searched mask patterns in a layer-wise manner to148

better take into account the intra-layer interactions of the mask variables. Lastly, in the mask tuning149

stage (Section 4.3), the framework tunes the nonzero mask variables to recover the accuracy drop by150

reconstructing the layer-wise output signal.151

4 Methodology152

We pose the pruning problem as finding a binary mask to zero out a particular head or filter. After153

finding the initial set of mask variables, we then allow adaptation/tuning of the remaining mask154

variables to avoid changes in the output norm of a layer. This process is done without any retraining.155

Note that the number of the mask variables is much less than the number of the parameters in a156

Transformer (e.g., 37K vs. 110M in case of BERTBASE). This allows the framework to use only a small157
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number of examples without overfitting to the sample dataset, and thus to be extremely faster than158

the retraining-based pruning methods which typically use the entire dataset. As the framework keeps159

the model “as is” and only decides the mask variables, we henceforth regard the model parameters as160

constants and consider the mask variables as the only parameters for our pruning problem.161

Problem Formulation. We formulate Transformer pruning as a constrained optimization problem162

on the mask m:163

argmin
m

L(m) s.t. Cost(m)  C (1)

where L denotes the loss function, Cost is the FLOPs/latency of the architecture pruned by the mask,164

and C is the given FLOPs/latency constraint. Unfortunately, such a problem is generally intractable165

as Cost is usually a function of l0-norm of the mask m, which is non-differentiable. Thus, in what166

follows, we introduce several assumptions and approximations to simplify the problem.167

We start by approximating the loss function using the second-order Taylor expansion around the168

initial mask 1:169

L(m) ⇡ L(1)� g|(1� m) +
1

2
(1� m)|H(1� m) (2)

⇡ L(1) + 1

2
(1� m)|H(1� m), (3)

where g = E[ @

@mL(1)] and H = E[ @
2

@m2L(1)]. Eq. 3 is deduced from an assumption that the model170

has converged to a local minima, where the gradient term is close to 0 [39]. As L(1) is a constant, we171

can rewrite the optimization objective as follows:172

argmin
m

L(m) ⇡ argmin
m

(1� m)|H(1� m). (4)

Eq. 4 shows that the optimal mask is determined by the Hessian of the loss with respect to the mask173

variables. Since forming the exact Hessian matrix explicitly is infeasible, we approximate the Hessian174

H with the empirical Fisher information matrix I of the mask variables:175

I :=
1

|D|
X

(x,y)2D

� @

@m
L(x, y; 1)

�� @

@m
L(x, y; 1)

�|
, (5)

where D is the sample dataset and (x, y) is a tuple of an input example and its label.176

4.1 Fisher-Based Mask Search177

Diagonal Approximation of Fisher Information Matrix. It is intractable to solve the optimization178

objective in Eq. 4 using the full empirical Fisher information matrix I . Thus, we first make a simple179

assumption that I is diagonal. This further simplifies Eq. 4 as follows:180

argmin
m

L(m) ⇡ argmin
m

X

i

(1�mi)
2Iii, (6)

Since we restrict the possible mask values to either 0 or 1, the following can be derived from Eq. 6:181

argmin
m

L(m) ⇡ argmin
m

X

i2Z(m)

Iii where Z(m) := {i |mi = 0}. (7)

We can interpret the diagonal element of I as the importance score of the head/filter associated with182

each mask variable, and Eq. 7 as a process of minimizing the total importance scores of the pruned183

heads and filters. Such an importance score has also been introduced in [72, 50] to guide pruning.184

Solving FLOPs-constrained Problem. We need to solve Eq. 7 given a cost constraint. For a given185

target FLOP cost, denoted by C, we can formulate the binary mask search problem as follows:186

argmin
m

X

i2Z(m)

Iii s.t. Fhead||mMHA||0 + Ffilter||mFFN||0  C, (8)

where Fhead 2 R and Ffilter 2 R are the FLOPs for computing a head and a filter, respectively. Note187

that the number of FLOPs of a head/filter is constant across all layers. While such an optimization188
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Algorithm 1 Mask Search with a FLOPs Constraint
Input: FLOPs constraint C, diagonal Fisher information matrix I
1: for n = 0 to HL do . # remaining heads
2: k1 = HL� n . # heads to prune
3: HI = indicies of k1 least important heads
4: f = b(C � nFhead)/Ffilterc . # remaining filters
5: k2 = NL� f . # filters to prune
6: FI = indicies of k2 least important filters
7: S[n] =

P
i2HI[FI Iii, R[n] = (HI, FI)

8: end for

9: n
⇤ = argminn S[n] . optimal # remaining heads

10: HI⇤, FI⇤ = R[n⇤] . indicies of heads/filters to prune
11: Initialize mMHA and mFFN as 1
12: mMHA[HI⇤] = 0, mFFN[FI⇤] = 0 . prune the selected heads and filters
Output: m⇤ = (mMHA, mFFN)

problem can be generally solved by a knapsack algorithm [1, 62], the following observations allow a189

simpler and faster solution: (1) having more heads and filters unpruned always optimizes Eq. 8 since190

the diagonal elements of I are non-negative; and (2) if a certain number of heads needs to be pruned,191

they should be the ones with the lowest importance scores because each head accounts for the same192

amount of FLOPs. The same statement also holds for pruning filters. These lead to our mask search193

algorithm described in Algorithm 1.194

Algorithm 1 partitions the solution space by the number of remaining heads in the pruned architecture195

(n in line 1). For each n, by observation (1), the number of remaining neurons should be as line 4.196

Then by observation (2) the heads/filters with the lowest important scores are selected to be pruned.197

S[n] is the evaluation of Eq. 8 with this mask. When the loop terminates, the output is the mask with198

the smallest S[n]. In Section A.1, we prove that the output mask m⇤ of Algorithm 1 is optimal. That199

is, any other mask m satisfying the given FLOPs constraint will have a higher loss:200
X

i2Z(m⇤)

Iii 
X

i2Z(m)

Iii. (9)

Solving Latency-constrained Problem. If the cost constraint is given in terms of an actual latency201

on target hardware, we have a new cost constraint formula in the optimization target in Eq. 8:202

LX

l=1

LAT(mMHA
l

) +
LX

l=1

LAT(mFFN
l

)  C, (10)

where the function LAT indicates the latency of a MHA/FFN layer after pruning. We assume that a203

latency lookup table on the target hardware is provided so that evaluating LAT takes negligible time.204

Unfortunately, the latency constraint makes the problem more challenging such that it cannot be205

solved by directly applying Algorithm 1. This is because LAT is not linear to the number of remaining206

heads or filters after pruning [56], as shown in Figure 3 (Left). We can interpret this as follows: (1)207

with a sufficient number of heads/filters in a layer, the hardware resources such as parallel cores208

can be fully utilized, resulting in latency roughly proportional to the number of heads/filters; and209

(2) otherwise, the hardware is underutilized and a constant overhead dominates the latency [35, 48].210

Thus, pruning more heads/filters below a certain threshold does not translate into actual speedup.211

# Heads/Filters

La
te

nc
y

T

=

Slop
e = A

Figure 3: (Left) Real latency of a single FFN layer with dif-
ferent numbers of remaining filters. (Right) Schematic plot
for the approximated latency as a piece-wise linear function.

Based on the above analysis, we ap-212

proximate LAT as a piece-wise linear213

function as in Figure 3 (Right) such that214

LAT(ml) is 0 if ||ml||0 = 0, c if 0 <215

||ml||0  T , and a(||ml||0 � T ) + c if216

||ml||0 > T , where c 2 R is the con-217

stant overhead, T 2 N is the threshold218

number of heads/filters that the latency219

starts to be linear, and a 2 R is the220

slope of the linear part. This can be eas-221

ily obtained by fitting the actual latency222

in the lookup table with the minimum223

mean squared error.224
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This LAT approximation allows us to extend Algorithm 1 to solving the problems with latency225

constraints. The core idea is to consider separately the constant part of LAT and the linear part of226

LAT; after handling the constant part, we can apply the Algorithm 1 to the linear part. The detailed227

modification to Algorithm 1 is described in Section A.2.228

4.2 Fisher-based Mask Rearrangement229

Block Diagonal Approximation of Fisher Information Matrix. Although it simplifies the problem,230

the diagonal assumption in Section 4.1 alone might not find the best solution, as it does not take into231

account the interactions between different mask variables. We can better capture the interactions232

by using a block diagonal approximation to the Fisher operator, where a block corresponds to a233

MHA layer or a FFN layer. However, the block diagonal approximation results in an intractable234

optimization problem over the binary mask. To alleviate this, we use the results from the previous235

step to warm start the optimization problem with the block-diagonal approximation. That is, given236

the mask m⇤ obtained in Section 4.1, we constrain ||ml||0 to be equal to ||m⇤
l
||0 for all layers l.237

Given the two assumptions, that (i) there is no interaction between the mask variables in different238

layers (i.e., the block diagonal approximation), and (ii) the number of pruned heads/filters are pre-239

determined for each layer (i.e., warm-start), Eq. 4 breaks down to a set of layer-wise optimization240

problems, as follows based on the derivation in Section A.3:241

m̂l = argmin
ml

(1� ml)
|Il(1� ml), (11)

where Il is the l-th diagonal block of I. This can be approximately solved by greedily exploring the242

possible binary masks for ml since ||ml||0 is fixed. Because this process does not change the number243

of heads/filters in each layer, the searched mask leads to the same FLOPs/latency as the one obtained244

in Section 4.1. In effect, this process rearranges the binary mask variables of each layer to find a245

better arrangement for pruning locations.246

4.3 Mask Tuning247

In the previous two stages, the possible mask values are restricted to either 0 or 1 in order to simplify248

the search process. In this stage, we further relax this restriction. The nonzero variables in the mask249

m̂ from Section 4.2 are tuned to any real values such that the pruned model recovers its accuracy.250

Layer-wise Reconstruction via Linear Least Squares. We tune the mask variables toward minimiz-251

ing the layer-wise reconstruction error, similarly to [20]. For each layer, we reconstruct the output252

activation of the original model with the remaining heads/filters in the pruned model. This can be253

formally written as follows:254

argmin
ml

||x + layer(x;ml)�
�
x0 + layer(x0; 1)

�
||22, (12)

where layer is the either MHA or FFN, and x and x0 are the inputs to the layer of the pruned255

model and the original model, respectively. Note that this stage does not incur any change in model256

FLOPs/latency, as we only tune the non-zero valued mask variables. We show in Section A.4 that257

Eq. 12 can be reduced to a linear least squares problem of argminml
||Am

l
� b||22, where the matrix258

A denotes a collection of the output activations of the model pruned by the binary mask and the259

vector b is the output activation of the original model.260

Because the size of the matrix A can be large, our framework uses the LSMR solver in CuPy [52] to261

solve the linear least squares problem. For the regularization hyperparameter (i.e., damp) of LSMR,262

we fix its value to 1. Then, to increase stability, we restrict the acceptable range of the tuned mask263

variables to [-10, 10]. When the solver finds a layer mask that exceeds this range, we discard the mask264

for that layer and stop mask tuning. While the use of LSMR solver involves two hyperparameters265

(i.e., damp and the acceptable range), we empirically find that these need not be tuned for different266

tasks and models. In all of our experiments, we used the fixed hyperparameter values.267

5 Evaluation268

5.1 Experimental Setup269

Our framework is implemented on top of PyTorch [54] and HuggingFace Transformers [84] li-270

brary. We evaluate the effectiveness of our approach using BERTBASE [11] and DistilBERT [60] on271

GLUE [76] and SQuAD [58, 57] benchmarks. We use 2K examples from the training sets for pruning,272

and we evaluate the resulting models on the development sets. All of the results are averaged over the273

runs with 10 different seeds. More details on the experimental setup can be found in Section A.5.274
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Figure 4: Accuracy of our pruning method applied to BERTBASE and DistilBERT with different
FLOPs constraints. The dashed horizontal lines indicate 1% accuracy drop from the baseline models.
Note that these results can be achieved in only 39 and 135 seconds for GLUE and SQuAD benchmarks,
respectively, on a single GPU system, as described in Table 5 (in Section A.11).

Figure 5: Amount of accuracy degradation from the baseline when pruning BERTBASE using our
method and the prior structured pruning methods with different relative FLOPs. Note that our method
does not require retraining, whereas all the other methods involve significant retraining overheads as
described in Table 1.

5.2 Performance Evaluation275

FLOPs. Figure 4 shows the accuracy of BERTBASE and DistilBERT with different FLOPs con-276

straints on GLUE and SQuAD datasets. As can be seen in the plots, with only 1% of accuracy277

drop, BERTBASE achieves 60–70% of the original FLOPs for all tasks. DistilBERT also shows a278

similar pattern and shows 50% FLOPs reduction (in STS-B and MRPC) even though it is already a279

compressed architecture. Results with larger sample datasets are provided in Section A.6.280

Latency. We further measure the latency on real hardware by pruning BERTBASE with latency281

constraints and deploying the resulting models on an NVIDIA V100 GPU. Table 3 (in Section A.7)282

lists the latency speedup with maximum accuracy drop of 1% for GLUE and SQuAD datasets. With283

batch size of 256, we achieve speedup of 1.47⇥ on average and up to 1.56⇥.284

5.3 Comparison with the Prior Methods285

FLOPs and Accuracy Comparison. Here, we compare our method with the prior structured286

pruning methods for Transformers including Flop [81], SLIP [71], Sajjad et al. [59], DynaBERT [23],287

EBERT [47], Block Movement Pruning (BMP) [36], and CoFi [86] by the FLOPs-accuracy trade-288

off of BERTBASE on GLUE tasks. We use the results without knowledge distillation and data289

augmentation reported in each paper. Since the baseline accuracy differs slightly from paper to paper,290

we compare the amount of the accuracy drop from the baseline instead of the absolute accuracy. The291

results are plotted as Figure 5. We include the comparison details and full table in Section A.8.292

Interestingly, our method exhibits comparable or sometimes better results than the prior methods293

without any model retraining and with substantially lower pruning costs. This empirically demon-294

strates that retraining and a complex pruning pipeline are not necessary for moderate level of pruning295

of Transformers. For high sparsity, we find that our framework with retraining works comparably to296

or better than the prior methods at the same pruning cost (See Section A.9).297
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Table 1: Pruning cost comparison between the
prior structured pruning methods and ours. We
compare the number of training epochs and the
end-to-end (E2E) time required for pruning.

# Epochs E2E time (hr)

DynaBERT [23] 4 12
EBERT [47] 6 5
BMP [36] 20 17
CoFi [86] 40 33

Ours 0 0.01
Figure 6: Retraining-free accuracy without (dotted)
and with (solid) mask tuning.

Table 2: Ablation of our mask search, rearrangement, and tuning methods, described in Section 4.
We use BERTBASE as a baseline model, and we prune with a 60% FLOPs constraint.

MNLI QQP QNLI SST-2 STS-B MRPC SQuAD1.1 SQuAD2.0 Avg. Diff

Baseline 84.53 91.00 91.41 93.57 88.90 86.27 88.48 76.82

Mask Search 81.21 89.99 88.38 92.13 87.10 83.14 82.66 71.12
+ Mask Rearrangement 81.81 90.08 88.77 92.09 87.68 83.23 84.47 72.38 + 0.60
+ Mask Tuning 82.51 90.35 90.06 92.49 88.00 85.27 86.72 75.26 + 1.27

Retraining Cost. We select DynaBERT [23], EBERT [47], BMP [36], and CoFi [86] that achieve298

comparably good accuracy in Figure 5, and we systematically analyze their end-to-end retraining299

costs on the MNLI dataset. As shown in Table 1, these methods require 5�33 hours of retraining. On300

the other hand, our method finishes in less than a minute, which is 2�3 orders of magnitude faster.301

We also highlight that this training latency only accounts for a single hyperparameter, and the entire302

cost should be multiplied by the size of the hyperparameter space. While the prior methods rely on a303

number of hyperparameters, ours introduce only two hyperparameters (in Section 4.3) which we fix304

for all experiments. See Section A.10 for more details.305

Unlike other methods (including ours) that take as input the fine-tuned models, Sajjad et al. [59] starts306

from the pre-trained model, heuristically drops the top layers, and then fine-tunes on downstream307

tasks. Therefore, one can regard it as a zero-cost pruning method. However, as can be seen in308

Figure 5, the resulting models suffer from large accuracy degradation in most cases.309

5.4 Discussion310

Ablation Studies. Table 2 lists an ablation of mask rearrangement (Section 4.2) and tuning (Sec-311

tion 4.3) stages for pruned BERTBASE with 60% of FLOPs. We find that both stages help recover the312

baseline accuracy, and that mask tuning is in particular critical, recovering up to 2.88% accuracy. To313

further investigate the importance of mask search and rearrangement, we compare the retraining-free314

performance of the binary masks obtained by our method and other pruning criteria: weight magni-315

tude and gradient-based method used in DynaBERT. We uniformly pruned the layers using the two316

criteria with different width multipliers. Figure 6 shows that the two methods significantly degrade317

the accuracy under non-trivial sparsity. Even with mask tuning, the accuracy is not fully recovered.318

The results demonstrate that our mask search and re-arrangement are necessary to get optimal binary319

masks, and that mask tuning is only effective when the mask mostly preserves the accuracy.320

Time Breakdown. We break down our pruning pipeline into 4 parts—gradient computation, mask321

search, rearrangement, and tuning—and we measure the latency for each stage as Table 5 (Sec-322

tion A.11). For GLUE and SQuAD tasks, our framework finishes in 39 and 135 seconds on average.323

324
6 Conclusion325

In this work, we have proposed a novel post-training pruning framework for Transformers that does326

not require model retraining. The core of our framework is to the three-stage decomposition of the327

pruning process. It uses a fast Fisher-based mask search algorithm to decide which heads/filters to328

prune, rearranges the pruned heads/filters, and tunes the mask variables to recover the output signal329

for each layer. We empirically evaluate our framework using BERTBASE and DistilBERT, where330

our pruning method achieves up to 50% FLOPs reduction with only 1% accuracy degradation on331

GLUE and SQuAD datasets. This results in up to 1.56⇥ latency speedup on an NVIDIA V100 GPU.332

End-to-end pruning only needs 39 and 135 seconds for GLUE and SQuAD, which is 2�3 orders333

of magnitude faster than the prior methods. Overall, our method shows comparable or even better334

compression performance, as compared to the prior retraning-based methods.335
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were chosen)? [Yes] Our method has only two hyperparameters which were fixed in581

all of our experiments (See Section 4.3). For details on the datasets, see Section 5.1.582
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-583

ments multiple times)? [No] Because our method is training-free, the results are very584

stable across seeds. For simplicity, we omitted the error bar.585

(d) Did you include the total amount of compute and the type of resources used (e.g., type586

of GPUs, internal cluster, or cloud provider)? [Yes] For all experiments, we used an587

AWS p3.2xlarge instance which has 1 NVIDIA V100 GPU. See Section 5.1 for details.588

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...589

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the590

HuggingFace transformers library, from which we got the pre-trained Transformer591

weights.592

(b) Did you mention the license of the assets? [N/A]593

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]594

595

(d) Did you discuss whether and how consent was obtained from people whose data you’re596

using/curating? [N/A]597

(e) Did you discuss whether the data you are using/curating contains personally identifiable598

information or offensive content? [N/A]599

5. If you used crowdsourcing or conducted research with human subjects...600

(a) Did you include the full text of instructions given to participants and screenshots, if601

applicable? [N/A]602

(b) Did you describe any potential participant risks, with links to Institutional Review603

Board (IRB) approvals, if applicable? [N/A]604

(c) Did you include the estimated hourly wage paid to participants and the total amount605

spent on participant compensation? [N/A]606
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